首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effectiveness of feeding barriers to protect seedlings against damage caused by pine weevil (Hylobius abietis) was evaluated in experiments established from 1995 to 1999 in southern Sweden. For this purpose the damage done to containerized seedlings protected by various types of barrier was evaluated, and compared with damage to untreated and insecticide (permethrin)-treated seedlings. Three types of feeding barrier that gave significant protection during the first 3 yrs were recognized: coating on the stem bark, shields with a collar at the top, and shields without a collar. The mean accumulated mortality caused by pine weevil for coatings (47%) and shields without a collar (59%) was significantly higher than the corresponding figure for permethrin treatment (13%), whereas shields with a collar (26%) did not differ significantly from the permethrin treatment in this respect. The highest mortality was found for untreated controls (87%).  相似文献   

2.
Abstract

The pine weevil Hylobius abietis L. is major threat to forest regeneration in the Nordic countries. The persistence of the deltamethrin insecticide used against pine weevil on Norway spruce seedlings was studied after the seedlings were dipped or sprayed. Insecticide application was timed to occur either before or after frozen storage. Bioassays with the stems of Norway spruce seedlings were used to determine the effect of the insecticide against feeding by the pine weevil. The measures of the control effect were reduction in area of gnawed bark and the state of health of the pine weevils. The concentration of deltamethrin decreased rapidly in seedlings, especially after spraying treatment, which did not efficiently protect seedlings against the pine weevil 6 weeks after planting. There were no signs of degradation of deltamethrin or of an effect on seedling height after frozen storage. In bioassay, the amount of deltamethrin that efficiently prevented feeding by the pine weevil was 5.5 µg g?1 fresh weight. After one growing season in the field, about 1.76–2.24 µg g?1 (13–15% of the initial level) of dipped deltamethrin remained in the seedlings. In seedlings treated by spraying, 0.93–0.98 µg g?1 (7–8% of the initial level) of the deltamethrin remained. According to bioassays, these amounts were no longer sufficient to protect seedlings from feeding by the pine weevil. Therefore, in the first summer, dipping was a significantly more efficient method of application for control of pine weevils.  相似文献   

3.
The effectiveness of a stocking, constructed of nylon and cotton netting, in protecting containerized conifer seedlings against pine weevil attack was evaluated in field tests on 37 clear‐cut reforestation areas in southern and central Sweden. The stockings significantly reduced pine weevil feeding on treated seedlings as well as seedling mortality. The protective effect of the stockings was similar to that of an insecticide (permethrin) treatment. In most experiments the survival of stocking‐enclosed seedlings was satisfactory from a practical point of view, whereas untreated control seedlings suffered heavy mortality.  相似文献   

4.
5.
Abstract

Pine weevil (Hylobius abietis L.) damage to seedlings after overstorey removal was investigated in a survey study in six shelterwoods in the south–central part of Sweden. The shelterwoods predominantly consisted of Scots pine, except at one site where the shelter trees mainly consisted of Norway spruce. Before final cutting, 10 plots were laid out at each site and measurements of shelter trees and marked seedlings were taken. The seedlings were examined during the 2 years after final cutting. The study showed that removal of shelter trees increases the risk of severe damage by pine weevil and the variable that was most strongly correlated with the risk was the seedling root collar diameter. Both Scots pine and Norway spruce seedlings were severely damaged by pine weevil, and most of the feeding occurred during the first year after cutting. The amount of debarked area was significantly larger for Scots pine than for Norway spruce seedlings. Vitality (growth of the leading shoot before final cutting) of the seedlings also affected the probability of damage. Seedlings with high vitality were less damaged by pine weevil than seedlings with low vitality. For Scots pine the shelterwood density before final cutting was correlated to the intensity of pine weevil feeding after cutting. In conclusion, after the final cutting of a pine or spruce shelterwood, pine weevils will probably invade the area. To avoid serious damage, Norway spruce and Scots pine seedlings should have reached a diameter of at least 10–12 mm.  相似文献   

6.
Removal of logging residues causes significant nutrient losses from the harvesting site. Furthermore, collection of residues into piles could lead to small-scale differences in establishment conditions for seedlings. We studied the effects of stem-only (SOH) and aboveground whole-tree harvesting (WTH) on Norway spruce (Picea abies) seedling growth and pine weevil (Hylobius abietis) damage at two sites (SE and W Norway). We also compared two planting environments within the WTH plots (WTH-0: areas with no residues, WTH-1: areas where residue piles had been placed and removed before planting). In practice, one-third of the residues were left on site after WTH. After three growing seasons there were no differences for height or diameter increment between SOH and WTH (WTH-1 and WTH-0 combined) treatments. However, relative diameter increment was largest for WTH-1 seedlings and lowest for WTH-0 seedlings. Few seedlings sustained pine weevil attacks at the W Norway site, with no differences among treatments. At the SE Norway site, the percent of seedlings damaged by pine weevils and average debarked area were significantly higher after WTH (82% and 3.3?cm2) compared to SOH (62% and 1.7?cm2). We conclude that WTH may lead to spatial differences in establishment conditions.  相似文献   

7.
Damage caused by pine weevil (Hylobius abietus L.) to planted seedlings and cuttings of Norway spruce (Picea abies (L.) Karst.) was studied at five clearcut sites in south-eastern Sweden. The main objective was to compare the two types of stock in terms of attack frequency and mortality due to pine weevil feeding. Cuttings and seedlings with the same initial stem-base diameter (4 mm) were compared. Two sites were harvested and scarified shortly before planting, two were harvested shortly before planting, but were not scarified, and one was harvested 2 years before and scarified the autumn before planting. The total mortality 5 years after planting was highest, greater than 90%, at the new, non-scarified sites, and lowest, 23%, at the old, scarified site. More than 90% of the mortality was caused by pine weevil feeding. Attack frequency and pine weevil induced mortality were significantly higher among seedlings than among cuttings. Mortality due to pine weevil damage was 4–43% higher in seedlings than in cuttings after the fifth year. Of the cuttings and seedlings that were attacked in the first year, a significantly higher frequency of the seedlings were girdled. The higher resistance of cuttings to pine weevil damage may partly explain the more rapid growth of cuttings reported in other studies. However, the causes of their higher resistance need to be further investigated. The thicker bark and needles on the stem base of the cuttings could be important in this respect.  相似文献   

8.
Damage to conifer seedlings caused by the pine weevil, Hylobius abietis, was estimated within eighty-two forest sites in Northern Ireland. A wide range of environmental variables were compared with the variation in damage between study sites using multiple logistic regression. Although 45 explanatory variables were considered only four were identified as significant within the final model. The four variables were the size of the planted area, the age of the planting, whether the majority of seedlings were self-seeded or planted, and if the site had been previously planted or was a newly planted area. The identification of these four variables indicates that it is possible to build a model identifying areas at risk to weevil damage. Further, although three of the factors have been recognised as significant influences on weevil damage for some time, they still remain important variables within British Isles forestry, suggesting that there is further scope for more precise targeting of weevil control measures.  相似文献   

9.

Context

Bark beetles are known to be associated with fungi, especially the ophiostomatoid fungi. However, very little is known about role of pine weevils, e.g., Hylobius abietis, as a vector of these fungi in Europe.

Aims

The aims of our study were to demonstrate the effectiveness of H. abietis as a vector of ophiostomatoid fungi in Poland and to identify these fungi in Scots pine seedlings damaged by weevil maturation feeding.

Methods

Insects and damaged Scots pine seedlings were collected from 21 reforestation sites in Poland. The fungi were identified based on morphology, DNA sequence comparisons for two gene regions (ITS, β-tubulin) and phylogenetic analyses.

Results

Sixteen of the ophiostomatoid species were isolated and identified. In all insect populations, Leptographium procerum was the most commonly isolated fungus (84 %). Ophiostoma quercus was also found at a relatively high frequency (16 %). Other ophiostomatoid fungi were found only rarely. Among these rarer fungi, four species, Leptographium lundbergii, Ophiostoma floccosum, Ophiostoma piliferum and Sporothrix inflata, were isolated above 3 %. L. procerum was isolated most frequently and was found in 88 % of the damaged seedlings. S. inflata was isolated from 26 %, while O. quercus occurred in 10 % of the seedlings.

Conclusion

This study confirmed that L. procerum and O. quercus were common associates of H. abietis, while others species were found inconsistently and in low numbers, indicating causal associations. H. abietis also acted as an effective vector transmitting ophiostomatoid species, especially L. procerum and S. inflata, to Scots pine seedlings.  相似文献   

10.
The pine weevil (Hylobius abietis L.) is considered one of the most damaging pests in reforestation areas in Scandinavia. The purpose of this study was to ascertain the within- and between-stand distribution of pine weevil attacks. Between-stand distribution was examined by assessing the frequency of attacks in all newly planted coniferous stands in relation to stands clear-cut at two state forest districts in North Zealand, Denmark. Within-stand distribution was examined by investigating the position and damage to individual seedlings in relation to the position of breeding material. The stand-level attack frequency did not seem to be higher for stands in areas with more clear-cuts. The within-stand distribution of attacks was not influenced by the position of breeding material.  相似文献   

11.
Damage by the large pine weevil, Hylobius abietis (L.), is a major threat to conifer plantations throughout Eurasia, but damage is usually less severe in northern areas. However, pine weevil damage seems to increase if the sites are burnt. The aim of this study was to determine the effects of variations in the time of planting (with respect to the total age of the clear-cut and the time since burning) on pine weevil damage to seedlings on burnt sites in northern Sweden. The study also explored whether there is an optimal time for planting at which damage levels are reduced to acceptable levels. Ten sites were selected in an inland area of northern Sweden where pine weevils are normally scarce. The sites were dry–mesic and represented a range of times since clear-cutting and since burning. The sites were planted in June 1998, 1999 and 2000 with 1-year-old container-grown seedlings of Norway spruce [Picea abies (L.) Karst.]. Pine weevil damage was reduced if planting was done no earlier than 3 years after clear-cutting and no earlier than 2 years after burning. Planting too soon after burning, irrespective of the age of the clear-cut, resulted in unacceptably high damage levels.  相似文献   

12.
The low availability of nitrogen (N) is believed to be one of the major limiting factors of forest regeneration in Iceland and frequently under Boreal conditions. Lutz spruce (Picea x lutzii Littl.) seedlings were nutrient loaded using four fertilization regimes in the end of nursery rotation in autumn 2008 and planted in the following spring, with or without a single dose of fertilizer, on two treeless sites in N-Iceland with contrasting soil fertility. Measurements were made after one growing season. The highest loading level without additional field fertilization increased new needle mass by 122% and 152%, for the poor and more fertile site, respectively. The highest loading level with field fertilization increased new needle mass equally, by 188% and 189%, for the poor and more fertile site, respectively. Retranslocation of N, from old needles to current needles, increased with more loading. However, it was clear that nutrient loading could not replace field fertilization, as the seedlings generally showed an additive response to field fertilization and nutrient loading; doing both always gave the best results in seedling performance. As the study only covers field establishment during the first year, the long-term effect of nutrient loading of Lutz spruce cannot be predicted. However, it was concluded that loading might provide an additional input for faster plantation establishment during the first growing season after planting.  相似文献   

13.
不同类型薄壳山核桃苗木栽植效果研究   总被引:2,自引:0,他引:2  
以淮安地区种植园的1年生和泰州地区种植园的2年生‘波尼’薄壳山核桃苗为试材,研究裸根苗、土球苗、无纺布容器苗等3种不同类型薄壳山核桃苗栽植后生长发育的差异。结果表明:3种类型苗木栽植后新梢和根系生长差异较为显著。两处均以无纺布容器苗成活率最高,达到100%;新梢生长量最大,1年生和2年生苗木的生长量分别为110.77 cm和53.44 cm;根系也最为发达。土球苗次之,裸根苗的新梢、根系生长量最小。分析表明,在江苏淮安和泰州这两个地区,无纺布容器苗的成活率、平均新梢生长量、分枝数、总的新梢生长量、主根长度、粗度、侧根数量等均优于土球苗和裸根苗的。此外,3种类型苗木栽植后,2年生苗木的地上、地下部分生长均优于1年生苗木的。  相似文献   

14.
15.
South  David B.  Rakestraw  James L.  Lowerts  George A. 《New Forests》2001,22(1-2):97-110
A seedling size/intensive management study with Pinustaeda L. was established in 1993 on two sites in the CoastalPlain of Georgia and South Carolina. Each site contained a 2 × 2split-plot study involving two seedling sizes and two levels ofestablishment intensity. Ideotype ``B' seedlings averaged 5.0 mmin diameter (at the root collar) and were 43 cm tall. Ideotype``A' seedlings averaged 8.5 mm in diameter and were 50 cm tall. ``Standard' establishment practices included herbicides(hexazinone and sulfometuron) and fertilizer (DAP) appliedduring the first year. The ``intensive' management involved twoherbicide applications during the first year and two during thesecond year, fertilizer during the first and third years, andinsecticide applications during the first two years (for controlof tip moth, Rhyacionia frustrana Comstock).Intensive management did not affect survival but planting largerseedlings increased survival slightly on one site. However,treatments affected early growth at both sites. On both sites,fourth-year plot-volumes were increased with greaterestablishment intensity and larger seedlings but there was nointeraction between stock size and establishment intensity. Early growth gains were greatest when both intensive managementand larger seedlings were combined. Depending on site, thiscombination resulted in 21% to 51% more volume (at age 4) thanthe next best treatment (standard seedlings with intensivemanagement).  相似文献   

16.
One‐year‐old container‐grown seedlings were planted in spring on clear cut areas: the Norway spruce (Picea abies) on a moist upland site (Myrtillus‐type) and Scots pine (Pinus sylvestris) on a dryish upland site (Vaccinium‐type). While still in the nursery, half of the seedlings of each species had been inoculated during the previous summer, with a uninucleate Rhizoctonia sp., a root dieback fungus. At outplanting all the seedlings appeared healthy and had a normal apical bud, although the height of the inoculated seedlings was less than that of the uninoculated control seedlings. At the end of the first growing season after planting, the mortality of inoculated Scots pine and Norway spruce seedlings was 25 and 69%, respectively. After two growing seasons the mortality of inoculated seedlings had increased to 38% for Scots pine and 93% for Norway spruce. The mortality of control seedlings after two growing seasons in the forest was 2% for Scots pine and 13% for Norway spruce. After outplanting the annual growth of inoculated seedlings was poor compared with the growth of control seedlings. These results show that, although Rhizoctonia‐affected seedlings are alive and green in the nursery, the disease subsequently affects both their survival and growth in the forest.  相似文献   

17.
Replanting at appropriate times after harvesting a coniferous forest stand can help efforts to suppress seedling mortality caused by the pine weevil Hylobius abietis, but optimal times are uncertain. We hypothesized that planting in June rather than May in the third season after harvest would reduce feeding damage by the pine weevil and increase seedling survival rates in central Sweden, where new-generation weevils mainly fly away from their development sites in May/early June. An experimental test of the hypothesis in eight clear-cuts confirmed that planting in June instead of May reduced proportions of seedlings attacked by pine weevil, bark removal from seedlings’ stems, and proportions of seedlings killed by feeding damage. These differences between seedlings planted in May and June declined to some extent with time but still remained significant after two growing seasons. The total seedling mortality after two seasons did, however, not differ significantly between seedlings planted in May and June. Overall, 29% of all seedlings were killed by pine weevil, 4.0% by Hylastes bark beetles, and 2.3% by drought. The results indicate that replanting in spring during the third season after harvest can advantageously continue until mid-June with respect to damage and mortality.  相似文献   

18.
Abstract

This study investigated the role of monoterpenes, a group of chemicals known to be involved in plant defence, in the susceptibility of Sitka spruce [Picea sitchensis (Bong.) Carr.] plants derived from both cuttings and seedlings to attack by the large pine weevil Hylobius abietis (L.). Results showed that, given the choice, weevils prefer to feed on the shoots of seedlings than of cuttings and that this preference continued over a period of 6 days, although the overall level of feeding declined. This observation was associated with a higher level of monoterpenes in the shoots from cuttings than in those from seedlings. When the weevils were restricted to the stems and given no choice, levels of damage to the bark were similar in both plant types.  相似文献   

19.
Sahlén  Kenneth  Goulet  France 《New Forests》2002,24(3):175-182
This study was carried out in northern Sweden to determine the effects of frost heaving on the establishment of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) seedlings in relation to planting methods. For this purpose, one year old containerised seedlings were planted on two sites and on two dates: during the spring (early planting) and during the fall (late planting). In each case, two planting depths (normal and deep planting) and four planting sites (in mineral soil in the depressions, in the scalp/trench area, on the top of the mound and in the untreated humus layer) were used. On each site, 50 seedlings were planted for each treatment. Frost heaving was observed and measured during two years. The amount of heaving was highest in the hole and almost insignificant on the top of the mound and in the humus layer. Planting depth influenced the degree of heaving only for Scots pine planted in the hole and was not related to the planting time.  相似文献   

20.
为了指导河北省滦平县的苹果栽植,以3a生国光苹果苗木为试材,研究了不同栽植时期苗木的成活率及生长情况,结果表明,4月8日栽植的苗木成活率、下部小主枝上的长梢数分别为92.67%、9.26个,极显著高于4月15日和4月22日栽植的处理;新梢平均长度为39.93cm,显著高于4月15日和4月22日栽植的处理;单株长梢数13.73个,显著高于4月22日栽植的处理。4月15日栽植的苗木成活率、下部小主枝萌芽率、下部小主枝上的长梢数分别为75.67%、39.71%、7.58个,极显著高于4月22日栽植的处理;单株中梢数为14.95个,显著高于4月22日栽植的处理。3个栽植时期的地径、单株短梢数和叶丛枝数无显著差异。表明4月8日栽植苹果苗木的生长情况优于后面的2个时期,在滦平县4月份内栽植苹果苗木应越早越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号