首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two mitochondrial genotypes have been described for Caligus elongatus Nordmann in Norway. This article reports on the distribution of C. elongatus mitochondrial cytochrome C oxidase 1 genotypes from wild fish hosts from the SE Norwegian coast. For comparison, lice from areas with fish farming were included in the study. The genotype distribution of 841 lice from wild coastal (n = 535), wild North Sea pelagic (n = 26), farmed (n = 160) and wild hosts in areas of fish farming (n = 89) is presented. The genotype frequencies of C. elongatus on wild coastal hosts varied significantly between spring and autumn. Lice from these fish show a large proportion of genotype 1 lice in March-June every year. Genotype 2 lice were found more frequently in autumn. Genotype 1 was clearly associated with the lumpfish, Cyclopterus lumpus L. The genotype frequency appeared to be different in areas with aquaculture. Caligus elongatus from farmed fish and wild fish caught close to Atlantic salmon fish farms in Norway were predominantly genotype 1 in autumn. Genotypes of C. elongatus on the SE coast of Norway vary according to season and fish species. Factors involved in the encounter between fish and lice are important for the establishment of lice on their hosts.  相似文献   

2.
Abstract

Anderson theorizes that development of the aquaculture of a fish species (also captured in an open‐access fishery) favours the conservation of its wild stocks, if competitive market conditions prevail. However, his theory is subject to significant limitations. While this is less so within his model, it is particularly so in an extended one outlined here. These other models allow for the possibility that aquaculture development can impact negatively on wild stocks thereby shifting the supply curve of the capture fishery, or raise the demand for the fish species subject both to aquaculture and capture. Such development can threaten wild fish stocks and their biodiversity. While aquaculture development could in principle have no impact on the biodiversity of wild stocks or even raise aquatic biodiversity overall, its impact in the long‐term probably will be one of reducing aquatic diversity both in the wild and overall. The development of aquaculture does not automatically ensure long‐term sustainability of fish and other aquatic supplies.  相似文献   

3.
Abstract  Individually tagged farmed Atlantic salmon, Salmo salar L., were released from fish farms in simulated escapes in Scotland ( n  =   678) and Norway ( n  =   597) to compare migratory behaviour and dispersal. Large fish (510–870 mm fork length) were released to simulate the escape of aquaculture growers. Fish were released in spring and all recaptures of tagged fish were reported during summer and autumn of the year of release. Recapture rates were respectively 7.0 and 0.6% of the salmon released in Norway and Scotland, indicating a higher mortality or a lower exploitation or reporting rate for Scottish fish. Recaptures of Norwegian fish were all from Norway and mostly within 150 km of the release site; 64% were taken by anglers in fresh water. By contrast, the three salmon recaptured from the release in Scotland were reported from Norway (Hardangerfjord and Lofoten) and western Sweden (River Göta); two detached tags were found on beaches in Scotland north of the release site. These findings establish the capacity for long distance dispersal among escapees from aquaculture facilities and suggest a net easterly bias in long distance dispersal of salmon escaping from Scottish fish farms.  相似文献   

4.
Genetic discrimination using DNA fingerprinting is rapidly developing for cultured stock and wild fish populations. Microsatellites and AFLPs are being widely used in aquaculture to assign fish or processed fish products, to their claimed origin, paternity or strain. In the present study, 147 AFLP and 4 microsatellite markers were used as genetic tags in gilthead seabream, Sparus auratus. Specimens from two different hatchery broodstocks (one of Atlantic and one of Mediterranean origin) and wild fishes from a natural population were fingerprinted. Putative offspring from these broodstocks were computer-generated, and the confidence in the parentage assignment of their genetic profiles to the hatchery broodstock assessed. The virtual offspring were then mixed with specimens from a natural population to simulate an accidental escape from a floating cage. The risk of false paternity inclusion was evaluated to test the ability to identify either Atlantic or Mediterranean hatchery offspring among wild fish. The method proved to be reliable, and could therefore be used to forecast the impact of fish farm escapees.  相似文献   

5.
Samples of wild and domesticated salmon in Norway were genotyped at 12 microsatellite loci to compare allelic variability and investigate the potential of microsatellite markers for identification of individuals. The following loci were amplified: Ssa20, Ssa62NVH, Ssa71NVH, Ssa90NVH, Ssa103NVH, Ssa105NVH, SsaF43; Ssa20.19; Ssa13.37; SsOSL85; Ssa197; Ssa28. All domesticated strain samples displayed reduced variability compared to wild salmon. On average 58% of the allelic richness observed within the four wild stocks were present in the samples taken from domesticated strains. No systematic differences in heterozygosity were observed between samples representing the two groups.

Pairwise genetic distances, as estimated by Fst values and Nei [1978] was 2–8 times higher among domesticated strains than among wild strains. Among the wild stocks, the highest genetic distances were observed between the river Neiden, located in northern Norway, and the other wild stocks located in the southwest of Norway.

Assignment tests indicated that the wild and domesticated salmon could be distinguished with high precision. Less than 4% of domesticated salmon were misassigned as wild salmon, and less than 3% of wild fish were misassigned as domesticated salmon. Fish from individual domesticated strains were identified with similarly high precision. Assignment to wild salmon stocks was less accurate, with the exception of the sample taken from the river Neiden, for which 93% of the individuals were correctly assigned.  相似文献   


6.
Abstract. To estimate the proportion of escaped fanned Atlantic salmon. Salmo salar L., at the feeding grounds in the north-east Atlantic Ocean, samples of salmon caught with long-lines north of the Faroe Islands were examined. Identification of reared fish was carried out using scale analysis. The proportion of fanned fish was estimated to range from 25 to 48% in the different samples, suggesting that high numbers of escaped farmed salmon occur in the Norwegian Sea. The farmed fish were significantly smaller in size than the wild salmon. Although it is suggested that most of the farmed fish are of Norwegian origin, farmed fish of Scottish, Faroese and Irish origin are also believed to be present. If not accounted for, high numbers of reared salmon in fisheries and stocks will seriously affect the assessments of fisheries and stocks of wild salmon.  相似文献   

7.
In recent years, the use of cleaner fish for biological control of sea lice has increased considerably. Along with this, a number of infectious diseases have emerged. The aim of this study was to investigate the susceptibility of lumpfish (Cyclopterus lumpus) to Betanodavirus since it was detected in asymptomatic wild wrasses in Norway and Sweden. Three betanodaviruses were used to challenge lumpfish: one RGNNV genotype and two BFNNV genotypes. Fish were injected and monitored for 4 weeks. Brain samples from clinically affected specimens, from weekly randomly selected fish and survivors were subjected to molecular testing, viral isolation, histopathology and immunohistochemistry. Reduced survival was observed but was attributed to tail‐biting behaviour, since no nervous signs were observed throughout the study. Betanodavirus RNA was detected in all samples, additionally suggesting an active replication of the virus in the brain. Viral isolation confirmed molecular biology results and revealed a high viral titre in BFNNV‐infected groups associated with typical lesions in brains and eyes of survivor fish. We concluded that lumpfish are susceptible to Betanodavirus, as proven by the high viral titre and brain lesions detected, but further studies are necessary to understand if Betanodavirus can cause clinical disease in this species.  相似文献   

8.
Genetic variation in seven reared stocks of gilthead sea bream Sparus aurata, originating from Greek commercial farms, was assessed using five polymorphic microsatellite markers and was compared with that of two natural populations from the Ionian and the Adriatic Seas. The total number of alleles per marker ranged from 11 to 19 alleles, and hatchery samples showed the same levels of observed heterozygosity with samples from the wild but substantially smaller allelic diversity and expected heterozygosity. The global genetic differentiation for the cultivated samples was significant as indicated by Fst analysis, which might indicate random genetic drift and inbreeding events operating in the hatcheries. On the contrary, no significant difference was found between the two wild populations. Population pairwise tests between farmed and wild stocks were also significant, with the exception of one hatchery sample, the Central Greece 1, which was not significantly different from the two wild samples perhaps due to its recent use in aquaculture from wild‐caught animals. The UPGMA tree topology grouped the wild samples together with the Central Greece 1 stock, and showed a clear division between wild and farmed sample sets for the six remaining hatchery samples. Knowledge of the genetic variation in S. aurata cultured populations compared with that in the wild ones is essential for setting up appropriate guidelines for the proper monitoring and management of the stocks either under traditional practices or for the implementation of selective breeding programmes.  相似文献   

9.
Pancreas disease (PD), caused by salmonid alphavirus subtype 3 (SAV3), emerged in Norwegian aquaculture in the 1980s and is now endemic along the south‐western coast. In 2011, the first cases of PD caused by marine salmonid alphavirus subtype 2 (SAV2) were reported. This subtype has spread rapidly among the fish farms outside the PD‐endemic zone and is responsible for disease outbreaks at an increasing numbers of sites. To describe the geographical distribution of salmonid alphavirus (SAV), and to assess the time and site of introduction of marine SAV2 to Norway, an extensive genetic characterization including more than 200 SAV‐positive samples from 157 Norwegian marine production sites collected from May 2007 to December 2012 was executed. The first samples positive for marine SAV2 originated from Romsdal, in June 2010. Sequence analysis of the E2 gene revealed that all marine SAV2 included in this study were nearly identical, suggesting a single introduction into Norwegian aquaculture. Further, this study provides evidence of a separate geographical distribution of two subtypes in Norway. SAV3 is present in south‐western Norway, and marine SAV2 circulates in north‐western and Mid‐Norway, a geographical area which since 2010 constitutes the endemic zone for marine SAV2.  相似文献   

10.
The use of lumpfish in salmon farming allows the removal of sea lice all year round, without the use of chemicals or mechanical treatments. In Norway alone, around 31 million lumpfish are currently put into sea pens whereas no efficient method to re-catch these fish once they no longer are efficient salmon lice grazers (from 300 g) exists. At present, collecting lumpfish in sea-cages is a labour- and time-consuming process and, if these fish are to be harvested, an efficient method for collecting lumpfish is urgently needed. In this study, we tested coloured light as an attractant to lure lumpfish into passive traps (pods). Three small-scale pilot experiments both demonstrated the highest re-capture rate when a blue light-source was used, whereas red and yellow light gave the lowest re-capture rate. A subsequent large-scale trial failed to demonstrate significant re-catch of lumpfish. It is concluded that although blue light clearly attracted lumpfish in laboratory trials, further studies are needed in order to exploit this attribute commercially.  相似文献   

11.
Offshore net pen fish farming provides a cost‐efficient means for production of marine finfish, and there is great interest in development of net pen operations in domestic waters. However, there are concerns over the possible genetic and ecological impacts that escaped fish may have on wild populations. We used individual‐based simulations, with parameter values informed by life history and genetic data, to investigate the short‐term (50 yr) impacts of net pen failures on the genetic composition of cobia, Rachycentron canadum, stocks in the Gulf of Mexico. Higher net pen failure rates resulted in greater genetic impacts on the wild population. Additionally, the use of more genetically differentiated source populations led to larger influxes of non‐native alleles and greater temporal genetic change in the population as a result of net pen failure. Our results highlight the importance of considering the appropriate source population for broodstock collection in net pen aquaculture systems and help to provide a general set of best management practices for broodstock selection and maintenance in net pen aquaculture operations. A thorough understanding of the genetic diversity, stock structure, and population demography of target species is important to determine the impact escapees can have on wild populations.  相似文献   

12.
For many aquaculture finfish species, the current broodstock have been collected from the wild or have undergone only a few generations of domestication. The Atlantic halibut (Hippoglossus hippoglossus) aquaculture industry in Atlantic Canada has retained F1 juveniles (n=145) from the 1996 spawning of wild adults for candidate broodstock. Through the development and use of a five-microsatellite DNA marker multiplex, we determined the parentage of these 1996 F1 individuals, which are being reared at one government and two industry hatcheries, and evaluated the change in genetic variation between the wild and the 1996 F1 stock. In the three groups of F1 fish, single parental pairs were assigned to 98%, 96% and 100% of individuals. Large full- and half-sibling groups were identified within and across F1 groups and, overall, only 36% of attempted crosses were represented in the retained fish. Effective population size in the parental group decreased from 27 to 13 when variance in family size was accounted for and to 12.5 when changes in gene diversity (compared to the combined F1 stocks) were considered. Statistically significant differences in measures of genetic variation were not widely observed between groups (original wild sample, parental group, three F1 groups and combined F1). However, the F1 population shows a 26% decrease in total allele numbers compared to the wild sample. These observations demonstrate the utility of genetic tools in the evaluation of genetic diversity and determination of pedigree during the establishment of new broodstock. They also emphasize the necessity for closely monitoring future matings among these fish and suggest the need to introduce additional genetic variation into this group of Atlantic halibut broodstock.  相似文献   

13.
Population genetic structure in penaeid prawns   总被引:14,自引:0,他引:14  
Genetic data are available for 27 species of penaeid prawn. Collected largely for fisheries purposes, they include information on several species of importance to aquaculture. Most studies used allozymes, but a small number have used mtDNA, random amplified polymorphic DNAs (RAPDs) and/or microsatellites. The DNA‐based markers have revealed far greater levels of variation compared with the allozyme data. However, in the few cases for which joint information is available, the mtDNA and microsatellite information tended to confirm the spatial patterns of variation detected by allozymes. These revealed little genetic variation over long distances (thousands of kilometres) for many species, but relatively major shifts in gene, or genotype, frequencies over relatively short distances (hundreds of kilometres). Much of the genetic structure in wild populations appears to reflect historical events on large biogeographical scales, rather than resulting from patterns of present‐day dispersal. Genetic variation in cultured stocks is generally less than in wild ones, the extent of the reduction being dependent upon broodstock management procedures. There is no conclusive evidence that aquaculture escapees have altered the genetic constitution of wild stocks of Penaeus monodon in Thailand. Nevertheless, the occurrence of strong patterns of geographic variation in wild stocks suggests that more detailed planning will be required to maintain this diversity, and to determine how best to capture its benefits for aquaculture.  相似文献   

14.
For the first generation of a selective breeding programme, it is important to minimize the possibility of inbreeding. This mostly occurs by mating between closely related individuals, while proper mating can provide an opportunity to establish the base families with wide genetic variation from which selection for subsequent generations can be more effective. Genotyping with microsatellite‐based DNA markers can help us determine the genetic distances between the base populations. The genetic markers further facilitate the identification of the correct parents of the offspring (parentage assignments) reared together with many other families after hatching. We established a genetic analysis system with microsatellite DNA markers and analysed the genetic distances of three farmed stocks and a group of fish collected from wild populations using eight microsatellite markers. The averaged heterozygosity of the farming stocks was 0.826 and that of the wild population was 0.868. The hatchery strains had an average of 8.6 alleles per marker, which was less than a wild population that carried an average of 14.3 alleles per marker. Significant Hardy–Weinberg disequilibrium (HWDE) was observed in two farming stocks (P<0.05). Despite relatively low inbreeding coefficiency of the hatchery populations, the frequency of a few alleles was highly represented over others. It suggests that the hatchery stocks to some extent have experienced inbreeding or they originated from closely related individuals. We will develop a selective program using the DNA markers and will widen the usage of the DNA‐based genetic analysis system to other fish species.  相似文献   

15.
Norway leads the world aquaculture production of Atlantic salmon Salmo salar and farmed Norwegian Atlantic salmon is currently consumed around the globe. However, sea lice infestation is a major problem faced by the salmon aquaculture industry in Norway and elsewhere. The use of wild-caught cleaner fish, mainly wrasses, has been recommended over the other available methods as the most economical and environmentally friendly option to control sea lice infestation in salmon farming. Here, we review the development of the Norwegian wrasse fishery and the use of wrasses as cleaner fish. In this document, we address the sea lice problem and introduce the main wrasse species employed as cleaner fish, document the cleaning behaviour of wrasses, present the development of a new wrasse fishery associated with the salmon aquaculture industry, and finally, we identify the main challenges associated with the intensive use of wild-caught cleaner wrasses and provide some insight for future directions of the wrasse fishery and further development of aquaculture techniques to supply salmon facilities with domesticated cleaner fish.  相似文献   

16.
The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids.  相似文献   

17.
The loss of variability in farmed populations and the risks of interactions with wild populations support the need for the genetic monitoring of species farmed throughout the world. In Brazil, the tambaqui is the most widely farmed native fish species. Despite this, there are no data on the pedigree of the farmed stocks, and the potential for interactions with wild populations in the Amazon basin has raised concerns with regard to the genetic variability of these stocks. The present study analysed sequences of the mitochondrial Control Region and 12 microsatellites to characterize the genetic variability of seven historically important commercial tambaqui breeding centres located in four different regions of Brazil, and compared these sequences with those obtained from individuals collected from a wild population. High levels of genetic diversity were found in the wild population, whereas genetic diversity was reduced in both markers in most captive populations, except for the broodstock located near the Amazon River. High FST and DEST indices were recorded between the wild population and most of the captive stocks analysed. The drastic reduction in genetic diversity found in most captive stocks and the difference between these stocks and the wild population may have been the result of the small size of the founding populations and the absence of breeding management. The renewal of the broodstocks and the application of breeding management techniques are recommended. In the Amazon region, in addition, the use of broodstocks that are genetically very different from local wild populations should be avoided.  相似文献   

18.
Genetic improvement of cold-water fish species   总被引:25,自引:0,他引:25  
Carnivorous fish are two to three times as efficient as pigs and broilers in converting energy and protein to edible food for humans. As the domestication of fish continues, they will become more and more efficient and competitive with these industries. In the future, this will be very important, as more efficient utilization of available food resources is required to supply the growing human population with enough food. Today, about 1% of aquaculture production is based on genetically improved fish and shellfish. For salmonid fishes, we have the necessary knowledge to establish efficient breeding programmes. Large genetic variation has been associated with important economic traits. For growth rate, heritability ranges from 0.2 to 0.3, with a coefficient of variation of 20–30%. This implies that it is possible to obtain large responses from selection for growth rate. In several large‐scale experiments and in breeding programmes, 10–15% genetic change has been obtained per generation, which is much higher than that reported for other farm animals. In Norway, extensive breeding experiments with Atlantic salmon and rainbow trout were started in 1971. For the first two generations of selection, the breeding goal was growth rate. Age at sexual maturation (measured as frequency of grilse) was then included. From the fifth generation, disease resistance (measured by challenge test for furunculosis and the virus ISA) and meat quality (measured as fat percentage, fat distribution and flesh colour) were included. Today, Norsk Lakseavl AS (Norwegian Salmon Breeding Company Ltd) or NLA runs the National Breeding Programme and has two breeding stations where 400 full‐sib and half‐sib families of Atlantic salmon are tested in each of four year classes. For rainbow trout, the number of families totals 120 in each of three year classes. In 1997, the Norwegian production was 310 000 tons of Atlantic salmon and 33 000 tons of rainbow trout. At present, about 65% of the salmon and trout produced in Norway use genetically improved fish from NLA and multipliers. The cost–benefit ratio for the National Breeding Programme in Norway is estimated to be 1:15.  相似文献   

19.
20.
The Apostichopus japonicus is a valuable aquaculture species in China. In this study, 51 single nucleotide polymorphisms (SNPs) were identified from expressed sequence tags of sea cucumber using high‐resolution melting. The average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.2462 and 0.2897, respectively. Thirty‐two of these loci were used for estimating the genetic similarity and variation between the five hatchery stocks from China and two wild stocks from Japan. No significant differences in Ho or He were observed between the wild and hatchery populations. The pairwise Fst (which ranged from 0.0119 to 0.0236) and the genetic identity (which varied from 0.9802 to 0.9915) showed no significant differentiation between the wild and cultured stocks. The analysis of molecular variance indicated the source of variation was at the level of “within the populations.” The information on the genetic variation and differentiation in cultured and wild populations of A. japonicus obtained in this study is useful for setting up suitable guidelines for founding and maintaining of cultured stocks and for future genetic improvement by selective breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号