首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This research investigates the effects of heating conditions used to produce amorphous sucrose on its glass transition (T(g)) parameters, because the loss of crystalline structure in sucrose is caused by the kinetic process of thermal decomposition. Amorphous sucrose samples were prepared by heating at three different scan rates (1, 10, and 25 °C/min) using a standard differential scanning calorimetry (SDSC) method and by holding at three different isothermal temperatures (120, 132, and 138 °C) using a quasi-isothermal modulated DSC (MDSC) method. In general, the quasi-isothermal MDSC method (lower temperatures for longer times) exhibited lower T(g) values, larger ΔC(p) values, and broader glass transition ranges (i.e., T(g end) minus T(g onset)) than the SDSC method (higher temperatures for shorter times), except at a heating rate of 1 °C/min, which exhibited the lowest T(g) values, the highest ΔC(p), and the broadest glass transition range. This research showed that, depending on the heating conditions employed, a different amount and variety of sucrose thermal decomposition components may be formed, giving rise to wide variation in the amorphous sucrose T(g) values. Thus, the variation observed in the literature T(g) values for amorphous sucrose produced by thermal methods is, in part, due to differences in the heating conditions employed.  相似文献   

2.
The thermal behavior of fresh tuna muscle, rehydrated freeze-dried tuna muscle, and tuna sarcoplasmic protein fraction was studied by three types of differential scanning calorimetry (DSC): conventional DSC, alternating DSC, and sensitive micro-DSC. The relationship between glass transition temperature, T(g), and water content was established. Only a low-temperature glass transition was detected for fresh tuna and freeze-dried tuna rehydrated to high water contents, whereas for sarcoplasmic protein fraction both a low-temperature and an apparent high-temperature glass transition were detected for samples of high water content. Construction of the supplemented state diagrams for whole tuna muscle and for tuna sarcoplasmic protein fraction confirmed the low-temperature transition to be glass transition of the maximally freeze-dehydrated phase. The apparent upper transition of sarcoplasmic protein fraction was shown not to be a glass transition but rather to originate from the onset of melting of ice, and the temperature of this event should be denoted T(m)'. The glass transition temperature and the concentration of the maximally freeze dehydrated tuna muscle are -74 degrees C and 79% (w/w), respectively.  相似文献   

3.
The effects of initial water content, maximum heating temperature, amylopectin crystallinity type, and annealing on the glass transition of starch gels were studied by differential scanning calorimetry (DSC). The glass transition temperatures of the frozen gels measured as the onset (T(g,onset)) or midpoint temperature (T(g,midpoint)), heat capacity change during the glass transition (deltaC(p)), unfrozen water of starch gels, and additional unfrozen water (AUW) arising from gelatinization were reported. The results show that T(g,onset) and T(g,midpoint) of the partially gelatinized gels are independent of the initial water content, while both of the T(g) values of the fully gelatinized gel increase as the initial water content increases. These observations might result from the difference in the level of structural disruption associated with different heating conditions, resulting in different gel structures as well as different concentrations of the sub-T(g) unfrozen matrix. The amylopectin crystallinity type does not greatly affect T(g,onset) and T(g,midpoint) of the gels. Annealing at a temperature near T(g,onset) increases both T(g,onset) and T(g,midpoint) of the gels, possibly due to an increase in the extent of the freeze concentration as evidenced by a decrease in AUW. Annealing results in an increase in the deltaC(p) value of the gels, presumably due to structural relaxation. A devitrification exotherm may be related to AUW. The annealing process decreases AUW, thus also decreasing the size of the exotherm.  相似文献   

4.
Research continues to differentiate the impact of water activity (a(W)) and the glass transition temperature (T(g)) on chemical reactions. Invertase with and without sucrose was incorporated into low and high molecular weight poly(vinylpyrrolidone) model systems (PVP-LMW and PVP-K30, respectively). Invertase activity and sucrose hydrolysis were monitored during storage at a(W) = 0.32-0.75 and 30 degrees C. Pseudo-first-order rate constants for activity loss in PVP-K30 were not different, regardless of the system being glassy or rubbery. In PVP-LMW, invertase stability decreased with increasing a(W). An a(W) > 0.62 was required for sucrose hydrolysis to occur in PVP-LMW. PVP molecular weight appeared to affect invertase stability and reactivity. No dramatic change around T(g) was found in either invertase stability or sucrose hydrolysis, suggesting that T(g)-dictated mobility has a minimal effect on these reactions in amorphous solids.  相似文献   

5.
Enzymatic changes are often detrimental to quality of low-moisture foods. In the present study, effects of glass transition and water on sucrose inversion in a lactose-sucrose food model were investigated. Amorphous samples were produced by freeze-drying lactose-sucrose (2:1)-invertase (20 mg invertase/49.4 g of carbohydrate) dissolved in distilled water. Sorption isotherms were determined gravimetrically at 24 degrees C. Sucrose hydrolysis was determined by monitoring glucose content using a test kit and the amounts of fructose, glucose, and sucrose using HPLC. The glass transition temperatures, T(g), at various water contents were measured using differential scanning calorimetry (DSC). The BET and the GAB sorption models were fitted to experimental data up to a(w) 0.444 and 0.538, respectively. Water sorption and DSC results suggested time-dependent crystallization of sugars at a(w) 0.444 and above. Significant sucrose hydrolysis occurred only above T(g), concomitantly with crystallization. Sucrose hydrolysis and crystallization were not likely in glassy materials.  相似文献   

6.
This study aims to investigate the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperature (Tg). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples as well as determining their glass transition temperature, which was found to decrease first and then increase as the holding time at the highest temperature increased. The extent of caramelization was quantified by UV-vis absorbance measurement and high-performance liquid chromatography analysis. Results showed that the amount of small molecules from the degradation of sugar increased very fast at the beginning of heating, and this increase slowed down in the later stage of caramelization. On the other hand, there was a lag phase in the formation of large molecules from the degradation of sugar at the beginning of heating, followed by a fast increase in the later stage of caramelization. The obtained results clearly indicate the impact of melting condition on the T g of sugars through formation of intermediates and end products of caramelization. Generally, when the heating condition is relatively mild, small molecules are formed first by decomposition of the sugar, which leads to a decrease of the overall Tg, and as the heating time becomes longer and/or the heating condition becomes more severe, polymerization takes over and more large molecules are formed, which results in an increase of the overall Tg. Mathematical modeling of the relationship will be presented as part II of the study in a separate paper.  相似文献   

7.
The glass transition temperature of wheat gluten, plasticized with water, glycerol, or sorbitol, has been studied using dynamical mechanical thermal analysis. For the three plasticizers studied, the general behavior of the glass transition temperature broadly followed the Couchman-Karasz relation using a wheat gluten DeltaC(p)() of 0.4 J g(-)(1) K(-)(1). Compared on such a fractional weight basis, it could be concluded that the plasticizing effect of glycerol and sorbitol on wheat gluten proteins is less important than the plasticizing effect of water. A continuous curve was obtained with the three plasticizers when the evolution of the glass transition temperature was presented on a fractional molecular basis. This was related to the similar chemical structure of these three components containing hydroxyl groups.  相似文献   

8.
The hydrolysis of disodium p-nitrophenyl phosphate catalyzed by alkaline phosphatase was chosen as a model to study the kinetics of changes in frozen food products. The initial reaction rate was determined in concentrated sucrose solutions down to -24 degrees C, and the enzymatic characteristics K(M) and V(max) were calculated. The experimental data were compared to the kinetics predicted by assuming that the reaction was viscosity dependent. Indeed, an analysis of the enzymatic reaction demonstrated that both the diffusion of the substrate and the flexibility of the enzyme segments were controlled by the high viscosity of the media. When the temperature was too low for the viscosity to be measured simply, the Williams-Landel-Ferry equation was used to predict the viscosity, taking, as reference temperature, the glass transition temperature (T(g)) corresponding to the concentration of the freeze-concentrated phase at the test temperature. Predicted values of the reaction rate were very close to the experimental ones in the studied temperature range.  相似文献   

9.
The influence of sucrose (0--40 wt %) on the thermal denaturation and gelation of bovine serum albumin (BSA) in aqueous solution has been studied. The effect of sucrose on heat denaturation of 1 wt % BSA solutions (pH 6.9) was measured using ultrasensitive differential scanning calorimetry. The unfolding process was irreversible and could be characterized by a denaturation temperature (T(m)), activation energy (E(A)), and pre-exponential factor (A). As the sucrose concentration increased from 0 to 40 wt %, T(m) increased from 72.9 to 79.2 degrees C, E(A) decreased from 314 to 289 kJ mol(-1), and ln(A/s(-1)) decreased from 104 to 94. The rise in T(m) was attributed to the increased thermal stability of the globular state of BSA relative to its native state because of differences in their preferential interactions with sucrose. The change in preferential interaction coefficient (Delta Gamma(3,2)) associated with the native-to-denatured transition was estimated. The dynamic shear rheology of 2 wt % BSA solutions (pH 6.9, 100 mM NaCl) was monitored as they were heated from 30 to 90 degrees C, held at 90 degrees C for either 15 or 120 min, and then cooled to 30 degrees C. Sucrose increased the gelation temperature due to thermal stabilization of the native state of the protein. The complex shear modulus (G) of cooled gels decreased with sucrose concentration when they were held at 90 degrees C for 15 min because the fraction of irreversibly denatured protein decreased. On the other hand, G of cooled gels increased with sucrose concentration when they were held at 90 degrees C for 120 min because a greater fraction of irreversibly denatured protein was formed and the strength of the protein-protein interactions increased.  相似文献   

10.
To test whether the extent of physical aging affected the reaction rate, Maillard reaction kinetics were studied in glassy model preservation systems subjected to two different thermal histories. The glass transition temperature and physical aging of the matrix were determined using differential scanning calorimetry, and the normalized heat capacities were modeled using the Tool-Narayanaswamy-Moynihan approach. Samples prepared using the different thermal histories initially had different degrees of aging, but these were practically indistinguishable after 10 h under the reaction conditions (65 degrees C); the samples underwent rapid structural relaxation at that temperature. The reaction of glucose and lysine in an amorphous trehalose/sucrose matrix was followed using spectrophotometric and chromatographic analysis. A difference in reaction rate could only be distinguished in the rate of consumption of glucose, which was approximately 20% faster in the minimally aged matrix; no significant differences were seen in any other indicator of reaction.  相似文献   

11.
为探究不同小分子糖对真空冷冻干燥(FD)果蔬质构的影响,并寻找蔗糖的替代品,本试验通过建立FD果蔬天然网络结构模拟体系——果胶-纤维素气凝胶体系,并在该多孔骨架结构上搭载11种小分子糖,考察了不同小分子糖对FD气凝胶的微观结构、质构、吸湿性和玻璃化转变温度(Tg)等品质的影响。结果表明,添加果糖、水苏糖、麦芽糖醇样品的硬度显著高于添加蔗糖样品,而添加海藻糖和低聚异麦芽糖样品的硬度显著低于添加蔗糖样品;所有样品中,仅果糖样品的脆度显著高于蔗糖样品;低聚果糖样品的外观、质构以及吸湿性品质均与蔗糖样品相近,且Tg较高。因此,在FD果蔬工业生产中,低聚果糖是极具发展前景的一种蔗糖取代糖。本研究结果证实了小分子糖是果胶-纤维素气凝胶形成硬度和脆度的物质基础,可为FD果蔬生产过程中小分子糖的选择提供理论依据。  相似文献   

12.
Differential scanning calorimetry (DSC) was used to study the thermal behavior of authentic honeys (Lavandula, Robinia, and Fir honeys) and industrial sugar syrups. Thermal or thermochemical parameters such as the glass transition temperature (Tg), enthalpies of fusion (DeltaH(fus)), and heat capacity variation (DeltaC(p)) were measured. The syrups and honeys showed significant differences in thermal phenomena, as well as in their amplitude and position on the temperature scale. Results showed good reproducibility of the method for all samples studied. The effect of adulteration of honey with different amounts of syrup (5, 10, 20, 40, and 60%) was investigated. A linear relationship was found between the percentage of added syrup and the glass transition temperature. A similar relationship was obtained from the enthalpy of fusion results in the temperature range of 40-90 degrees C. Under applied conditions, the effects of adulteration of honeys by industrial syrups appeared to be detectable from a level as low as 5%.  相似文献   

13.
Effects of a reducing sugar, fructose, glucose, or xylose, and glass transition on the nonenzymatic browning (NEB) rate in maltodextrin (MD), poly(vinylpyrrolidone) (PVP), and water systems were studied. Glass transition temperatures (T(g)) were determined using DSC. Water contents were determined gravimetrically, and NEB rates were followed at several temperatures spectrophotometrically at 280 and 420 nm. Reducing sugar did not affect water contents, but xylose reduced the T(g) of the solid models. Sugars showed decreasing NEB reactivity in the order xylose > fructose > glucose in every matrix material. The NEB reactivity and temperature dependence of the single sugars varied in different matrices. The NEB rates of the solid models increased at temperatures 10-20 degrees C above the T(g), and nonlinearity was observed in Arrhenius plots in the vicinity of T(g). The temperature dependence of nonenzymatic browning could also be modeled using the WLF equation.  相似文献   

14.
Further to part I of this study, this paper discusses mathematical modeling of the relationship between caramelization of several sugars including fructose, glucose, and sucrose and their glass transition temperatures ( T g). Differential scanning calorimetry (DSC) was used for creating caramelized sugar samples and determining their glass transition temperatures ( T g). UV-vis absorbance measurement and high-performance liquid chromatography (HPLC) analysis were used for quantifying the extent of caramelization. Specifically, absorbances at 284 and 420 nm were obtained from UV-vis measurement, and the contents of sucrose, glucose, fructose, and 5-hydroxymethyl-furfural (HMF) in the caramelized sugars were obtained from HPLC measurements. Results from the UV and HPLC measurements were correlated with the Tg values measured by DSC. By using both linear and nonlinear regressions, two sets of mathematical models were developed for the prediction of Tg values of sugar caramels. The first set utilized information obtained from both UV-vis measurement and HPLC analysis, while the second set utilized only information from the UV-vis measurement, which is much easier to perform in practice. As a caramelization process is typically characterized by two stages, separate models were developed for each of the stages within a set. Furthermore, a third set of nonlinear equations were developed, serving as criteria to decide at which stage a caramelized sample is. The models were evaluated through a validation process.  相似文献   

15.
The change in molecular structure of the soy protein samples as a result of the microbial transglutaminase treatment was studied using solid-state (13)C NMR spectroscopy and circular dichroism (CD), and the relation to the glass transition temperature (T(g)) was examined. From NMR measurements, the structure of the local region of the C(alpha) methine was observed to change, and the region had relatively high mobility. From CD measurements, the structural change seemed to be caused by the change in the secondary structure (disintegration of the beta-structure). By comparison with the T(g) of another protein, the state of the secondary structure of a protein was suggested to be a key in determining its T(g).  相似文献   

16.
A new concept of the mechanical glass transition temperature (T(g)) is presented with application in dehydrated high-sugar/gelatin mixtures, fish, and fruits. The macroscopic basis and manner of relaxation processes during vitrification of these foodstuffs are developed using small deformation dynamic oscillation, the master curve of viscoelasticity, and the time-temperature superposition principle. The quantitative features of the mechanical T(g) are based on the combined framework of free volume/WLF theory and the Andrade equation. It is proposed that the thermal profile of storage modulus on shear is a fundamental index of monitoring changes in a glassy structure, and several cases are presented in support of this concept.  相似文献   

17.
In an attempt to draw relationships between the molecular structure and the thermal behavior of lignins, thermomechanical analyses were run on six milled wood and enzyme poplar lignin fractions prepared from genetically modified and control woods. All the lignin samples displayed similar thermal profiles with a clear inflection point assigned to the glass transition point. The temperature (T(g)) at which this transition occurs showed large variations from 170 to 190 degrees C, depending both on the genetic modification and on the age of the tree. These variations were found to be closely related to the condensation degree of lignins evaluated by thioacidolysis.  相似文献   

18.
Effect of transglutaminase treatment on the glass transition of soy protein   总被引:5,自引:0,他引:5  
The effect of microbial transglutaminase (MTG) treatment on the glass transition temperature (T(g)) of two fractions which were isolated from a soy protein sample was studied. The T(g) of each fraction measured by differential scanning calorimetry was lowered by the MTG treatment, which generated cross-links in the samples, and this result agreed with the result of dynamic mechanical analysis. From the (1)H NMR measurement, the line width of the (1)H signal of the MTG-treated sample was observed to be greater than that of the MTG-nontreated sample at similar water content, which implied that there was relatively more immobilized water in the MTG-treated sample. The MTG treatment seemed to cause the increment in immobilized water, which might affect the T(g) of the soy protein sample.  相似文献   

19.
Homogeneous blends of corn gluten meal (CGM) and "polar" plasticizers (water, glycerol) or "amphiphilic" plasticizers [octanoic and palmitic acids, dibutyl tartrate and phthalate, and diacetyl tartaric acid ester of mono-diglycerides (DATEM)] were obtained by a hot-mixing procedure. The glass transition temperature (T(g)) of the blends was measured by modulated differential scanning calorimetry and dynamic mechanical thermal analysis, as a function of plasticizer type and content (0-30%, dwb). The plasticizing efficiency (i.e., decrease of T(g)) at equal molar content was found to be proportional to the molecular weight and inversely proportional to the percent of hydrophilic groups of the plasticizer. The migration rate of the plasticizers in the polymer was related to their physicochemical characteristics. It was assumed that polar substances interacted with readily accessible polar amino acids, whereas amphiphilic ones interacted with nonpolar zones, which are buried and accessible with difficulty. The temperature at which a thermoplastic resin of plasticized CGM could be formed was closely connected to the T(g) of the blend.  相似文献   

20.
An investigation of the diffusional mobility of a bioactive compound (caffeine) within the high-solid (80.0% w/w) matrices of glucose syrup and κ-carrageenan plus glucose syrup exhibiting distinct mechanical glass transition properties is reported. The experimental temperature range was from 20 to -60 °C, and the techniques of modulated differential scanning calorimetry, small deformation dynamic oscillation in shear, and UV spectrometry were employed. Calorimetric and mechanical measurements were complementary in recording the relaxation dynamics of high-solid matrices upon controlled heating. Predictions of the reaction rate theory and the combined WLF/free volume framework were further utilized to pinpoint the glass transition temperature (T(g)) of the two matrices in the softening dispersion. Independent of composition, calorimetry yielded similar T(g) predictions for both matrices at this level of solids. Mechanical experimentation, however, was able to detect the effect of adding gelling polysaccharide to glucose syrup as an accelerated pattern of vitrification leading to a higher value of T(g). Kinetic rates of caffeine diffusion within the experimental temperature range were taken with UV spectroscopy. These demonstrated the pronounced effect of the gelling κ-carrageenan/glucose syrup mixture to retard diffusion of the bioactive compound near the mechanical T(g). Modeling of the diffusional mobility of caffeine produced activation energy and fractional free-volume estimates, which were distinct from those of the carbohydrate matrix within the glass transition region. This result emphasizes the importance of molecular interactions between macromolecular matrix and small bioactive compound in glass-related relaxation phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号