首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary To elucidate the role of leaf surface structures as first barriers to confer resistance to bacterial blight, leaf stomata and their occlusion with leaf waxes were studied in cassava genotypes. For the first time, cassava leaf waxes were quantitatively and qualitatively analysed. Comparing the susceptible and resistant standard genotypes BEN86052 and TMS30572, respectively, the total quantity of triterpenes was significantly higher in the resistant genotype, grown in three ecozones of Benin. In cuticular leaf waxes of seven cassava genotypes the triterpenes beta amyrins, epi-taraxerol, taraxerone and taraxerol were dominant constituents across genotypes, and alkanes (C25-C33) and acids (C30 and C32) occurred in minor concentrations. Comparing seven genotypes, no clear relation between resistance or ecozones and total quantities of the major wax constituents was observed. Only the highly resistant genotype TMS30572 showed high triterpene levels irrespective of ecozone. Scanning electron-microscopy revealed a regular distribution of waxes at the abaxial leaf surface, covering and occluding stomatal pores of susceptible and resistant genotypes, while on the adaxial leaf surface waxes were in form of crystalloids and did not occlude the stomata. The number of stomata on the abaxial surfaces was about 7–11 fold higher than on the adaxial surfaces, where stomata were located along the midrib and major veins. No significant differences in stomata number were observed between genotypes varying in resistance to bacterial blight. It is suggested, that stomata on the adaxial surface might be portals of entry for the bacteria.  相似文献   

2.
Summary During a four year period, a total of 258 winter and spring wheat genotypes were evaluated for resistance to head blight after inoculation with Fusarium culmorum strain IPO 39-01. It was concluded that genetic variation for resistance is very large. Spring wheat genotypes which had been reported to be resistant to head blight caused by Fusarium graminearum were also resistant to F. culmorum. The resistant germplasm was divided into three gene pools: winter wheats from Eastern Europe, spring wheats from China/Japan and spring wheats from Brazil. In 32 winter wheat genotypes in 1987, and 54 winter wheat genotypes in 1989, the percentage yield reduction depended on the square root of percentage head blight with an average regression coefficient of 6.6. Heritability estimates indicated that for selection for Fusarium head blight resistance, visually assessed head blight was a better selection criterion than yield reduction.  相似文献   

3.
Capitalizing on the yield potential in available groundnut germplasm, and high stability of kernel yield are important requirements for groundnut producers in semiarid environments. Forty-seven groundnut genotypes were evaluated from 2003 to 2005 at 4 locations representative of the Guinea and Sudan savanna ecologies in Ghana. The objectives were to assess genotypic differences in reaction to early and late leaf spot infections under natural field conditions, assess the extent of genotype × environment (G × E) interaction for kernel yield, and determine the relationship between yield potential and yield stability. Genotypes differed significantly in their reaction to leaf spot infections indicated by the area under disease progress curve (AUDPC). Genotypic AUDPC was negatively correlated with maturity period (P < 0.01), with kernel yield (P < 0.05) at each of the 3 locations in the Guinea savanna ecology but not in the Sudan savanna ecology and with each of four stability parameters (P < 0.05). High or low yielding genotypes were grouped based on Dunnett’s test at P < 0.10. High yielding groups had significantly low AUDPC, high biomass, high partitioning of dry matter for kernel growth, and were later in maturity compared to low yielding genotypes. Significant G × E interaction effect for kernel yield was dominated mainly by the lack of correlation among environments variance (76–78%) relative to the heterogeneity of genotypic variance component (22–24%). Stability of yield assessed through the among-environment variance, Wricke’s ecovalence, and Finlay-Wilkinson regression coefficient revealed that genotypes in the higher yielding group were relatively unstable compared to the low yielding group. Indicated by the Kataoka’s index of yield reliability, however, relatively unstable genotypes in the high yielding group are expected to be more productive even under assumptions of high risk aversion (P = 0.75–0.95) compared to the more stable, low yielding genotypes. The findings indicate that deploying these recently developed germplasm in semiarid regions in West Africa provides a better match to farmers’ risk-averse strategies compared with the use of existing earlier maturing cultivars.  相似文献   

4.
Types and components of resistance to Fusarium head blight of wheat   总被引:18,自引:2,他引:18  
Resistance of wheat to Fusarium head blight caused by Fusarium graminearum and F. culmorum was identified in natural epidemics in 1985 and 1987 as well after artificial inoculations (1983–1988 and 1984–1987). Out of 25 genotypes tested, five were identified with no significant difference in head blight scores, but differing significantly in yield after artificial inoculation, i.e. tolerance differences were detected at different resistance levels. Some genotypes that were similar in yield or head blight scores differed in seed infection severity. Genotypes with awns were more susceptible to head blight when tested under natural epidemic condition in the field; but this trait did not influence head blight severity in artificial inoculations. Dwarf genotypes were more severely infected by head blight than tall genotypes under natural conditions, but genotypes of different plant height classes were similarly susceptible after artificial inoculations. In the early generations of a breeding programme resistance measured by visual evaluation of artificial inoculation is the most important way to screen. If selection of dwarf and awned genotypes cannot be avoided, the higher susceptibility caused by awns and dwarfness under natural epidemic conditions can be decreased by a higher level of physiological resistance, as variability in physiological resistance is available. In later generations, traits like percentage of seed infection or tolerance can be identified by additionally measuring yield reduction. Stability of disease reaction appears to be connected with resistance level, the most resistant genotypes are the most stable, and the most susceptible ones tend to have more unstable reactions in different epidemic conditions.  相似文献   

5.
P. K. Singh  G. R. Hughes 《Euphytica》2006,152(3):413-420
The fungus Pyrenophora tritici-repentis, causal agent of tan spot of wheat, produces two phenotypically distinct symptoms, tan necrosis and extensive chlorosis. The inheritance of resistance to chlorosis induced by P. tritici-repentis races 1 and 3 was studied in crosses between common wheat resistant genotypes Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 and susceptible genotype 6B-365. Plants were inoculated under controlled environmental conditions at the two-leaf stage and disease rating was based on presence or absence of chlorosis. In all the resistant × susceptible crosses, F1 plants were resistant and the segregation of the F2 generation and F3 families indicated that a single dominant gene controlled resistance. Lack of segregation in a partial diallel series of crosses among the resistant genotypes tested with race 3␣indicated that the resistant genotypes possessed␣the same resistance gene. This resistance gene was effective against chlorosis induced by P.␣tritici-repentis races 1 and 3.  相似文献   

6.
In order to investigate the agricultural potential of the genus Vicia, and identify traits associated with productivity and responsiveness to environment, 34 undomesticated Mediterranean accessions representing Section Narbonensis (V. johannis, V. narbonensis) and V. sativa were grown in five contrasting environments in northern Syria (growing season rainfall: 76–290 mm).Highly significant genotype × environment interactions were observed for all traits. For most of the components of yield, accession mean performance (productivity)was highly correlated with responsiveness across environments (r = 0.59–0.96), as defined by joint linear regressions. Thus high yielding genotypes tended to be relatively more productive than low yielding genotypes under conditions that favoured high yields. Regression analysis revealed that mean site yields were positively correlated to rainfall (r = 0.85) and its attendant effect on growing season length as measured by cumulative season temperature and phenology (r = 0.59–0.81).In order to examine yield related traits independently of taxonomy, genotypes were grouped into three categories using K-means clustering based on productivity and responsiveness of seed, hay and biological yield. Highly productive/responsive genotypes were tall with high harvest index, large seeds and low fecundity (seeds and pods per plant), whereas unproductive/unresponsive plants tended to be short, highly fecund, with small seeds and low harvest index. Principal components analysis showed that responsiveness, in terms of seed, hay and biological yields, was closely related to phenological plasticity. Thus highly productive/responsive genotypes were able to start flowering earlier than unproductive/unresponsive genotypes in early environments, but significantly later in late, higher rainfall environments. Plant growth habit was also related to yield responsiveness. In environments with little biomass production the proportion of erect plants was high in all three categories. In more favourable, high biomass environments, the proportion of erect plants in unproductive/unresponsive genotypes fell dramatically, but was unchanged among productive/responsive genotypes. We suggest that for unproductive/unresponsive genotypes competition for light is increased under optimal growth conditions. We argue that the optimal combination of fixed and responsive traits in high yielding genotypes results in a `compound interest-type' response to more favourable environments. Highly productive and responsive genotypes can capture resources more effectively than their low yielding counterparts, leading to a positive relationship between performance and responsiveness for most components of yield. Differences in productivity and responsiveness for seed, hay and biological yield reflected Vicia taxonomy, increasing in the following order from low to high: V. johannis, V. sativa, the small seeded V. narbonensis (salmonea, jordanica, affinis) V. n. var. narbonensis, and finally V. n. var.aegyptiaca. V. n. var. aegyptiaca showed the most agricultural potential, since the taxon contained all the properties of productive/responsive genotypes listed above, yielding >1 t/ha under extremely arid conditions (104 mm),and >2.5 t/ha on 290 mm rainfall, confirming its potential for dry environments. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
Summary Breeding of Phaseolus vulgaris L. for resistance to common bacterial blight (CBB) can be done with visual evaluations of symptoms to distinguish broad resistance classes, but a more quantitative measure was needed for genetic studies of resistance. A novel method of evaluation was developed by quantifying Xanthomonas campestris pv. phaseoli (XCP) in bean leaf tissue infected with CBB using a 32P-labeled probe and densitometric analysis of hybridization signals. Quantification of bacterial populations using the probe was highly correlated (r=0.98) with the number of colony forming units (CFU) from plate counts of the same leaf samples. The probe was used to follow XCP population dynamics on susceptible (BAT 41) and resistant (OAC 88-1) bean genotypes. OAC 88-1 supported a maximum XCP population which was approximately tenfold less than BAT 41. The probe was also used to study an F2/F3 population segregating for resistance. Narrow sense heritability estimates were less for resistance measured on the basis of bacterial populations (0.18–0.26) than on visual scores of symptoms (0.29–0.38). The anticipated response to selection for CBB resistance would be less based on bacterial numbers than based on symptom expression in this population. In breeding for resistance to CBB, selection based on visual symptoms combined with measurements of XCP populations using a DNA probe can be used to develop bean genotypes that are both resistant to symptom development and bacterial multiplication.Abbreviations CBB common bacterial blight - CFU colony forming units - XCP Xanthomonas campestris pv. phaseoli  相似文献   

8.
Genotype by environment interaction remains a substantial issue in all breeding programs. Crop genotypes are generally developed in a central breeding location, but always require the evaluation of breeding products in different environments. This is particularly relevant in countries that have a wide range of climates. Eighteen cassava genotypes were evaluated in Cameroon in eight environments—varying in seasonal rainfall and temperature patterns and soil characteristics—over two cropping seasons. Soil nutrient content was analyzed and trials were established in a randomized complete block design in three replications. Response of genotypes to major cassava pests and diseases, yield and carotenoids content was evaluated. It was observed that four genotypes did not show cassava mosaic disease (CMD) symptoms irrespective of the environments. The local check had highest CMD incidence and severity across all environments. Average number of whitefly per plant across all environments was highest on TMS 96/0023. Average cassava green mite (CGM) infestation was low on all the genotypes. Fresh root yield of five genotypes ranged between 25 and 30 tons per ha for both years. Significant and positive correlation was found across locations between fresh root yield and soil K, P and Mg. AMMI analysis revealed highly significant differences among genotypes and environments and significant genotype?×?environment interaction for most of the estimated traits, indicating variability in genotypes performance with environment.  相似文献   

9.
The relationship between resistance in seedlings, young and adult plants is studied for the pathosystem Brassica oleraceaHyaloperonospora parasitica. Genotypes identified in the laboratory as resistant or susceptible or exhibiting a differential reaction to a selection of H. parasitica isolates were tested in 1997–1999 in seedbeds and fields under natural infestation. Isolates tested in the laboratory were grouped in five pathotypes, of which four were presented by isolates from Brittany, France. Genotypes susceptible to all pathotypes in the laboratory were also susceptible in the seedbed and field tests, while genotypes expressing a differential response to pathotypes were either resistant or susceptible. Accessions Everest, DEGC, ESPG and RS1105 exhibiting resistance to all pathotypes except I, were resistant in all environments and remained resistant in 2000–2002. Pathotype I was not prevailing in the field and results support the hypothesis that accessions resistant under laboratory conditions will be resistant under field conditions, provided the same pathotypes are present under the laboratory and field conditions.  相似文献   

10.
Genotype × environment interactions for tea yields   总被引:1,自引:0,他引:1  
Several methods were used to evaluate phenotypic stability in 20 tea (Camellia sinensis) genotypes, many of which are cultivated widely in East Africa. The genotypes were evaluated for annual yields at two sites over a six year period. Data obtained were used to compare methods of analysis of G × E interactions and yield stability in tea. A standard multi-factor analysis of variance test revealed that all first order interactions (genotypes × sites; genotypes × years; sites × years) as well as second order interactions (sites × genotype × years) were significant. Regression analysis was used to assess genotype response to environments. Regression coefficients (bi) obtained ranged from 0.78 to 1.25. Deviations from regression (S2d) were significant (p < 0.05) from 0.0 for all the test genotypes. Analysis for sensitivity to environment change (SE2 i) revealed that the test genotypes differed in their level of sensitivity. The hierarchical cluster analysis method was used to assemble the test genotypes into groups with similar regression coefficients (bi) and mean yield, which proved useful for the identification of high yielding genotypes for breeding purposes as well as for commercial exploitation. Rank correlation between yield and some stability parameters were significant. Mean yield was significantly correlated to bi (r = 0.80***) and SE2 i(0.74***) which is an indication that selection for increased yield in tea would change yield stability by increasing bi and SE2 i leading to development of genotypes that are specifically adapted to environments with optimal growing conditions. Genotypes differed in response to years and sites. As stand age increased, genotype yields generally increased though annual yield fluctuations were more pronounced in some genotypes than others. This response was not consistent across the sites for all genotypes indicating the need to test clones at multiple sites over longer periods of time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Ascochyta blight is a major fungal disease affecting chickpea production worldwide. The genetics of ascochyta blight resistance was studied in five 5 × 5 half-diallel cross sets involving seven genotypes of chickpea (ICC 3996, Almaz, Lasseter, Kaniva, 24B-Isoline, IG 9337 and Kimberley Large), three accessions of Cicer reticulatum (ILWC 118, ILWC 139 and ILWC 184) and one accession of C. echinospermum (ILWC 181) under field conditions. Both F1 and F2 generations were used in the diallel analysis. The disease was rated in the field using a 1–9 scale. Almaz, ICC 3996 and ILWC 118 were the most resistant (rated 3–4) and all other genotypes were susceptible (rated 6–9) to ascochyta blight. Estimates of genetic parameters, following Hayman’s method, showed significant additive and dominant gene actions. The analysis also revealed the involvement of both major and minor genes. Susceptibility was dominant over resistance to ascochyta blight. The recessive alleles were concentrated in the two resistant chickpea parents ICC 3996 and Almaz, and one C. reticulatum genotype ILWC 118. The wild Cicer accessions may have different major or minor resistant genes compared to the cultivated chickpea. High narrow-sense heritability (ranging from 82% to 86% for F1 generations, and 43% to 63% for F2 generations) indicates that additive gene effects were more important than non-additive gene effects in the inheritance of the trait and greater genetic gain can be achieved in the breeding of resistant chickpea cultivars by using carefully selected parental genotypes.  相似文献   

12.
Late blight caused by Phytophthora infestans was monitored in field plots of potato genotypes selected from population A of the International Potato Center (CIP) germplasm collection. Disease severity was measured as percent blighted leaf area and used to compute area under disease progress curves (AUDPC), apparent infection rates (r) and severity at epidemic onset (Yo). AUDPCs revealed more distinct differences among the genotypes than any other disease assessment parameter. Percent disease severity measured 67–77 days after planting (D67-77)explained more variation in AUDPCs than measurements made on any other single day. Increase in percent diseased leaves fit the monomolecular model more closely than the Gompertz, logistic or exponential model. All disease assessment parameters varied among the genotypes and were significantly (p < 0.01) correlated with each other. Genotypes with larger AUDPCs generally had higher DS67-77 and faster rates of disease increase (r). Clones 386191.7 and381403.23 were more susceptible to late blight than all other entries tested. The lowest disease levels were observed on clone 382155.2. Frequency distribution of AUDPCs among genotypes appeared continuous and did not differ significantly (p <0.05)from normal distribution suggesting the observed resistance may be attributable to minor genes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Experiments to assess variation in the resistance of winter wheat to infection by Microdochium nivale were conducted over two consecutive years. Resistance was evaluated using an agar disk technique to reproduce stem lesions and by spraying a conidial suspension to reproduce head blight symptoms. Significant variation for stem reaction measured as stem lesion area (SLA), and head reaction measured as disease severity (DS) was found in the 33 winter wheat genotypes tested. Data obtained over two years in controlled environment conditions were significantly correlated (r=0.713 for SLA and r=0.738 for DS), whereas field data showed a significant genotype x year interaction for disease severity. Quantitative variation for susceptibility to stem and head infection by M. nivale was found among the 33 genotypes tested. The majority of genotypes expressed moderate susceptibility, with cultivar Goupil being very susceptible to both stem and head infection, and the remainder, Renan, Arminda, Munstertaler and Saint-Johann were the most resistant. Resistance to stem and head to M. nivale were not correlated (r=0.358).  相似文献   

14.
Summary Barley genotypes representing a wide range of resistance expressions and origins, from major resistance genes in modern cultivars to field resistances in landraces, were assessed for tolerance to disease under glasshouse and field conditions. A few genotypes were picked out as showing less yield loss than would be expected from the level of mildew infection. Genotypes showing more than the expected yield loss were also found. The potential use of tolerance as a breeding character is discussed.  相似文献   

15.
Osmotic adjustment (OA) and deep roots were shown to be important drought resistance mechanism in many crop plants. In this study, geno types systematically selected from an Ethiopian endemic tef [Eragrostis tef (Zucc) Trotter] germplasm pool were evaluated for osmotic adjustment and root depth in greenhouse in several experiments. The association of these traits with other plant characters was also studied. Osmotic adjustment was investigated in two experiments. Experiment 1 was conducted using nine genotypes for two seasons (spring and fall 1996), and experiment 2 was undertaken in the spring of 1997 with 45 genotypes. In experiment 1, there were significant genotype effects on OA. Though there was also significant genotype by season interaction for OA, some of the extreme lines gave consistently high (Ada and DZ-01-99) and low (DZ-01-354 and Trotteriana) OA values across seasons. There was a significant variation among genotypes for OA in experiment 2. Osmotic adjustment was not associated with the altitude of the region of origin of the particular tef genotype. In both experiments, OA was significantly correlated across tef genotypes with delayed wilting and the maintenance of higher relative water content (RWC) under conditions of soil moisture stress. Three experiments were conducted to evaluate the phenotypic diversity for root depth. In all experiments tef genotypes differed significantly for root depth as measured at flowering time. The late maturing genotypes tended to have greater root depth as compared to early maturing genotypes. Root depth was not associated with the altitude of the region of origin of the tested genotypes. There was no association between root depth and OA across genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Multi-environment trials (MET) play an important role in selecting the best cultivars and/or agronomic practices to be used in future years at different locations by assessing a cultivar's stability across environments before its commercial release. Objective of this study is to identify chickpea (Cicer arietinum L.) genotypes that have high yield and stable performance across different locations. The genotypes were developed by various breeders at different research institutes/stations of Iran and the International Center for Agricultural Research in Dray Areas (ICARDA), Syria. Several statistical methods were used to evaluate phenotypic stability of these test chickpea genotypes. The 17 genotypes were tested at six different research stations for two years in Iran. Three non-parametric statistical test of significance for genotype × environment (GE) interaction and ten nonparametric measures of stability analyses were used to identify stable genotypes across the 16 environments. The non-parametric measures (Kubinger, Hildebrand and Kroon/Van der) for G × E interaction were highly significant (P < 0.01), suggesting differential responses of the genotypes to the test environments. Based on high values of nonparametric superiority measure (Fox et al. 1990) and low values of Kang's (1988) rank-sum stability parameters, Flip 94-123C was identified as the most stable genotype. These non parametric parameters were observed to be associated with high mean yield. However, the other nonparametric methods were not positively correlated with mean yield and were therefore not used in classifying the genotypes. Simple correlation coefficients using Spearman’s rank correlation, calculated using ranks was used to measure the relationship between the stability parameters. To understand the nature of relationships among the nonparametric methods, a hierarchical cluster analysis based on non weighted values of genotypes, was performed. The 10 stability parameters fell into three groups.  相似文献   

17.
Summary Appropriate definitions of, and methods of measuring, resistance are sought using Phaseolus vulgaris, a major source of protein in Latin America, and its most important pest, Empoasca kraemeri. The concepts of general vigour and narrow-sense resistance are defined: these two components make up broad-sense resistance. The validity of these definitions, which depend on the inclusion of tolerance as a resistance mechanism, is discussed. In order to distinguish the components, 38 genotypes of P. vulgaris were grown with and without insecticidal proctection, in three replications in a split-plot design, with three planting dates. Seed yield per plant, and a visual score of damage symptoms or vigour, were measured. Three methods of estimating narrow sense resistance are considered: 1) the genotype × insecticide interaction effect in a split-plots analysis, 2) the yield of each genotype unprotected (Yu) divided by its yield protected (Yp). and 3) the deviation of each genotype from a regression of Yu on Yp. The third method overcomes some objections to the first two, and can be applied to damage and vigour scores as well as to yields. The 38 genotypes differed in narrow-sense resistance according to all three methods, and it appears that in practice Methods 2 and 3 were both valid. They also differed in general vigour. Breeders working with many pests and crops have found that low damage and high yield in the presence of the pest are effective selection criteria. The work reported here supports this view.  相似文献   

18.
Cassava root rot disease is an increasing problem in Africa where yield losses of about 80% have been recorded. We evaluated 290 African landraces and 306 improved genotypes from the germplasm collections of the International Institute of Tropical Agriculture (IITA), for sources of resistance using root slice laboratory assay. Disease severity was assessed quantitatively by direct percentage estimation (PS) and by use of a rating scale (RS). Both methods of assessment were compared for identification of variability in the germplasm, and genotypes were classified into response groups using an enlarged rank-sum method that combined the PS and RS assessments. The two scoring methods revealed continuous variation (P < 0.001) for resistance in the sets of germplasm. Disease assessments based on PS and RS were highly correlated in both the improved germplasm (r = 0.75) and the landraces (r = 0.72). Based on PS assessment, 50 improved genotypes (16.3%) and 53 landraces (18.3%) showed significantly lower disease scores than the resistant control. The rank-sum method separated each set of collections into highly resistant, resistant, moderately resistant, moderately susceptible, susceptible and highly susceptible groups. Fifty-nine improved genotypes (16.4%) and 61 African landraces (16.9%) were identified as either highly resistant or resistant. Generally, these genotypes exhibited resistance by limiting the growth of the pathogen (reduced amount of invaded surface area). This type of rate-reducing resistance is highly heritable and a quantitative trait which can be harnessed in breeding. Genotypes subsets were identified for further studies into the genetic basis of resistance to root rot disease.  相似文献   

19.
The national maize improvement program in Nepal regularly receives elite maize (Zea mays L.) genotypes from CIMMYT and other countries and tests them for their performance stability in highly diverse environments. Studies were conducted on research stations and farmers’ fields at five sites in three years to determine performance stability of exotic maize genotypes. Replicated on-station and on-farm studies were conducted using 25 and 10 genotypes, respectively, including a local check and an improved check (Manakamana-3), in 2004–2006. We analyzed grain yield, days to flowering, plant and ear height, plant population, husk cover, and plant and ear aspect. Stability and genotype superiority for grain yield was determined using genotype and genotype × environment (GGE) biplot analysis that compares among a set of genotypes with a reference ‘ideal’ genotype, which has the highest average value of all genotypes and is absolutely stable. Several genotypes produced significantly higher grain yield than the local check. Four genotypes (‘Across9942 × Across9944’, ‘Open Ended White Hill Population’, ‘Population 44C10’ and ‘ZM621’), that produced significantly higher grain yield than the improved check, also had other agronomic traits (days to flowering, plant and ear height, number of ears, resistance to leaf blight, plant and ear aspect and husk cover tightness) equal to or better than the improved check. GGE-biplot analysis showed that Across9942 × Across9944 and ZM621 were the most superior genotypes in the on-station and on-farm trials, respectively. The findings from this study provide new information on the stability of the maize genotypes that are also adapted to other regions of the world. Such information could be useful for maize improvement program for the highlands in Nepal and other similar environments.  相似文献   

20.
Summary Two-way classification analysis, combined with analysis of variance and linear regression techniques, was applied to a set of yield data from twenty-one genotypes grown at twelve locations for two years in International Mungbean Nursery trials. Genotypes and environments with similar yield response patterns were grouped and differences between groups identified. Genotypes were also grouped on the basis of flowering time and the relation between days to flower and yield was examined. It was concluded that cluster and associated analyses are of value in determining response patterns of mungbean genotypes to a wide range of environments, and a useful aid in the selection of materials and locations for mungbean evaluation. In particular we note the adaptation of genotypes M409 and M1134 to high elevation locations, and the positive yield response of M374 (MG50-10A) to high yielding environments. Highest yielding lines were also the earliest to flower. Disease resistance was considered the most important breeding objective for mungbean yield improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号