首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecuadorian Penaeus vannamei were cultured in eight 200-m2 dirt ponds at four stocking densities (5, 10, 15 and 20 shrimp/m2). No commercial feed was given to the shrimp. The only input to the ponds was about 36 kg of feedlot cattle manure per pond per week (1800 kg manure ha−1 week−1).Shrimp growth was not correlated with variations in water quality among treatments (e.g., temperature, pH, DO, secchi visibility). Water-column nutrient levels were less than or equal to nutrients in incoming water and did not increase with addition of cattle manure. Water ATP concentrations were correlated with shrimp stocking density while numerous other biochemical parameters were not. No coliform bacteria were detected in any pond water samples during the study period. Phytoplankton densities and species composition were not different among treatments but varied over time. Two diatoms were the dominant species throughout the study.There was a negative correlation between stocking density and growth. Mean (±SD) weekly shrimp growth across treatments was 0.68±0.00, 1.06±0.02, 1.72±0.2 g individual−1 week−1 for densities of 20, 15, 10, and 5 shrimp/m2, respectively. Survival averaged 70.8±6.3% for all ponds and was not different among treatments. Shrimp production was 19.3±0.1, 23.0±0.4, 22.8±1.2, 12.3±1.1 kg ha−1 day−1 for densities 20, 15, 10, and 5 shrimp/m2, respectively. Shrimp production and carrying capacity were not significantly different among the three higher stocking densities.  相似文献   

2.
The efficacy of a commercial microbial product was tested in commercial tiger shrimp, Penaeus monodon (Fabricius), ponds for one culture period in Kuala Selangor, Malaysia. Four ponds with replicates for treatment and control were used. The pond bottom was dried but the organic sludge was not removed as normally practised in pond preparation. The ponds were stocked with 15 post‐larvae at the rate of 31.m?2. Physical, chemical and biological parameters of the pond were analysed every 2 weeks during the culture period. Water quality parameters remained within the optimum range for shrimp culture except for ammonia‐nitrogen being significantly higher in control ponds and silica in treated ponds. Benthic organisms were not found in any of the ponds. The average counts of different bacteria were not significantly higher in treated ponds than control. Because of poor health, the shrimp were harvested earlier (72 days) than the usual 120 days. An average of 875.60 ± 67.00 kg shrimp ha?1 was obtained in treated ponds with a feed conversion ratio (FCR) of 1.57 ± 0.10 and survival rate of 42.35 ± 5.37% compared with 719.50 ± 130.94 kg shrimp ha?1, 2.99 ± 0.70 and 21.25 ± 3.26%, respectively, in control ponds. Neither the microbial product nor the frequent water exchange was effective in overcoming the problems caused by the poor pond bottom.  相似文献   

3.
Low and unstable shrimp yields of the improved extensive shrimp system has been a tremendous obstacle for economic development in the coastal areas of Southern Vietnam. To investigate the biological characteristics of this system, ponds in the coastal Cai Nuoc district, Mekong delta of Vietnam, were monitored. Results showed that the system was not optimal for shrimp. While chlorophyll a (chl a) (1.51–37.2 μg L?1), phytoplankton density (6333–974 444 cells L?1) and zooplankton density (7.1–517.2 ind L?1) were abundant and comparable to shrimp farms elsewhere, zoobenthic community was very poor (7–1971 ind m?2). Toxin‐producing cyanobacteria (Oscillatoria limosa, Oscillatoria formosa, Anabaena sp. and Phormidium tenue) were found. Total bacteria and Vibrios were present in large numbers (respectively 1.04 × 105 and 6.64 × 102 CFU mL?1 in pond water, 6.33 × 105 and 9.47 × 103 CFU g?1 in sediment). Presence of toxin‐producing organisms, poor zoobenthic community and abundance of Vibrios all can enhance shrimp susceptibility to diseases. The following measures are recommended to improve the situation: (1) complete testing of seeds for pathogens, (2) not to incorporate fish into shrimp ponds and (3) applying no‐culture breaks and pathogen‐killing chemicals.  相似文献   

4.
Two commercial shrimp farms in south Texas were evaluated for influent and effluent water quality from June to October 1994. The intensive farm, Taiwan Shrimp Village Association (TSV) had an average annual yield of 4630 kg ha?1 while the semi‐intensive farm, Harlingen Shrimp Farm (HSF), had a yield of 1777 kg ha?1. The study had three objectives: (1) to compare influent and effluent water from the intensive and semi‐intensive shrimp farms, (2) to show which effluent water‐quality indicators exceeded allowable limits, (3) to indicate inherent problems in farms operated with water exchange and summarize how findings from this study led to changes in farms' management that limited potential negative impact on receiving streams. Water samples were collected and analysed twice a week for the TSV farm and once a week for the HSF farm. Samples were analysed for dissolved oxygen (DO), salinity, pH, ammonia‐nitrogen (NH3‐N), nitrite‐nitrogen (NO2‐N), nitrate‐nitrogen (NO3‐N), total phosphorus (TP), total reactive phosphorus (TRP), five‐day carbonaceous biochemical oxygen demand (cBOD5), total suspended solids (TSS) and settleable solids (SettSols). Most of the effluent constituents showed fluctuations throughout the sampling period often related to harvest activity. Effluent pH at TSV was lower than influent values but within the regulatory requirements set by Texas Commission of Environmental Quality (TCEQ), formerly known as Texas Natural Resource Conservation Commission (TNRCC). HSF effluent pH values were higher than its influent, but still within TCEQ limits. Effluent DO mean levels were generally below the regulatory daily mean requirement, with values at TSV often below those for influent. Effluent nutrient concentrations and net loads were generally higher at the intensive shrimp farm, with NH3‐N mean concentrations above the daily mean set by the TCEQ on several occasions. Effluent TSS concentrations were higher than influent for both farms, with daily mean values above the TCEQ limit. The two farms presented similar TSS concentrations despite their different stocking densities. However, TSS total net load and net load per hectare were higher at the intensive farm. The semi‐intensive farm presented higher cBOD5 concentrations and net loads despite its lower stocking density, with daily mean values above the TCEQ limit. The cBOD5 net load at TSV presented negative values indicating higher load at the influent than at the effluent. Analyses showed no evidence of self‐pollution between influent and effluent at the two farms. The high feed conversion ratio (FCR) values (2.3 and 2.7 for the intensive and the semi‐intensive farm respectively) suggest that better feed management is needed to reduce nutrient and solid net loads release from the two farms. The data obtained from this study resulted in several modifications in design and management of the two farms that reduced the potential negative impact on receiving streams. A brief summary of the improvement in selected effluent water‐quality indicators at the intensive shrimp farm is provided.  相似文献   

5.
This article analyses the optimal selection of stocking density and date in semi‐intensive culture of shrimp Litopenaeus vannamei (Boone, 1931). The empirical evaluation of productive and economic scenarios derived from the specific choice of these management variables is often unfeasible for decision makers. To overcome this limitation, the bioeconomic modelling is widely applicable in aquaculture systems. In the present study, profit maximization for a semi‐intensive shrimp farm is obtained through the development of a bioeconomic model to analyse the combination of stocking density (range: 6–30 postlarvae (PL) m?2) and date (from March 1st to June 1st) as decision variables for a shrimp farm located in Sinaloa, Mexico. The results show that pond water temperatures prevailing during culture cycle when the stocking date is June 1st (temperature in 19‐weeks culture period: 30.76 ± 0.87°C) and the stocking density is 20–24 PL m?2 produce a maximized Present Value Profit (PVπ) of  USThis article analyses the optimal selection of stocking density and date in semi‐intensive culture of shrimp Litopenaeus vannamei (Boone, 1931). The empirical evaluation of productive and economic scenarios derived from the specific choice of these management variables is often unfeasible for decision makers. To overcome this limitation, the bioeconomic modelling is widely applicable in aquaculture systems. In the present study, profit maximization for a semi‐intensive shrimp farm is obtained through the development of a bioeconomic model to analyse the combination of stocking density (range: 6–30 postlarvae (PL) m?2) and date (from March 1st to June 1st) as decision variables for a shrimp farm located in Sinaloa, Mexico. The results show that pond water temperatures prevailing during culture cycle when the stocking date is June 1st (temperature in 19‐weeks culture period: 30.76 ± 0.87°C) and the stocking density is 20–24 PL m?2 produce a maximized Present Value Profit (PVπ) of  US$?ha 10 350 and PVπ US$?ha 2526 for weekly mortality rates at low (2.1%) and medium (5.8%) levels respectively. The marginal change in the cost of feed (±1%) has the greatest effect on PVπ (?0.58% and 0.59% respectively). The discussion focuses on the combined effect of mortality rate, stocking density and especially, on the stocking date decision, for a given production planning framework, taking into account that the stocking date is the main management decision variable to cope with viral diseases outbreaks.  相似文献   

6.
We used 12 land-based experimental enclosures (6 m × 5 m) in a saline–alkaline pond of shrimp (Penaeus vannamei) to determine the impact of net-isolated polyculture of tilapia (Oreochromis niloticus) on plankton communities for 40 days. Tilapias were stocked in net cages suspended in enclosures, in polyculture ponds including tilapia and shrimp. Four tilapia biomass were tested: 0, 39, 115 and 227 g m−2. Shrimp stocking biomass were 0.7 g m−2 in all treatments. There were three replicates in each treatment. Our results showed that the presence of tilapia significantly reduced phytoplankton biomass directly through predation and indirectly through top-down effect. The stocking of tilapia reduced zooplankton biomass, particularly rotifer biomass. However, copepod biomass was not been significantly affected. So, net-isolated polyculture of tilapia can thus have a strong impact on phytoplankton allowing the co-existence of large numbers of copepods with planktivorous fish and improving the water quality of shrimp ponds.  相似文献   

7.
The effect of promoted biota on the production parameters, water quality, nutritional and immunological condition of Litopenaeus vannamei was assessed in semi‐intensive ponds. Earthen ponds were used as experimental units: three with formulated + natural promoted feed + shrimp (T1), three with formulated feed + shrimp (T2), and three with promoted natural feed without shrimp (Control). The dissolved oxygen (DO) levels were optimal for all treatments (≥6 mg L?1) as well as the pH (8.4–8.6). Total ammonia nitrogen was greater in T2 (0.10 mg L?1) than T1 (0.07 mg L?1) and the Control (0.06 mg L?1). Phytoplankton, zooplankton and benthos were more abundant in T1 and the Control. The promotion of natural feed had a positive effect on all the production parameters of shrimp with an increase of 19.0%, 3.5% and 23.9% in weight gain, survival, and final biomass, respectively; also it was observed a decrease of 13.9% in feed conversion ratio. No differences in haemolymph parameters were observed for nutritional indicators (glucose, cholesterol, proteins, and triglycerides) nor for immunological response (phenoloxidase and prophenoloxidase). The results indicate that the promotion of biotic communities enhances the production parameters of farmed shrimp, without affecting the nutritional and immunological status. Also the water quality was improved by the presence of biota.  相似文献   

8.
Consecutive failure of the improved extensive shrimp farming system has deterred the economy of some coastal areas in Vietnam. To investigate pond physico‐chemical characteristics, a monitoring scheme was performed in the Cai Nuoc district of Southern Vietnam. Results show that the system was not optimal for shrimps. While ponds were not contaminated by organic loadings or major nutrients (N, P) and salinity and pH were most optimal for shrimp, more than 37% of dissolved oxygen (DO) measurements were lower than recommended. In the early morning hours, DO measurements were even much lower (0.84–2.20 mg L?1). Sulphate (SO42?) concentrations were most within the acceptable range. Total suspended solids (TSS) were above the acceptable limit (<50 mg L?1). Iron, alkalinity and hydrogen sulphide were also higher than recommended. Pond sediment was anaerobic (redox potential ?422 to ?105 mV) and contained high amounts of organic matter (9.84–21.96%). Lethal DO levels, high TSS and anoxic sediment are the drawbacks in this system. Suggested measures to improve pond conditions are (1) allowing sedimentation before filling culture ponds, (2) covering dikes, (3) including no‐culture breaks between shrimp crops, (4) drying pond bottom, (5) removing sediment and (6) controlling pond's vegetation.  相似文献   

9.
Redox potential represents the intensity of anaerobic condition in the pond sediment, which may affect the dominant microbial transformations of substances, the toxins production, mineral solubility, as well as the water quality in the sediment–water interface inhabited by the shrimp. This study evaluates the effect of sediment redox potential in conjunction with stocking density on shrimp production performance, immune response and resistance against white spot syndrome virus (WSSV) infection. A completely randomized two factors experimental design was applied with three different sediment redox potential, i.e. ?65, ?108 and ?06 mV, and two shrimp densities, i.e. low (60 shrimp m?2) and high (120 shrimp m?2). Shrimp juveniles with an initial mean body weight of 5.32 ± 0.22 g were maintained in semi‐outdoor fibre tanks (270 L in capacity) for 35 days of experimental periods. At the bottom of each tank, 5‐cm deep soil substrate with different redox potential was added according to the treatments. The survival and biomass production were significantly reduced at ?206 mV sediment redox potential, regardless of stocking density. Highly negative sediment redox potential (?206 mV) and higher stocking density significantly reduced total haemocyte counts and phenoloxydase activity, and shrimp resistance to WSSV infection. We recommend to maintain the redox potential of pond sediment at a level of more than ?206 mV.  相似文献   

10.
Succession of phytoplankton dominance was studied in shrimp culture ponds treated with commercial bacterial products. Diatoms were dominant and the cyanobacteria were absent in both treated and control ponds at the beginning of the culture period. After 34 days, the diatoms significantly decreased whereas cyanobacteria increased in both ponds. Chlorophyll a increased from a mean of 35.56 mg m?3 in the first phase to 186.00 mg m?3 in the final phase, and from 42.12 mg m?3 to 242.81 mg m?3 in the treated and control ponds respectively. Cyanobacteria were significantly higher in the control compared with the treated ponds during the final phase of the culture. Algal bioassay showed that the addition of nitrogen either alone or with silica to pond water significantly increased the specific growth rate of Chaetoceros calcitrans. The specific growth rate of Oscillatoria sp. significantly increased when a combination of nitrogen, phosphorus and carbon was added to the pond water. Addition of silica seemed to depress the growth rate of Oscillatoria sp. Nutrient enrichment should be minimized and the supply of nitrogen and silica should be adequate for promoting the growth of beneficial phytoplankton in aquaculture systems.  相似文献   

11.
This study investigated the effects of manipulating carbon–nitrogen (C/N) ratio and fish stocking density on pond productivity: total heterotrophic bacteria counts, plankton biovolume and benthic macro‐invertebrates. Labeo victorianus juveniles were reared for 72 days in 18 hapas suspended in six ponds measuring 150 m2 at densities of 10, 15 and 25 fish m?2. Fish in hapas received a locally formulated and prepared feed containing 295 g kg?1 crude protein, and ponds were treated with a C/N ratio of either 10 or 20. All treatments were carried out in triplicate. Increasing C/N ratio from 10 to 20 increased phytoplankton by 13% and zooplankton biovolume by 25% in the water column (P < 0.001). Total benthic macro‐invertebrates biovolumes were also 30% higher (P < 0.05) with a C/N ratio of 20 compared to 10. Total heterotrophic bacteria counts increased both in water and sediment by 29% while net yield increased by 15% from 1534 (C/N 10) to 1821 (C/N 20) kg ha?1 72 day?1. C/N ratio of 20 and a stocking density of 25 fish m?2 led to the highest yield, survival, production and net benefits. It is suggested that polyculture may lead to better utilization of pond communities to further improve pond productivity.  相似文献   

12.
The main aim of this study was to examine the effects of a polyculture system on the control of the external parasites of western white shrimp, Litopenaeus vannamei. To this end, the western white shrimp postlarvae (PLs) were stocked in nine earthen ponds (600 m2) at a density of 20 PLs m?2 and reared for 4 months. After 40 days of shrimp stocking, Mullets, Mugil cephalus, were stocked at various densities including: control (0 fish/100 m2 pond), treatment 1 (T1: 2 fish/100 m2 pond) and treatment 2 (T2: 4 fish/100 m2 pond). Over the course of the experiment, the external parasites of shrimps were investigated by the preparation of a wet mount from the gill tissue. Based on the obtained results, totally two genera of protozoan parasites, i.e. Zoothamnium sp. and Epistylis sp., were identified over the course of the experiment. In all experimental groups, the incidence and abundance of Zoothamnium sp. was significantly higher than Epistylis sp. (< 0.05). Also, mean incidence per cent and mean abundance of Zoothamnium sp. and Epistylis sp. were significantly lower in the polyculture treatments (T1 and T2) compared to the monoculture group (control) (P < 0.05). Throughout this experiment, the total organic matter (TOM %) content of the bottom sediments and biological oxygen demand (BOD5 mg L?1) of water samples in the polyculture ponds were significantly lower than the monoculture group (P < 0.05). In contrast, the polyculture ponds had a higher concentration of water dissolved oxygen (O2 mg L?1) compared to the monoculture (P < 0.05). In conclusion, our results show that mullet as a secondary farmed species can reduce indirectly the parasitic pollution of western white shrimp probably through reducing the total organic matters in water and sediments and improving the water quality parameters.  相似文献   

13.
Ecuadorian Penaeus vannamei were cultured in dirt ponds (each of approximately 163 m2) at four different stocking densities, i.e. 5 shrimp m−2, 10 shrimp m−2, 15 shrimp m−2 and 20 shrimp m−2. Experiments were carried out over three different periods during the year. Each experiment lasted for 11–14 weeks. No commercial feed was given to the shrimp. The only input to the ponds was about 30 kg of cattle manure per pond per week. Chemical composition of the cattle manure was analyzed. Water quality parameters such as temperature, pH, DO and turbidity were recorded twice daily for each experiment; nutrients (nitrite, nitrate, ammonium and phosphate), water ATP, sediment ATP, H2S and chlorophyll were measured twice weekly for each experiment. Shrimp were sampled either weekly or bi-weekly for body weight measurements.

The results showed a negative correlation between stocking density and growth. Weekly growth ranged from 0·44 to 1·58 g week−1. Survival was over 50% in all treatments and averaged at 70·8%. Under these stocking densities, shrimp production ranged from 4·4 to 18·8 kg ha−1 day−1. The stocking density of 15 shrimps m−2 provides better production than the other stocking densities.

Water quality data did not relate to any shrimp growth. Water nutrient levels in pond discharge water were less than or equal to the nutrients in the incoming water in spite of the weekly addition of cattle manure and did not increase with the addition of cattle manure. No coliform bacteria were detected in any pond water samples through the study period. This indicates digestion of cattle manure in marine shrimp ponds would not pollute the environment with high concentrations of dissolved nutrients.

Thus, a marine shrimp pond can be considered a dissolved nutrient marine treatment plant converting unwanted cattle manure (1841 kg cattle manure ha−1 week−1 in this study) into a valuable commodity — shrimp.  相似文献   


14.
The present study was conducted to evaluate the effect of varying dietary protein level on pond water quality and production parameters of white shrimp Litopenaeus vannamei (Boone). Experimental units consisted of nine 400‐m2 earthen ponds with a low water exchange. Two treatments were tested: treatment HP consisted of shrimp fed a high‐protein diet (40%) during the whole grow‐out, and treatment LP consisted of the use of a low‐protein diet for the complete farming period. No differences on any of the water quality parameters were observed among treatments. Excellent survival (over 85%) and feed conversion ratios (around 1.6), and acceptable growth (over 12 g) and biomass (from 1721 to 1793 kg ha?1) were recorded in all experimental ponds. No significant differences in any of the production parameters were found among treatment groups.  相似文献   

15.
Experiments on the intensive cultivation of Pacific white shrimp, Penueus vunnumei, in ponds in South Carolina were begun in 1985 at the Waddell Mariculture Center. A preliminary study involved two 0.1 ha ponds stocked at an average of 43 postlarvae/m2, with management practices based on those used in Taiwan for intensive pond culture of Penueus monodon. Harvest yields averaged 6,757 kg/ha for one crop, demonstrating the technical feasibility of such intensive culture of P. vannumei. In 1986, 2.5 ha of ponds at the Waddell Center (six ponds totaling 2.0 ha at 40 postlarvae/m2 and two totaling 0.5 ha at 60/m2) yielded a total of 13,606 kg (5,442 ke/hn). These results were obtained even though aeration and water exchange rates were substanthlly reduced and South Carolina experienced its worst heat wave and drought. This served as a pilot-sde, proof-ofconcept test. Tank studies in 1985 and 1986 showed little effect of stocking density on shrimp growth rate at densities of 20–100 animals/m2. This was confirmed in ponds in 1987 when no differences in growth rates were observed at densities of 20–100 postlarvae/m2. Harvest biomass increased directly with stocking density in all trials, reaching a maximum of 12,680 kg/ha/crop at 100 shrimp/m2 in 1987. Initial attempts to intensify production in the nascent South Carolina shrimp farming industry occurred in 1986, when approximately 32 ha of private ponds were stocked at densities of 10–32 postlarvae/m2. Farm harvests increased with stocking density, with maximum yield of 3,656 kg/ ha/crop. This trend toward intensification in the private sector is continuing, and in 1987 maximum harvests from private ponds were 5,050 kg/ha from a 0.3 ha pond and 4,625 kg/ha from a 1.5 ha pond. Prospects for further implementation of intensive culture in the private sector appear excellent, with yields of ≥ 10,000 kg/ha/crop expected from private farms within the next few years.  相似文献   

16.
Assemblages of zooplankton and epibenthic invertebrates were collected from a commercial Penaeus monodon (Fabricius) pond at fortnightly intervals over an entire grow‐out season. The pond inlet and outlet water were also sampled intensively over three 1‐week periods throughout the season. Before stocking the ponds with shrimp postlarvae, copepods dominated the zooplankton. Immediately after the ponds were stocked, there was a rapid decline in zooplankton numbers, particularly the dominant larger copepods, suggesting heavy predation by shrimp postlarvae. For the rest of the season, barnacle nauplii were the dominant zooplankton component in the pond. Pond water exchanges had little detectable influence on the composition or density of the zooplankton assemblage. Instead, the dominance of barnacle nauplii appeared to have been maintained by steady recruitment due to barnacle reproduction in the pond. While changes in the biomass of pond zooplankton were not correlated with physico‐chemical characteristics, changes in density were positively correlated with temperature, and negatively correlated with pH, dissolved oxygen and secchi disc readings. Epibenthic faunal density peaked at the end of the season, while the biomass peaked during the middle part of the season. Sergestids (Acetes sibogae Hansen) were the most abundant epibenthic taxa. No correlations were found between physico‐chemical parameters and epibenthic fauna biomass or density. Abundances of epibenthic fauna were not related to zooplankton densities, suggesting that trophic interactions between these assemblages is not important. No Acetes were captured in samples of outlet water, and only on a single occasion were large numbers captured in the inlet water; after this, there was a notable increase in the number of Acetes in the pond. This evidence, together with the lack of an increase in the size of Acetes during the season, suggests that water exchange is an important but unpredictable source of recruitment of epibenthic fauna into the pond. The results emphasize the benefits of ensuring that appropriate zooplankton assemblages have been introduced into the ponds, when they are filled, to support the shrimp immediately after stocking. This will depend on the initial inoculum and may be difficult to manipulate with water exchanges once established. Assemblages of epibenthic fauna appear more likely to change with exchanges and may need to be monitored across the season, particularly if their presence reduces production through adverse impacts such as competition with postlarvae, introduction of disease or deteriorated water quality.  相似文献   

17.
Transport of post‐larvae shrimp used in aquaculture is an important element of successful cultivation because of the potential for stress during stocking procedures. To find optimum transport conditions, several bioassays were performed in the laboratory to evaluate survival of whiteleg shrimp Litopenaeus vannamei 5–30‐day‐old postlarvae under conditions similar to those encountered during transport from the hatchery to nursery and shrimp ponds. Postlarvae were exposed for 4 h to different temperatures and pH levels ammonia concentrations. Survival was significantly reduced after a 4 h exposure to pH 9 and was inversely related to temperature with or without 7 mg L?1 of ammonia. The 15‐ and 20‐day‐old postlarvae had higher survival rates than other ages. The lowest survival occurred in alkali conditions (pH 9), with 7 mg L?1ammonia at 30 and 32°C. To assure optimal survival of postlarvae during transfer from the hatchery to the nursery and shrimp ponds, we recommend temperatures below 28°C, pH no higher than 8, no ammonia and post‐larval age at least 15 days.  相似文献   

18.
鱼蚌混养对池塘水质、藻相结构及三角帆蚌生长的影响   总被引:2,自引:1,他引:1  
2012年4月26日—2012年12月12日通过在鲢鳙鱼养殖池塘中放养不同密度的三角帆蚌,研究不同三角帆蚌放养比例对鲢鳙鱼养殖池塘中水质、藻相结构及三角帆蚌生长的影响。实验中,鲢鳙放养比例统一为3∶7,总密度为1.5尾/m3。三角帆蚌放养密度则设置4个水平,分别为单养鲢鳙鱼池塘(0只/m3),低密度三角帆蚌混养池塘(0.8只/m3),中密度三角帆蚌混养池塘(1.0只/m3)和高密度三角帆蚌混养池塘(1.2只/m3)。结果显示,混养三角帆蚌池塘的水化指标(TP、PO4-P、NH3-N、NO2-N和NO3-N)均显著低于单养鱼池塘。中密度三角帆蚌混养池塘除NH3-N和化学需氧量(COD)与低密度三角帆蚌混养池塘无显著差异外,其他各项水化指标均显著低于其他3个池塘,并且极显著低于单养鲢鳙鱼池塘。单养鲢鳙鱼池塘藻类平均密度均极显著高于鱼蚌混养池塘,其中在鱼蚌混养池塘中浮游植物密度与三角帆蚌密度成负相关关系。单养鲢鳙鱼池塘的浮游植物生物量均极显著低于中、高密度鱼蚌混养池塘,并且显著低于低密度混养池塘。浮游植物生物量与三角帆蚌密度成正相关关系,鱼蚌池塘中绿藻和裸藻的生物量在养殖过程中上升显著。低、中密度三角帆蚌混养池塘三角帆蚌存活率均显著高于高密度三角帆蚌混养池塘;低密度混养池塘中蚌湿重、壳长及壳宽相对增长率均为最大,显著高于中、高密度三角帆蚌混养池塘。研究表明,养鱼池塘混养三角帆蚌不仅能改善养殖池塘的水质,还能控制藻类数量,促使绿藻和裸藻等大型藻类的生长,提高养殖水体浮游植物的生物量总量,最终还能有效提高三角帆蚌的存活率及生长率。从改善水质,藻相结构,蚌成活率及生长等指标角度考虑,在鲢鳙鱼养殖池塘中,三角帆蚌最佳放养密度为1.0只/m3。  相似文献   

19.
The objective of this study was to demonstrate the feasibility of four diets formulated to contain increasing levels (0, 50, 100 and 150 g kg?1 of diet) of grain distillers dried yeast (GDDY) in production diets for Litopenaeus vannamei, reared in outdoor tanks or production ponds. The production pond trial was carried out in 16, 0.1‐ha ponds using four replicates per diet. Juvenile shrimp (38.1 ± 4.26 mg, initial weight) were stocked at 30 shrimp m?2 for a 16‐week period. The same four diets and a commercial reference diet were offered to shrimp maintained in outdoor tanks over a 12‐week period. A total of 20 tanks were stocked with juvenile shrimp (3.05 ± 0.22 g, initial weight) obtained from production ponds at a density of 30 shrimp per tank (40 shrimp m?2). At the conclusion of these trials, mean final weight ranged from 19.77 to 23.05 g, yield ranged between 4760 and 5606 kg ha?1, survival ranged from 69.6% to 89.4%, and feed conversion ratio (FCR) was between 1.02 and 1.23. Shrimp reared in the outdoor tanks confirmed the results of the pond trial. Mean final weight ranged between 18.12 and 18.97 g, survival ranged from 93.3% to 98.3%, and FCR was between 1.25 and 1.29. In both trials, there were no significant differences regarding mean final weight, FCR and survival among dietary treatments. Based on this study, GDDY up to 150 g kg?1 of diet can be used in L. vannamei commercial feed formulation.  相似文献   

20.
The effects of introducing common carp (CC) and of adding artificial feed to fertilized rohu ponds on water quality and nutrient accumulation efficiency were studied. All ponds were stocked with 15 000 rohu ha?1. Treatments included ponds with rohu alone, rohu plus 5000 common carp ha?1 and rohu plus 10 000 CC ha?1. A comparison was also made between supplementally fed and non‐fed ponds. The overall highest nitrogen (N) and phosphorus (P) concentrations were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 and 0 CC ha?1. The largest fractions of N and P inputs accumulating in fish, phytoplankton and zooplankton were observed in ponds with 5000 CC ha?1, followed by ponds with 10 000 CC ha?1 and subsequently ponds without CC. Relatively more nutrients accumulated in benthic organisms in ponds without than in ponds with CC. A smaller fraction of the nutrient input was retained in fish, plankton and benthic organisms in ponds without CC compared with ponds with CC. Compared with 5000 CC ha?1, stocking 10 000 CC ha?1 can be considered as overstocking, because this leads to lower fish production and relatively less nutrients retained in plankton and benthic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号