首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The jujube tree (Zizyphus jujuba Mill.)/wheat (Triticum aestivum L.) agroforestry system is frequently used in China’s Xinjiang Province. The system improves land-use efficiency and increases economic returns. A field experiment was conducted at the Hetian oasis in southern Xinjiang Province to investigate the relationship between root distribution and interspecific interaction between the two intercropped species. The study included seven treatments: sole-cropped 5, 7, or 9-year-old jujube trees (treatments 1–3); 5, 7, or 9-year-old jujube trees intercropped with wheat (treatments 4–6); and sole-cropped wheat (treatment 7). To determine vertical root distribution, soil cores were collected in 20-cm increments from the 0 to 100-cm soil depth. The cores were collected at horizontal distances of 30, 60, 90, 120, and 150 cm from the jujube rows. The results showed that the land equivalent ratios were >1 for the three jujube/wheat intercropping systems. This indicated that these systems were advantageous compared with sole cropping. Tree height, breast height diameter, and mean crown radius were less in the intercropped treatments than in the corresponding sole-cropped treatments. Intercropping reduced the root length densities (RLDs) and root diameters (RDs) of both jujube and wheat at all soil depths. The RLD and RD of 9-year-old jujube trees were greater than those of the 5- and 7-year-old trees, which indicated that the root systems of the 9-year-old trees were more developed. Wheat root growth was inhibited more by older jujube trees than by younger ones. In conclusion, jujube tree/wheat intercropping can be practical and beneficial in the region. However, the mechanisms involved in the belowground interspecific interactions are still unknown. Additional research is needed to provide optimal management strategies and technologies for jujube/wheat intercropping.  相似文献   

2.
A field study was conducted at Hetian, southern Xinjiang, northwest China, to investigate root morphology as affected by interspecific interactions between jujube (Ziziphus jujuba Mill.) and wheat (Triticum aestivum L.). The treatments comprised (1) sole wheat, (2) 3-, 5- and 7-year-old sole jujube trees, and (3) intercropping of wheat/3-, 5- and 7-year-old jujube trees. Roots were sampled by auger in each plot down to 100 cm depth at 20 cm intervals in the soil profile and horizontally up to 150 cm away from the base of the trees at 30 cm intervals. All jujube/wheat intercropping systems had advantages of intercropping with a land equivalent ratio (LER) >1. There were significant differences in the contours of both root length density (RLD) and root diameter (RD) in intercropped wheat and jujube in the vertical and horizontal direction at corresponding soil depths but the RLD and RD of the 7-year-old jujube/wheat intercropping system were less influenced by intercropping in this respect than 3- and 5-year-old jujube intercropped with wheat. The roots of both intercropped wheat and jujube had smaller RLD, RD and larger specific root lengths (SRLs) at corresponding soil depths than did sole wheat and jujube. The older the jujube the larger were the SRL values of intercropped wheat and the smaller the RLD and RD of intercropped wheat. The greater the distance from the jujube the less influence there was on the RLD, SRL and RD of intercropped wheat and jujube and the greater the distance from the jujube the smaller was the SRL of intercropped wheat and the greater the RLD and RD of intercropped wheat (but still less than the monoculture wheat). The older the jujube the more developed were the jujube roots so that the smaller the SRL of jujube the bigger the RLD and RD of jujube. Jujube tree roots showed a mainly downward trend and extended laterally 150 cm from the trees resulting in the roots of the jujube trees and the wheat having niche overlap at a soil depth of 20–40 cm. The mechanisms underlying the thinner roots of wheat and jujube require further investigation.  相似文献   

3.
华北低丘山区核桃-决明子复合模式的根系分布   总被引:4,自引:0,他引:4       下载免费PDF全文
采用分层挖掘法,对株行距为3 m×8 m的核桃-决明子复合模式中的根生物量、总根长密度、吸收根的根长密度和根系直径等进行了调查。结果表明:核桃单作的总根长密度比核桃间作的高7%左右,且在各个土层中吸收根的根长密度都高于核桃间作,而二者的总根生物量和根系直径则差异较小。决明子单作的根系直径比间作决明子的大27.73%,但二者的根长密度和根生物量则差异不大。在核桃-决明子复合模式中,核桃总根生物量和吸收根长均占复合模式总根量的一半以上,其中,在水平方向上,决明子在树行南侧2.5、4.0 m位置根系分布最多,而树行南北1.5 m范围内则较少;核桃根系则主要分布在树行两侧1.5 m范围内。垂直方向上,核桃在30~80 cm土层中的根生物量和吸收根长分别占其总量的64.79%和61.17%,而59.54%的决明子根系分布在0~20 cm土壤中。  相似文献   

4.
Tree pruning is a common management practice in agroforestry for mulching and reducing competition between the annual and perennial crop. The below-ground effects of pruning, however, are poorly understood. Therefore, nutrient dynamics and root distribution were assessed in hedgerow plantings of Acacia saligna (Labill.) H.L. Wendl. after tree pruning. Pruning to a height of 1.5 m was carried out in March and September 1996. In July and October 1996, the fine root distribution (< 2 mm) and their carbohydrate contents were determined at three distances to the tree row by soil coring. At the same time, foliar nutrient contents were assessed, whereas nutrient leaching was measured continuously. The highest root length density (RLD) was always found in the topsoil (0–0.15 m) directly under the hedgerow (0–0.25 m distance to trees). Pruning diminished the RLD in the acacia plots at all depths and positions. The relative vertical distribution of total roots did not differ between trees with or without pruning, but live root abundance in the subsoil was comparatively lower when trees were pruned than without pruning. In the dry season, the proportion of dead roots of pruned acacias was higher than of unpruned ones, while the fine roots of unpruned trees contained more glucose than those of pruned trees. Pruning effectively reduced root development and may decrease potential below-ground competition with intercropped plants, but the reduction in subsoil roots also increased the danger of nutrient losses by leaching. Leaching losses of such mobile nutrients as NO3 were likely to occur especially in the alley between pruned hedgerows and tended to be higher after pruning. The reduced size of the root system of pruned acacias negatively affected their P and Mn nutrition. Pruning also reduced the function of the trees as a safety net against the leaching of nutrients for both NO3 and Mn, though not for other studied elements. If nutrient capture is an important aim of an agroforestry system, the concept of alley cropping with pruning should be revised for a more efficient nutrient recycling in the system described here.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
The traditional Acacia senegal bush-fallow in North Kordofan, Sudan, was disrupted and the traditional rotational fallow cultivation cycle has been shortened or completely abandoned, causing decline in soil fertility and crop and gum yields. An agroforestry system may give reasonable crop and gum yields, and be more appealing to farmers. We studied the effect of tree density (266 or 433 trees ha−1) on two traditional crops; sorghum (Sorghum bicolor) early maturing variety and karkadeh (Hibiscus sabdariffa), with regard to physiological interactions, yields and soil water depletion. There was little evidence of complementarity of resource sharing between trees and crops, since both trees and field crops competed for soil water from the same depth. Intercropping significantly affected the soil water status, photosynthesis and stomatal conductance in trees and crops. Gum production per unit area increased when sorghum was intercropped with trees in low or high density. However, karkadeh reduced the gum yield significantly at high tree density. Yields of sorghum and karkadeh planted within trees of high density diminished by 44 and 55% compared to sole crops, respectively. Intercropping increased the rain use efficiency significantly compared to trees and field crops grown solely. Karkadeh appears to be more appropriate for intercropping with A. senegal than sorghum and particularly recommendable in combination with low tree density. Modification of tree density can be used as a management tool to mitigate competitive interaction in the intercropping system.  相似文献   

6.
This review summarises current knowledge on root interactions in agroforestry systems, discussing cases from temperate and tropical ecosystems and drawing on experiences from natural plant communities where data from agroforestry systems are lacking. There is an inherent conflict in agroforestry between expected favourable effects of tree root systems, e.g. on soil fertility and nutrient cycling, and competition between tree and crop roots. Root management attempts to optimise root functions and to stimulate facilitative and complementary interactions. It makes use of the plasticity of root systems to respond to environmental factors, including other root systems, with altered growth and physiology. Root management tools include species selection, spacing, nutrient distribution, and shoot pruning, among others. Root distribution determines potential zones of root interactions in the soil, but are also a result of such interactions. Plants tend to avoid excessive root competition both at the root system level and at the single-root level by spatial segregation. As a consequence, associated plant species develop vertically stratified root systems under certain conditions, leading to complementarity in the use of soil resources. Parameters of root competitiveness, such as root length density, mycorrhization and flexibility in response to water and nutrient patches in the soil, have to be considered for predicting the outcome of interspecific root interactions. The patterns of root activity around individual plants differ between species; knowing these may help to avoid excessive competition and unproductive nutrient losses in agroforestry systems through suitable spacing and fertiliser placement. The possibility of alleviating root competition by supplying limiting growth factors is critically assessed. A wide range of physical, chemical and biological interactions occurs not only in spatial agroforestry, but also in rotational systems. In a final part, the reviewed information is applied to different types of agroforestry systems: associations of trees with annual crops; associations of trees with grasses or perennial fodder and cover crops; associations of different tree and shrub species; and improved fallows. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The presence of trees in fields may help overcome the physiological stress that happens to late sown wheat (Triticum aestivum L.) in subtropical India. Wheat was planted in an agroforestry system with Eucalyptus tereticornis trees on 7 January 1998 in a fan design that provided different combinations of tree row spacing and orientations. Crop profile microclimatic conditions and the resulting growth responses of the intercropped wheat were studied to explore the potential of agroforestry systems to influence late sown wheat yields under different tree row spacing and orientations. Agroforestry treatments exhibited a potential to optimize the microclimatic conditions for seedling emergence, tillering and earhead emergence at some tree row orientations and distances from the crop. The net radiation distribution at three stages of crop growth indicated that the radiation availability was lower in all the agroforestry treatments than for the sole crop. The tree row orientation and distance influence the growth behavior of the crop but the effect of sun angle (which changes with season) can change their influence over time. The deterioration or amelioration of microclimatic conditions in agroforestry with the passage of time should be expected because of altered interaction patterns between sunrays and tree canopy resulting from changing solar elevation and angle of sunrays. Statistically similar harvest indices in all the treatments despite lower total biological yields in agroforestry treatments revealed that microclimatic conditions under agroforestry were more favorable for wheat growth attributed to reduction in heat load during the post anthesis period. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We analysed the spatial distribution of fine roots and light availability in a tree-based intercrop system (TBI) composed of Quercus rubra L. (QUR), hybrid poplar (Populus deltoides × Populus nigra—HYP) and hay (CROP) in southern Québec (Canada) to evaluate interactions between trees and crop. Trees in the 8-year-old TBI system had superficial fine root profiles, which is common in tree species grown in conventional plantations and natural forests. More than 95 % of fine roots were found within the first 25 and 45 cm for QUR and HYP, respectively, and 35 cm for CROP. However, vertical separation between the fine root systems of QUR and CROP was evident, as QUR allocated less fine roots to the top 10 cm of soil, and more to depths between 10 and 30 cm, as opposed to CROP which had a greater proportion of fine roots in the top 10 cm. HYP fine roots showed no adaption when intercropped with hay. High tree fine root length density (FRLD) in the top soil layer was observed near the tree stems while hay FRLD was reduced by 45 %, suggesting strong competition for resources. Hay yield analysis revealed significant reduction near trees, particularly HYP. However, light did seem to be the main driver of intercrop yield, as it not only accounted for the effect of competition by roots (being correlated), but also had a singular effect.  相似文献   

9.
Biophysical interactions in tropical agroforestry systems   总被引:2,自引:0,他引:2  
The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
We assessed the influence of stand age on fine root biomass and morphology of trees and understory vegetation in 10-, 30-, 60- and 120-year-old Norway spruce stands growing in sandy soil in southeast Norway. Fine root (< 1, 1-2 and 2-5 mm in diameter) biomass of trees and understory vegetation (< 2 mm in diameter) was sampled by soil coring to a depth of 60 cm. Fine root morphological characteristics, such as specific root length (SRL), root length density (RLD), root surface area (RSA), root tip number and branching frequency (per unit root length or mass), were determined based on digitized root data. Fine root biomass and morphological characteristics related to biomass (RLD and RSA) followed the same tendency with chronosequence and were significantly higher in the 30-year-old stand and lower in the 10-year-old stand than in the other stands. Among stands, mean fine root (< 2 mm) biomass ranged from 49 to 398 g m(-2), SLR from 13.4 to 19.8 m g(-1), RLD from 980 to 11,650 m m(-3) and RSA from 2.4 to 35.4 m(2) m(-3). Most fine root biomass of trees was concentrated in the upper 20 cm of the mineral soil and in the humus layer (0-5 cm) in all stands. Understory fine roots accounted for 67 and 25% of total fine root biomass in the 10- and 120-year-old stands, respectively. Stand age had no affect on root tip number or branching frequency, but both parameters changed with soil depth, with increasing number of root tips and decreasing branching frequency with increasing soil depth for root fractions < 2 mm in diameter. Specific (mass based) root tip number and branching density were highest for the finest roots (< 1 mm) in the humus layer. Season (spring or fall) had no effect on tree fine root biomass, but there was a small and significant increase in understory fine root biomass in fall relative to spring. All morphological characteristics showed strong seasonal variation, especially the finest root fraction, with consistently and significantly higher values in spring than in fall. We conclude that fine root biomass, especially in the finest fraction (< 1 mm in diameter), is strongly dependent on stand age. Among stands, carbon concentration in fine root biomass was highest in the 30-year-old stand, and appeared to be associated with the high tree and canopy density during the early stage of stand development. Values of RLD and RSA, morphological features indicative of stand nutrient-uptake efficiency, were higher in the 30-year-old stand than in the other stands.  相似文献   

11.
Two field trials were conducted under rainfed conditions at El-Obeid Research Farm and Eldemokeya Forest Reserve, North Kordofan State during the growing seasons 2004/2005 and 2005/2006. The objective was to investigate the effect of Acacia senegal on the performance and yield of groundnut (Arachis hypogea), sesame (Sesamum indicum) and roselle (Hibiscus sabdariffa) in an agroforestry system. The two trials consisted of seven treatments: three represented the intercropping of groundnut, sesame and roselle with A. senegal, three without trees and one represented A. senegal alone. Data were recorded on soil physical and chemical properties, soil moisture content, crops fresh weight (kg/ha), dry weight (kg/ha), gum yield (g/picking) and crop yield (kg/ha). The trees at El-Obeid yielded no gum, whereas those at Eldemokeya were 15 years old and were tapped as part of the total harvest in the agroforestry plots. Land equivalent ratios (LER) and simple financial analyses of gross surpluses were used to evaluate the productivity of the different treatments. Fresh weight of groundnut, sesame and roselle was significantly different (P < .0.05) at both sites. Higher fresh weights were found under the intercropping system than the sole cropping system. This could be attributed to a shading effect that limits fruit production of the field crops more than vegetative growth. Dry weights were significantly greater for sesame and roselle in both sites, while that of groundnuts was not significantly different. In both sites, intercropping reduced the yield of sesame by 6 and 11% in the first season and 37 and 39% in the second season. The reduction in roselle yield was 19 and 28% in the first season and 15 and 8% in the second season. Yield reduction in groundnut was 35 and 17% in the first season and 35 and 11% in the second season. The combined analysis indicated that intercropping reduced groundnut yield by 26%, sesame by 21% and roselle by 20%. All the treatments gave LER of more than one—indicating the superiority of growing the field crops in intercropping over the sole cropping systems. The highest LER of (1.71) was obtained when roselle was intercropped with A. senegal, while the lowest LER (1.48) was obtained when groundnuts were intercropped with A. senegal. All the treatments gave positive net revenues, the highest being for intercropped roselle (438 SDG/ha). The intercropping of sesame gave the second highest net revenue (387 SDG/ha), while the sole roselle gave the lowest net revenue (97 SDG/ha).  相似文献   

12.
During the spring of 2006, three willow varieties (SV1, SX67 and 9882-41) were established on marginal land in an agroforestry tree-intercropping arrangement where plots of short rotation willows were planted between rows (spaced 15?m apart) of 21-year-old mixed tree species. As a control, the same varieties were established on an adjacent piece of land without established trees (conventional willow system). This study investigated the magnitude of carbon pools, fine root and leaf biomass inputs and clone yields in both the tree-based intercropping (agroforestry) and conventional monocropping systems. Willow biomass yield was significantly higher in the agroforestry field (4.86?odt?ha?1?y?1) compared to the conventional field (3.02?odt?ha?1?y?1). In both fields, varieties SV1 and SX67 produced higher yields than the variety 9882-41. Willow fine root biomass in the top 20?cm of soil was significantly higher in the intercropping system (3,062?kg?ha?1) than in the conventional system (2,536?kg?ha?1). Differences in fine root biomass between clones were similar to that observed for differences in biomass yield: SV1?>?SX67?>?9882-41. Leaf input was higher in the intercropping system (1,961?kg?ha?1) than in the conventional system (1,673?kg?ha?1). Clonal differences in leaf inputs followed the same trends as those for root biomass and yield: SV1?>?SX67?>?9882-41. Soil organic carbon was significantly higher in the agroforestry field (1.94?%) than in the conventional field (1.82?%). A significant difference in soil organic carbon was found between the three clones: soils under clone 9882-41 had the lowest soil organic carbon at 1.80?%.  相似文献   

13.
Spatial relationships between root length density of Coffea arabica (coffee RLD) and soil nutrient- related factors at plot scale in a coffee- Erythrina poeppigiana system was studied by geostatistics. In a 24 × 29 m area, (organic and conventional management), coffee and Erythrina fine roots and soil chemical properties were sampled on an irregular grid in the topsoil. A factor analysis explained 83 % of the total variation of the soil attributes. Soil factors were identified: Chemical fertility (CF), Micronutrients, Organic matter, and Acidity (Ac). Based on the spherical model, all the attributes presented a strong spatial structure. The scale of spatial correlation for CF was lesser than for Ac, but similar to coffee RLD. Erythrina RLD had a short-range variation. Patchy areas of high spots of coffee RLD were greater in organic plot. Cross-semivariogram analysis estimated a correlation between soil factors and coffee RLD over a scale of 5.50 m; but 4.23 m with Erythrina RLD. Nutrients linked to P, Zn, exchangeable bases and acidity soil affected the scale of spatial aggregation pattern of coffee RLD. The spatial response of coffee RLD suggests a differential nutrient uptake strategy for acquiring soil nutrients induced by the quality of organic and inorganic fertilizer inputs. The fact that coffee RLD had higher scale of spatial variation than Erythrina RLD and a negative spatial correlation indicate that pruned Erythrina trees are not so competitive for acquiring shared nutrients in an agroforestry system.  相似文献   

14.
Alley cropping systems may influence soil water movement and the water budget because of its complex interactions between crop and tree rooting systems. The objective of this paper was to evaluate water balance and water competition in an alley cropping system, consisting of deciduous tree wild jujube (Choerospondias axillaris) and economic crop peanut (Arachis hypogaea) within subtropical China. Five treatments (20- by 6-m plots) with three replications were included in this study. The treatments were monoculture peanut cropping (P), monoculture younger trees (T1), monoculture older trees (T2), peanut intercropped with younger trees (T1P), and peanut intercropped with older trees (T2P). A multi-layered water balance model, with water movement between soil layers, was implemented by the measurement of soil water potential using sets of tensiometers during the periods from March 1999 to December 2002. The spatial and temporal variations of soil water regime indicated that the trees used soil water below the 60-cm soil depth and alleviated the water stress. The direction of soil water movement indicated that soil water moved to the tree row, which indicated that trees competed with peanuts for water, especially during the seasonal drought period. Water competition was related to the tree spacing and tree age. Compared to the tree monoculture systems, the alley cropping system significantly influenced water budget components and water use patterns, as indicated by the increased evapotranspiration (6–11%), and decreased net drainage (7–45%), water storage (6–29%), and runoff (50–60%). Furthermore, alley cropping systems encouraged the rapid growth of trees, and depressed the biomass and yield of peanuts by 20–50% associated with tree shading effects. The results suggest that competition for water and light must be taken into account when optimizing the alley cropping system.  相似文献   

15.
This literature review presents information about the role of tree root systems for the functioning of agroforestry associations and rotations and attempts to identify root-related criteria for the selection of agroforestry tree species and the design of agroforestry systems. Tree roots are expected to enrich soil with organic matter, feed soil biomass, reduce nutrient leaching, recycle nutrients from the subsoil below the crop rooting zone and improve soil physical properties, among other functions. On the other hand, they can depress crop yields in tree-crop associations through root competition. After a brief review of favourable tree root effects in agroforestry, four strategies are discussed as potential solutions to the dilemma of the simultaneous occurrence of desirable and undesirable tree root functions: 1) the selection of tree species with low root competitiveness, eventually supplemented by shoot pruning; 2) the identification of trees with a root distribution complementary to that of the crops; 3) the reduction of tree root length density by trenching or tillage; and 4) the use of agroforestry rotations instead of tree-crop associations. The potential and limitations of these strategies are discussed, and deficits in current understanding of tree root ecology in agroforestry are identified. In addition to the selection of tree species and provenances according to root-related criteria, the development of management techniques that allow the manipulation of tree root systems to maximize benefit and minimize competition are proposed as important tasks for future agroforestry research.  相似文献   

16.
The allelopathic effects of Adina cordifolia, Alnus nepalensis, Celtis australis and Prunus cerasoides were tested by growing crops of Eleusine coracana, Glycine max and Hordeum vulgare on top soil, rhizosphere soil from the plantation of these trees, and on field soil either mulched with dry leaves or irrigated with aqueous leaf extracts of the agroforestry tree species. Germination percentage, shoot length, root length and dry matter production and pigment contents of crops were depressed by agroforestry tree crops. Maximum reduction in germination percentage, root-shoot length and dry matter production was obtained with experimental garden soil mulched with dry leaves of trees and by the effect of Adina cordifolia followed by P. cerasoides, H. vulgare proved most susceptible and E. coracana highly resistant to these tree-top interactions.  相似文献   

17.
We examined the effects of intercropping with Acacia senegal (L.) Willd on growth and yield of sorghum (Sorghum bicolor L.), sesame (Sesamum indicum L.) and roselle (Hibiscus sabdariffa). Field experiments were conducted in El-Obeid Research farm (13°10’ N; 30°12’ E), North Kordofan State, Sudan, during 2002 2003 in an 11-year-old A. senegal plantation. The experimental design was randomized complete block design (RCBD) with four replications. Data were recorded for plant height (cm), fresh weight (kg ha -1 ), dry weight (kg ha -1 ), crop yield (kg ha -1 ), and gum yield (kg ha -1 ). We used Land Equivalent Ratios (LER) and simple financial analyses of gross surpluses to evaluate the productivity and profitability of the different treatments. The results indicated that A. senegal trees had a beneficial effect on crop performance and yield as well as gum yield. Significant differences (p<0.05) were obtained for plant height, fresh weight, dry weight and crop yield. Therefore, yield of sorghum, sesame and roselle under intercropping system were 13.7%, 23.8% and 20.9% higher than that obtained in the sole cropping system respectively. The highest yield increase was observed with sesame (23.8%). Gum yield (g/tree/picking) was signifi- cantly (p<0.05) increased for sorghum, sesame and roslle under inter-cropping system. The highest yield of (298g/tree/picking) was obtained when roselle was intercropped with A. senegal, while the least gum yield of (239 g tree-1 ) was recorded in pure A. senegal plot. All the treatments gave land equivalent ratio (LER) of more than one-indicating the superiority of growing the field crops in intercropping over the sole cropping systems. The highest LER of 3.8 was obtained for sesame intercropped with A. senegal (Hashab), followed by 3.7, when sorghum was intercropped with A. senegal and 3.3 when roselle intercropped with A. senegal. All the treatments gave positive net revenues, the highest being for intercropped sorghum (558 SDG ha -1 ) (SDG=Sudanese gienh). The intercropping of roselle gave the second net revenue (518 SDG ha -1 ),while the sole sorghum gave the lowest net revenue (501 SDG ha -1 ).  相似文献   

18.
Tree species in agroforestry are important source of inoculum for companion agricultural crops. Agroforestry trees can serve as a source of Arbuscular mycorrhiza (AM) inoculants to intercropped annuals. We studied spore abundance, root colonization of Albizia gummifera (J.F. Gmel.) and Croton macrostachyus (Hochst Ex Del.) trees and their effect on colonization of maize. Soil and root samples were collected from field standing trees from under and outside the canopy of trees and maize crops in the main rainy season. The number of spore count was significantly higher under the canopy of A. gummifera (791/100 g of dry soil) and C. macrostachyus (877/100 g of dry soil) trees than outside the canopy (547 and 588/100 g of dry soil, respectively). The level of root colonization of C. macrostachyus (45 %) was higher than A. gummifera (41 %). Root colonization of maize crops grown under the canopy of A. gummifera and C. macrostachyus trees was significantly higher than outside the canopy (P < 0.001). Maize seedlings grown on non-sterilized soils collected under and outside the canopy of A. gummifera and C. macrostachyus trees recorded higher root colonization, plant height, shoot and root dry weight than grown on sterilized soils (P < 0.001). The percentage of AM colonized roots of Zea mays seedlings was significantly positively correlated with the number of spore counts for field soils. The rhizospheres of indigenous agroforestry perennial species are important source of inoculum for annuals. The integration of perennials and annuals in an agroforestry system enhances the maintenance of soil quality in the tropics.  相似文献   

19.
In order to study the effect of tree crop intercropping on a young plantation of Populus tomentosa in the plains along the Yellow River, field experiments were conducted by observing the growth of the plantation, the nutrient content in leaves, the nutrient and water content in the soil, and the output of crops. The relationship between forest growth and nutrient content in the tree leaves and the soil were analyzed. Results show that tree crop intercropping in young plantations can not only improve soil water content, but also enhance the contents of organic matter and the available nitrogen, phosphorus and potassium in soil resulting in the vigorous growth of the individual trees. Diameter at breast height (DBH) was positively related to the contents of organic matter in the soil, and the contents of N, P and K in the tree leaves had correlation coefficients of 0.967, 0.955, 0.988 and 0.972, respectively. Whole tree leaf area, crown width, number of branches and the mean length of branches in the intercropped plantation (intercropped with watermelon and vegetables, peanut and winter wheat, and soybean) were, respectively, 1.70–3.0 times, 2.22–2.47 times, 1.0–1.41 times and 1.70–2.32 times of those of CK (without intercropping). Diameter at breast height (DBH) and tree height in the intercropped plantation were 50.5%–136.7% and 27%–59.5% higher than those of the CK, respectively. The study also showed that intercropping with watermelon and vegetables proved to have the highest economic return among the treatments adopted. Tree crop intercropping in young plantations is an effective measure to increase forest growth and economic benefit. __________ Translated from Journal of Beijing Forestry University, 2006, 28(3): 81–85 [译自: 北京林业大学学报]  相似文献   

20.
In the Philippines, smallholder farmers have become major timber producers. But the systems of timber production practiced have several limitations. In intercropping systems, the practice of severe branch and/or root pruning reduces tree-crop competition and increases annual crop yields, but is detrimental to tree growth and incompatible with commercial timber production. In even-aged woodlots, lack of regular income and poor tree growth, resulting from farmers’ reluctance to thin their plantations, are major constraints to adoption and profitable tree farming. In the municipality of Claveria, Misamis Oriental, the recent practice of planting trees on widely spaced (6–8 m) contour grass strips established for soil conservation suggests ways to improve the adoptability (i.e., profitability, feasibility and acceptability) of timber-based agroforestry systems. Assuming that financial benefits are the main objective of timber tree farmers, we develop a simple linear programming (LP) model for the optimal allocation of land to monocropping and tree intercropping that maximizes the net present value of an infinite number of rotations and satisfies farmers’ resource constraints and regular income requirements. The application of the LP model to an average farmer in Claveria showed that cumulative additions of widely spaced tree hedgerows provides higher returns to land, and reduce the risk of agroforestry adoption by spreading over the years labour and capital investment costs and the economic benefits accruing to farmers from trees. Therefore, incremental planting of widely spaced tree hedgerows can make farm forestry more adoptable and thus benefit a larger number of resource-constrained farmers in their evolution towards more diverse and productive agroforestry systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号