首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, the ability of a LC x LC-DAD/APCI-MS method developed at this laboratory to identify the native composition of carotenoid in an extremely complex matrix such as red orange essential oil was demonstrated. To carry out this task, two independent and orthogonal separation mechanisms were coupled through a 10-port switching valve that simultaneously collected the eluent from a microbore cyano column used as the first dimension in normal phase mode and injected it to a conventional reversed phase monolithic C(18) column in the second dimension separation. By using this novel analytical technique together with the use of DAD and APCI-MS detectors it was possible to identify in the sample, without the need of any pretreatment, 40 different carotenoids. Among them, 16 carotenoid monoesters were identified, mainly beta-cryptoxanthin palmitate (C(16:0)), myristate (C(14:0)), and laureate (C(12:0)) as well as several lutein, violaxanthin, antheraxanthin, and luteoxanthin monoesters. Moreover, 21 carotenoid diesters composed by several antheraxanthin, luteoxanthin, violaxanthin, and auroxanthin diesters were found in the native carotenoid composition of the orange oil. The main carotenoid diesters were the laureate palmitate (C(12:0), C(16:0)), myristate palmitate (C(14:0), C(16:0)), and dipalmitate (C(16:0), C(16:0)) diesters, although other diesters were also identified. Besides, two different free carotenes, zeta-carotene and phytofluene, and a xanthophyll, lutein, were also determined. To the authors' knowledge, this is the first time that carotenoid diesters are described and identified in orange essential oil. Likewise, it has been demonstrated that the LC x LC approach proposed in this study is capable of coping with the direct analysis and identification of a complex natural source of carotenoids such as the orange.  相似文献   

2.
The carotenoid pattern of four yellow- and four white-fleshed potato cultivars (Solanum tuberosum L.), common on the German market, was investigated using HPLC and LC(APCI)-MS for identification and quantification of carotenoids. In each case, the carotenoid pattern was dominated by violaxanthin, antheraxanthin, lutein, and zeaxanthin, which were present in different ratios, whereas neoxanthin, beta-cryptoxanthin, and beta,beta-carotene generally are only minor constituents. In contrast to literature data, antheraxanthin was found to be the only carotenoid epoxide present in native extracts. The total concentration of the four main carotenoids reached 175 microg/100 g, whereas the sum of carotenoid esters accounted for 41-131 microg/100 g. Therefore, carotenoid esters are regarded as quantitatively significant compounds in potatoes. For LC(APCI)-MS analyses of carotenoid esters, a two-stage cleanup procedure was developed, involving column chromatography on silica gel and enzymatic cleavage of residual triacylglycerides by lipases. This facilitated the direct identification of several potato carotenoid esters without previous isolation of the compounds. Although the unequivocal identification of all parent carotenoids was not possible, the cleanup procedure proved to be highly efficient for LC(APCI)-MS analyses of very low amounts of carotenoid esters.  相似文献   

3.
The monohydroxycarotenoid fraction of orange juice has been isolated by TLC and studied to determine whether the carotenoid accompanying beta-cryptoxanthin was alpha-cryptoxanthin or zeinoxanthin. The provitamin A carotenoid alpha-cryptoxanthin has been widely reported in orange juice, although its identification has been carried out mainly on the basis of its spectral features, which are virtually identical with those of its non-provitamin A isomer, zeinoxanthin. As a result of a study of the UV-vis and mass spectra of the monohydroxycarotenoid fraction and of the methylation test, it was concluded that the carotenoid accompanying beta-cryptoxanthin was the non-provitamin A carotenoid zeinoxanthin.  相似文献   

4.
A recently developed food, the so-called ultrafrozen orange juice (UFOJ), has been characterized in terms of carotenoid pigments, ascorbic acid, and color. The juice, obtained from Valencia late oranges, is frozen immediately after the squeezing of the oranges, which makes it a product showing good organoleptic and nutritional quality. In relation to the carotenoid profile, it was observed that the 5,6-epoxy carotenoids violaxanthin and antheraxanthin (specifically (9Z)-violaxanthin and (9Z)- or (9'Z)-antheraxanthin), were by far the major pigments and that dihydroxycarotenoids predominate over monohydroxycarotenoids. As far as color was concerned, it was seen that there were little differences among the juices analyzed. The hue of the samples, ranging from 77.19 degrees to 80.15 degrees and from 79.99 degrees to 83.04 degrees depending on the kind of instrumental measurement, and their chroma (ranging from 63.06 to 72.25 and from 44.40 to 58.38) revealed readily that the juice surveyed exhibited a deep orangeish coloration, the color coordinate best correlated with the total carotenoid content being b*. The levels of ascorbic acid ranged from 332.64 to 441.44 mg/L, with an average content of 391.06 +/- 28.86 mg/L.  相似文献   

5.
A comparative study was made of the evolution and modification of various carotenoids and vitamin A in untreated orange juice, pasteurized orange juice (90 degrees C, 20 s), and orange juice processed with high-intensity pulsed electric fields (HIPEF) (30 kV/cm, 100 micros), during 7 weeks of storage at 2 and 10 degrees C. The concentration of total carotenoids in the untreated juice decreased by 12.6% when the juice was pasteurized, whereas the decrease was only 6.7% when the juice was treated with HIPEF. Vitamin A was greatest in the untreated orange juice, followed by orange juice treated with HIPEF (decrease of 7.52%) and, last, pasteurized orange juice (decrease of 15.62%). The decrease in the concentrations of total carotenoids and vitamin A during storage in refrigeration was greater in the untreated orange juice and the pasteurized juice than in the juice treated with HIPEF. During storage at 10 degrees C, auroxanthin formed in the untreated juice and in the juice treated with HIPEF. This carotenoid is a degradation product of violaxanthin. The concentration of antheraxanthin decreased during storage, and it was converted into mutatoxanthin, except in the untreated and pasteurized orange juices stored at 2 degrees C.  相似文献   

6.
In olive fruits of the cultivar Arbequina, the chlorophyll pigments decrease significantly throughout ripening, while the carotenoids decrease more gradually and discontinuously. There is no degradation of the carotenoid fraction in stages before complete ripeness. The presence of esterified xanthophylls exclusively in this variety suggests that the chloroplast pigment metabolism is different from that in other olive varieties studied previously. There are increases of specific carotenoids, violaxanthin, neoxanthin, antheraxanthin, lutein epoxide, and esterified xanthophylls between the light green and yellowish green ripening stages. Such increases are related to the detection of precursor carotenoids (phytofluene and xi-carotene) in the yellowish green stage. Chlorophyllides (a and b) and alpha-carotene have also been detected exclusively in this variety. Quantitatively, the drastic change in color between light green and yellowish green ripening stages characteristic of this variety can be explained by the considerable reduction found in the chlorophylls/carotenoids ratio. The study of the pigments present in skin and pulp has shown that the pattern of carotenoid distribution differs depending on the fruit part concerned.  相似文献   

7.
High-performance liquid chromatography, coupled with photodiode array detection, was used to analyze the carotenoid composition of peel and juice vesicle tissues of ordinary and lycopene-accumulating mutants (referred to as red mutants in this article) of orange, pummelo, and grapefruit. Thirty-six major carotenoids, including some cis-trans isomers, were separated on a C30 reversed phase column, and 23 of them were identified on the basis of retention times and spectral characteristics with authentic standards. Carotenoid profiles varied with tissue types, citrus species, and mutations. beta-Citraurin occurred in the peel of oranges but not in juice vesicles, whereas the reverse was found for violaxanthin, 9-cis-violaxanthin, and luteoxanthin. The diversity of carotenoids in peel and juice vesicle tissues and the fact that there was over 250 times higher content of total carotenoids in peels of Yuhuan pummelo than juice vesicles suggested that the biosynthesis of carotenoids in these two tissues was independent and exchange of carotenoids between the tissues was not likely. Lutein was observed in peels of pummelos and grapefruits and juice vesicles of ordinary pummelo but not in orange tissues. Accumulation of lycopene and beta-carotene was observed in red mutant citrus, except for the peel of Cara Cara red orange. Additionally, phytoene accumulated in all tissues except for the peel of Chuzhou Early Red pummelo. No obvious change in the total content of xanthophylls was observed in the Cara Cara red orange. Ordinary grapefruit (Marsh) tissues and pummelo (Yuhuan) juice vesicles were almost devoid of carotenoids, and in red mutants, the content of total carotenoids increased dramatically up to 790-fold. The different changes in carotenoid content and profiles in mutant(s) of different citrus species suggest that the underlying mechanisms for the mutations might be different.  相似文献   

8.
An isocratic reversed-phase high-performance liquid chromatography method was developed for routine analysis of the main carotenoids related to the color of orange juice, using a more selective wavelength (486 nm) in which the absorption in the red-orange region of the visible spectra is maximum. Separation was carried out using as the mobile phase the mixture methanol:acetonitrile:methylene chloride:water (50:30:15:5, v/v/v/v), to which small amounts of butylated hydroxytoluene and triethylamine were added (0.1%). Identification was made by comparison either with standards obtained by thin-layer chromatography or with spectral data previously reported. The reproducibility of the method was remarkable; coefficients of variation for the most polar xanthophylls were under 1 and 4% for retention times and areas, respectively. Its application to Valencia late ultrafrozen orange juices has shown that major carotenoids are lutein + zeaxanthin (36%), lutein 5,6-epoxide (16%), antheraxanthin (14%), and beta-cryptoxanthin (12%).  相似文献   

9.
OBJECTIVES: Intake and status of carotenoids have been associated with chronic disease. The objectives of this study were to examine the association between carotenoid intakes as measured by two regional food-frequency questionnaires (FFQs) and their corresponding measures in serum, and to report on dietary food sources of carotenoids in Jackson Heart Study (JHS) participants. DESIGN: Cross-sectional analysis of data for 402 African American men and women participating in the Diet and Physical Activity Sub-Study (DPASS) of the JHS. RESULTS: Mean serum carotenoid concentrations and intakes in this population were comparable to those reported for the general US population. After adjustment for covariates, correlations between serum and dietary measures of each carotenoid, for the average of the recalls (deattenuated), the short FFQ and the long FFQ, respectively, were: 035 and 0-carotene; 026 and 0-carotene; 017 and 0-carotene; 034 and 0-cryptoxanthin; 015 and 037, 014 for lycopene. Major dietary sources of -carotene and lutein plus zeaxanthin, mustard, turnip and collard greens; of beta-cryptoxanthin, orange juice; and of lycopene, tomato juice. CONCLUSIONS: On average, carotenoid intakes and serum concentrations are not lower in this southern African American population than the general US population. The two regional FFQs developed for a southern US population and used as dietary assessment tools in the JHS appear to provide reasonably valid information for most of these carotenoids.  相似文献   

10.
Squashes and pumpkins are important dietary sources of carotenoids worldwide. The carotenoid composition has been determined, but reported data have been highly variable, both qualitatively and quantitatively. In the present work, the carotenoid composition of squashes and pumpkins currently marketed in Campinas, Brazil, were determined by HPLC-DAD, complemented by HPLC-MS for identification. Cucurbita moschata 'Menina Brasileira' and C. moschata 'Goianinha' had similar profiles, with beta-carotene and alpha-carotene as the major carotenoids. The hybrid 'Tetsukabuto' resembled the Cucurbita pepo 'Mogango', lutein and beta-carotene being the principal carotenoids. Cucurbita maxima 'Exposi??o' had a different profile, with the predominance of violaxanthin, followed by beta-carotene and lutein. Combining data from the current study with those in the literature, profiles for the Cucurbita species could be observed. The principal carotenoids in C. moschata were beta-carotene and alpha-carotene, whlereas lutein and beta-carotene dominate in C. maxima and C. pepo. It appears that hydroxylation is a control point in carotenoid biosynthesis.  相似文献   

11.
The carotenoid composition of sarsaparilla ( Smilax aspera L.) berries has been analyzed for the first time. Lycopene was found to be the main carotenoid (242.44 μg/g fresh wt) in the pulp, followed by β-carotene (65.76 μg/g fresh wt) and β-cryptoxanthin (42.14 μg/g fresh wt; including the free and esterified forms). Other minor carotenoids were lycophyll (13.70 μg/g fresh wt), zeaxanthin (8.56 μg/g fresh wt; including the free and esterified forms), lutein (0.94 μg/g fresh wt), and antheraxanthin (0.58 μg/g fresh wt). β-Cryptoxanthin and zeaxanthin were present in free and esterified forms. β-Cryptoxanthin was mainly esterified with saturated fatty acids (capric, lauric, myristic, palmitic, and stearic), although a low amount of β-cryptoxanthin oleate was also detected. In the case of zeaxanthin, only a monoester with myristic acid (zeaxanthin monomyristate) was identified. The diverse carotenoid profile, some with provitamin A activity, together with the relatively high content, up to 375 μg/g fresh wt, makes sarsaparilla berries a potential source of carotenoids for the food, animal feed, and pharmaceutical industries.  相似文献   

12.
The developmental patterns of carotenoids in Hamlin, Earlygold (an early-maturing selection), and Budd Blood sweet orange juices were studied during the September to mid-January period of the 1996-97 and 1997-98 seasons. The carotenoid concentration of Earlygold increased by as much as 4.9 times during the color development compared to 3.9 times in Hamlin and 4.5 times in Budd Blood juice in the same period. For the profiles of carotenoid pigment, dramatic changes occurred among the pigments that were present in high concentrations at the beginning of the season, with lutein and violaxanthin noted as the predominant pigments in Hamlin fruit. A marked increase in the percentage of beta-cryptoxanthin allowed it to become a major pigment in the late stage of maturation. The color development in the new cultivar Earlygold was especially notable, reaching the 36 color number, which is grade A, by late October to mid-November whereas Hamlin juice did not reach this grade A color number until January. Budd Blood juice was similar in carotenoid pigment content and seasonal changes to Hamlin juice, but also, the development of red anthocyanin pigment in January significantly increased juice color.  相似文献   

13.
The fruit of Arazá (Eugenia stipitata McVaugh) native to the Colombian Amazon is considered a potentially economically valuable fruit for the Andean economy due to its novel and unique taste. The fruit has an intense yellow color, but its chemical composition and properties have not been well studied. Here we report the identification and quantitation of carotenoids in the ripe fruit using high performance liquid chromatography (HPLC) with photodiode array detector (PDA) and atmospheric pressure chemical ionization (APcI) mass spectrometry (MS/MS). The qualitative carotenoid profile of the fruit according to maturity stage was also observed. Furthermore, antioxidant activity of the peel and pulp were assessed using the ferric reducing ability of plasma (FRAP), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods, in addition to chemical indexes and total phenolic content. Multiple carotenoids were identified in the peel and pulp including four xanthophylls (free and esterified as their mono and diesters) and two carotenes. One of the xanthophylls was tentatively identified as zeinoxanthin, while the others were identified as lutein, zeaxanthin, and β-cryptoxanthin. Carotenes included α-carotene and β-carotene. The total carotenoid content was significantly higher in the peel (2484 ± 421 μg/100 g FW) than in the pulp (806 ± 348 μg/100 g FW) with lutein, β-cryptoxanthin, and zeinoxanthin as the major carotenoid components. The unique carotenoid composition of this fruit can differentiate it from other carotenoid-rich fruits and perhaps be useful in authentication procedures. Overall, results from this study suggest that Colombian Arazá may be a good edible source of carotenoids important in retinal health as well as carotenoids with provitamin A activity. Therefore, Arazá fruit can be used as a nutraceutical ingredient and in production of functional foods in the Colombian diet.  相似文献   

14.
Carotenoids, lutein and zeaxanthin, found in fruits and vegetables, comprise the macula pigment of the eye. These carotenoids exist in plants as the all-trans geometric form; however, in human plasma, cis isomers of these carotenoids have also been identified. Thermal processing can induce carotenoid trans to cis isomerization. The aim of this research was to determine if thermal processing induces isomerization of lutein and zeaxanthin and to quantify the extent of this reaction. High-performance liquid chromatography was used to separate and quantitate geometric isomers of lutein and zeaxanthin. Isomers were tentatively identified by UV-visible absorbance spectra, comparison of retention times to those of isomerized standards using C(30) chromatography, and mass spectrometry. Thermal processing increased the percent cis isomers of lutein and zeaxanthin up to 22 and 17%, respectively. Further studies are needed to consider the physiological impact of consuming carotenoid isomers in processed vegetables.  相似文献   

15.
Leafy vegetables [Basella rubra L., Peucedanum sowa Roxb., Moringa oleifera Lam., Trigonella foenum-graecum L., Spinacia oleracea L., Sesbania grandiflora (L.) Poir., and Raphanus sativus L.] that are commonly used by the rural population in India were evaluated in terms of their main carotenoid pattern. The extracted carotenoids were purified by open column chromatography (OCC) on a neutral alumina column to verify their identity by their characteristic UV-visible absorption spectra. Reverse-phase high-performance liquid chromatography (HPLC) on a C18 column with UV-visible photodiode array detection under isocratic conditions was used for quantification of isolated carotenoids. Acetonitrile/methanol/dichloromethane (60:20:20 v/v/v) containing 0.1% ammonium acetate was used as a mobile phase. The major carotenoids identified by both methods were lutein, beta-carotene, violaxanthin, neoxanthin, and zeaxanthin. Among the carotenoids identified, lutein and beta-carotene levels were found to be higher in these leafy vegetables. Results show that P. sowa and S. oleracea are rich sources of lutein (77-92 mg/100 g of dry wt) and beta-carotene (36-44 mg/100 g of dry wt) compared with other leafy vegetables. The purity of carotenoids eluted by OCC was clarified by HPLC, and they were found to be 92% +/- 3% for neoxanthin, 94% +/- 2% for violaxanthin, 97% +/-2% for lutein and zeaxanthin, and 90% +/- 3% for beta-carotene. It could be recommended to use P. sowa and S. oleracea as rich sources of lutein and beta-carotene for health benefits. The OCC method proposed is relatively simple and provides purified carotenoids for feeding trials.  相似文献   

16.
The carotenoid pigment profiles of authentic pure orange juices from Spain and Florida and an industrial paprika (Capsicum annuum) extract used for food coloring were obtained using reversed-phase liquid chromatography with a C18 packed column and an acetone/methanol/water eluent system. The procedure involving the carotenoid extraction is described. Both retention times and spectral properties using photodiode array detection for characterization of the major carotenoids at 430 and 519 nm are given. The influence of external addition of tangerine juice and/or paprika extract on orange juice color is described using the U.S. Department of Agriculture scale and adulterated orange juice. The procedure for quantitation of externally added paprika extract to orange juice is investigated, and the limit of quantitation, coefficient of variation, and recoveries are determined.  相似文献   

17.
A study was undertaken to differentiate citrus on the basis of a carotenoid profile obtained from the HPLC determination of 12 carotenoids found in saponified fresh juice. Mandarin, orange, and various hybrid varieties were analyzed to determine their carotenoid profiles. The resulting peak areas were analyzed using principal component analysis (PCA), canonical discriminate analysis (CDA), and Mahalanobis distances. These were used to develop models for classifying the juices into appropriate groups. Thirty-two samples were analyzed to determine classification techniques. Mandarin and orange juices were quite distinct, with the hybrids scattered throughout the mandarin and orange clusters using PCA. CDA resulted in three distinct groups with only a few of the hybrids in the orange grouping.  相似文献   

18.
Tristimulus Colorimetry was applied to characterize the color of Valencia late orange juices. Color measurements were made against white background and black background. The profile of the main carotenoids related to the color of the juices was determined by HPLC. Significant correlations (p < 0.05) between b*, Cab* and h(ab) and the content of beta-cryptoxanthin, lutein + zeaxanthin and beta-carotene were found. The correlations between the color parameters L*, a*, b*, Cab* and h(ab) and the carotenoids content were also explored by partial least squares. The results obtained have shown that it is possible to obtain equations, by means of multiple regression models, which allow the determination of the individual carotenoid levels from the CIELAB color parameters, with R2 values always over 0.9. In this sense, equations have been proposed to calculate the retinol equivalents (1 RE = 1 microgram retinol = 12 micrograms beta-carotene = 24 micrograms alpha-carotene = 24 micrograms beta-cryptoxanthin) of the orange juice analyzed as a function of the color parameters calculated from measurement made against white and black backgrounds. The average RE per liter of juice obtained by HPLC was 51.07 +/- 18.89, whereas employing these equations, average RE values obtained were 51.16 +/- 1.36 and 51.21 +/- 1.70 for white background and black background, respectively.  相似文献   

19.
Carotenoids are found in food plants in free form or as fatty acid esters. Most studies have been carried out after saponification procedures, so the resulting data do not represent the native carotenoid composition of plant tissues. Therefore, nonsaponified extracts of 64 fruits and vegetables have been screened to determine the amount of carotenoid esters in food plants. Because one of the major problems in the quantitation of carotenoids is the availability of pure standard material, the total carotenoid ester content was calculated as lutein dimyristate equivalents. Lutein dimyristate was independently synthesized from lutein and myristoyl chloride. The highest ester concentrations were found in red chili (17.1 mg/100 g) and orange pepper (9.2 mg/100 g); most of the investigated fruits and vegetables showed concentrations up to 1.5 mg/100 g. Special attention was dedicated to beta-cryptoxanthin esters. To enable an accurate detection of the beta-cryptoxanthin ester content, beta-cryptoxanthin was purified from papaya and used for synthesis of beta-cryptoxanthin laurate, myristate, and palmitate, representing the major beta-cryptoxanthin esters in food plants. The study proved tropical and subtropical fruits to be an additional source of beta-cryptoxanthin esters in the human diet. The contents ranged from 8 microg/100 g beta-cryptoxanthin laurate in Tunisian orange to 892 microg/100 g beta-cryptoxanthin laurate in papaya.  相似文献   

20.
Epidemiological data have shown a link between dietary intake of tomatoes and tomato products (rich in carotenoids) and a decreased risk of chronic diseases. The carotenoid profile in tomato products depends on tomato variety as well as the thermal conditions used in processing. The final carotenoid profile may affect the bioaccessibility and bioavailability of these biomolecules. Therefore, nondestructive, reliable methods are needed to characterize the structural and stereochemical variation of carotenoids. CDCl(3) rapid extraction was used to extract carotenoids from tomato juice as an alternative rapid procedure that minimizes solvents and time consumption prior to NMR analysis. The profile of these biomolecules was characterized by application of high-resolution multidimensional NMR techniques using a cryogenic probe. The combination of homonuclear and heteronuclear two-dimensional NMR techniques served to identify (all-E)-, (5Z)-, (9Z)-, and (13Z)-lycopene isomers and other carotenoids such as (all-E)-beta-carotene and (15Z)-phytoene dissolved in the extracted lipid mixture. The use of one-dimensional NMR enabled the rapid identification of lycopene isomers, thereby minimizing further isomerization of (all-E)-lycopene as compared to HPLC data. On the basis of the assignments accomplished, the carotenoid profile of typical tomato juice was successfully determined with minimal purification procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号