首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymerase chain reaction (PCR) methods are very useful techniques for the detection and quantification of genetically modified organisms (GMOs) in food samples. These methods rely on the amplification of transgenic sequences and quantification of the transgenic DNA by comparison to an amplified reference gene. Reported here is the development of specific primers for the rapeseed (Brassica napus) BnACCg8 gene and PCR cycling conditions suitable for the use of this sequence as an endogenous reference gene in both qualitative and quantitative PCR assays. Both methods were assayed with 20 different rapeseed varieties, and identical amplification products were obtained with all of them. No amplification products were observed when DNA samples from other Brassica species, Arabidopsis thaliana, maize, and soybean were used as templates, which demonstrates that this system is specific for rapeseed. In real-time quantitative PCR analysis, the detection limit was as low as 1.25 pg of DNA, which indicates that this method is suitable for use in processed food samples which contain very low copies of target DNA.  相似文献   

2.
Sensitive and accurate testing for trace amounts of biotechnology-derived DNA from plant material is the prerequisite for detection of 1% or 0.5% genetically modified ingredients in food products or raw materials thereof. Compared to ELISA detection of expressed proteins, real-time PCR (RT-PCR) amplification has easier sample preparation and detection limits are lower. Of the different methods of DNA preparation CTAB method with high flexibility in starting material and generation of sufficient DNA with relevant quality was chosen. Previous RT-PCR data generated with the SYBR green detection method showed that the method is highly sensitive to sample matrices and genomic DNA content influencing the interpretation of results. Therefore, this paper describes a real-time DNA quantification based on the TaqMan probe method, indicating high accuracy and sensitivity with detection limits of lower than 18 copies per sample applicable and comparable to highly purified plasmid standards as well as complex matrices of genomic DNA samples. The results were evaluated with ValiData for homology of variance, linearity, accuracy of the standard curve, and standard deviation.  相似文献   

3.
Quality assurance is a major issue in the food industry. The authenticity of food ingredients and their traceability are required by consumers and authorities. Plant species such as barley (Hordeum vulgare), rice (Oryza sativa), sunflower (Helianthus annuus), and wheat (Triticum aestivum) are very common among the ingredients of many processed food products; therefore the development of specific assays for their specific detection and quantification are needed. Furthermore, the production and trade of genetically modified lines from an increasing number of plant species brings about the need for control within research, environmental risk assessment, labeling/legal, and consumers' information purposes. We report here the development of four independent real-time polymerase chain reaction (PCR) assays suitable for identification and quantification of four plant species (barley, rice, sunflower, and wheat). These assays target gamma-hordein, gos9, helianthinin, and acetyl-CoA carboxylase sequences, respectively, and were able to specifically detect and quantify DNA from the target plant species. In addition, the simultaneous amplification of RALyase allowed bread from durum wheat to be distinguished. Limits of detection were 1 genome copy for barley, sunflower, and wheat and 3.3 copies for rice real-time PCR systems, whereas limits of quantification were 10 genome copies for barley, sunflower, or wheat and approximately 100 haploid genomes for rice real-time PCR systems. Real-time PCR cycling conditions of the four assays were stated as standard to facilitate their use in routine laboratory analyses. The assays were finally adapted to conventional PCR for detection purposes, with the exception of the wheat assay, which detects rye simultaneously with similar sensitivity in an agarose gel.  相似文献   

4.
This research developed and evaluated a PCR procedure to detect beef in heated and unheated meat, sausages, and canned food, using a specific and sensitive method. To confirm the effectiveness and specificity of this fragment, we tested 45 cattle blood DNA samples (from different breeds) and obtained positive results. With 125 samples tested from other species, the specific beef amplification was not detected. Feed components intended for cattle nutrition were also checked, and bovine-derived material was detected. Using this method we can detect the degree of contamination up to 0.01% raw beef in pork. In the same way, 1% beef was detected in cooked meat mixtures and bovine-derived material in concentrate mixtures. Beef has been identified in both heated and unheated meat products, sausages, canned food, and hamburgers. In conclusion, specific PCR amplification of a repetitive DNA element seems to be a powerful technique for the identification of beef in processed and unprocessed food, because of its simplicity, specificity and sensitivity. Furthermore, feed components intended for cattle nutrition can be checked. The procedure is also much cheaper than other methods based on RFLPs-PCR, immunodiffusion, and other techniques that need expensive equipment.  相似文献   

5.
Several countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms. Real-time quantitative Polymerase Chain Reaction (PCR) has quickly become the method of choice in support of these regulations and requires the development of separate PCR assays targeting the transgenic sequence as well as a specific endogenous gene sequence. To develop a Brassica napus-specific PCR assay, partial sequences of the acetyl-CoA carboxylase BnACCg8 gene from B. napus and the closely related Brassica rapa were determined and compared, and a region of unique nucleotide sequence was identified. Universal amplification primers were designed to either side of this region, and a locked nucleic acid TaqMan probe was designed to the B. napus-specific sequence. Evaluation of this primer/probe combination indicated a high level of specificity to B. napus: no amplification signal was observed with any other species tested, including five closely related Brassica species. The method was assayed with 14 different B. napus cultivars, and comparable amplification curves were consistently obtained for all. The assay was highly sensitive, with a limit of detection between 1 and 10 haploid copies. Practically, the method was demonstrated to be effective for the detection of processed food samples and for the quantification of Roundup Ready canola content in mixed samples.  相似文献   

6.
We report the development of a duplex real-time Polymerase Chain Reaction (PCR) for the simultaneous detection and quantification of wheat- and barley-derived DNA. We used a single primer pair to amplify the single-copy gene PKABA1 from wheat and barley, using minor-groove-binding probes to distinguish between the two cereals. The assay was fully specific, and different wheat and barley cultivars exhibited similar Ct values, indicating stability across cultivars with respect to allelic and copy number composition. The limits of detection were 5 and 10 PCR-forming units for wheat and barley, respectively, making the duplex assay as sensitive as other singleplex reference gene systems published. We were able to detect both wheat and barley simultaneously in real food samples, and the duplex assay is considered to be suitable as an endogenous reference gene system for the detection and quantification of wheat and barley in genetically modified organisms (GMO) and other food and feed analyses.  相似文献   

7.
The contents of raffinose family oligosaccharides (RFO) and sucrose in Brassica, Lupinus, Pisum, and Hordeum species were investigated by chemometric principal component analysis (PCA). Hordeum samples contained sucrose and raffinose, and Brassica samples all contained sucrose, raffinose, and stachyose. In addition to these, the Pisum samples contained verbascose and the Lupinus samples also contained ajugose. High stachyose and low ajugose contents were found in Lupinus albus in contrast to Lupinus angustifolius, having low stachyose and high ajugose contents. Lupinus luteus had average stachyose and ajugose contents, whereas large amounts of verbascose were accumulated in these seeds. Lupinus mutabilis had high stachyose and low ajugose contents, similar to the composition in L. albus but showing higher raffinose content. The Brassica samples also showed compositional RFO variations within the species, and subgroup formations were discovered within the investigated Brassica napus varieties. PCA results indicated compositional variations between the investigated genera and within the various species of value as chemotaxonomic defined parameters and as tools in evaluations of authenticity/falsifications when RFO-containing plants are used as, for example, feed and food additives.  相似文献   

8.
PCR products obtained by selective amplification of transgenic DNA derived from food samples containing Roundup Ready soybean or Bt-176 maize have been analyzed by anion-exchange HPLC. Peptide nucleic acids (PNAs), oligonucleotide analogues known to bind to complementary single-stranded DNA with high affinity and specificity, have been used as specific probes in order to assess the identity of the peaks observed. Two different protocols were adopted in order to obtain single-stranded DNA: amplification with an excess of one primer or digestion of one DNA strand. The single-stranded DNA was mixed with the PNA probe, and the presence of a specific sequence was revealed through detection of the corresponding PNA:DNA peak with significantly different retention time. Advantages and limits of this approach are discussed. The method was tested with reference materials and subsequently applied to commercial samples.  相似文献   

9.
Azospirillum lipoferum CRT1 is a promising phytostimulatory PGPR for maize, whose effect on the plant is cell density-dependent. A nested PCR method is available for detection of the strain but does not allow quantification. The objective was to develop a real-time PCR method for quantification of A. lipoferum CRT1 in the rhizosphere of maize seedlings. Primers were designed based on a strain-specific RFLP marker, and their specificity was verified under qualitative and quantitative PCR conditions based on successful CRT1 amplification and absence of cross-reaction with genomic DNA from various rhizosphere strains. Real-time PCR conditions were then optimized using DNA from inoculated or non-inoculated maize rhizosphere samples. The detection limit was 60 fg DNA (corresponding to 19 cells) with pure cultures and 4 × 104 CFU equivalents g−1 lyophilized sample consisting of mixture of rhizosphere soil and roots. Inoculant quantification was effective down to 104 CFU equivalents g−1. Assessment of CRT1 rhizosphere levels in a field trial was in accordance with estimates from semi-quantitative PCR targeting another locus. This real-time PCR method, which is now available for direct rhizosphere monitoring of A. lipoferum CRT1 in greenhouse and field experiments, could be used as a reference for developing quantification tools for other Azospirillum inoculants.  相似文献   

10.
The fate of DNA during steeping, wet-milling, and subsequent processing of maize was examined using a sensitive polymerase chain reaction (PCR-based) detection system. The system used specific amplification of maize DNA sequences by primers generated toward plant nuclear- and chloroplast-encoded genes. The PCR method facilitated analysis of DNA content in food products, which is an important issue in use of genetically modified organisms. In a conventional laboratory wet-milling countercurrent steep system, DNA was detected in maize kernels throughout the process but was not found in steepwater. After kernels were wet-milled, DNA was detected in the starch, germ, coarse fiber, and wet gluten fractions but not in the fine fiber fraction. When dried by heating at 135°C for 2 hr, DNA was degraded to undetectable levels in the wet-milled gluten fraction and hydrated kernels. DNA was not detected in feed pellets, starch, dextrose, sorbitol, or high-fructose maize syrup made from industrial wet-milled samples. Although DNA could be detected in laboratory wet-milled fractions, some degree of degradation occurred after extended exposure to steepwater. Countercurrent steepwater samples from the later stages of the steeping process were able to degrade DNA. The level of DNA degradation appeared to correspond to the presence of sulfur dioxide and may represent a physiochemical rather than an enzyme-mediated process. Our results indicate that some steps in the steeping and wet-milling process can degrade maize genomic and plastid DNA.  相似文献   

11.
Toward the development of reliable qualitative and quantitative Polymerase Chain Reaction (PCR) detection methods of transgenic tomatoes, one tomato (Lycopersicon esculentum) species specific gene, LAT52, was selected and validated as suitable for using as an endogenous reference gene in transgenic tomato PCR detection. Both qualitative and quantitative PCR methods were assayed with 16 different tomato varieties, and identical amplified products or fluorescent signals were obtained with all of them. No amplified products and fluorescent signals were observed when DNA samples from 20 different plants such as soybean, maize, rapeseed, rice, and Arabidopsis thaliana were used as templates. These results demonstrated that the amplified LAT52 DNA sequence was specific for tomato. Furthermore, results of Southern blot showed that the LAT52 gene was a single-copy gene in the different tested tomato cultivars. In qualitative and quantitative PCR analysis, the detection sensitivities were 0.05 and 0.005 ng of tomato genomic DNA, respectively. In addition, two real-time assays employing this gene as an endogenous reference gene were established, one for the quantification of processed food samples derived from nontransgenic tomatoes that contained degraded target DNA and the other for the quantification of the junction region of CaMV35s promoter and the anti-sense ethylene-forming enzyme (EFE) gene in transgenic tomato Huafan No. 1 samples. All of these results indicated that the LAT52 gene could be successfully used as a tomato endogenous reference gene in practical qualitative and quantitative detection of transgenic tomatoes, even for some processed foods derived from transgenic and nontransgenic tomatoes.  相似文献   

12.
A rapid and convenient method for the precise quantification of epsilon-(gamma-glutamyl)lysine isopeptide in lyophilized proteolytic digests of cross-linked plant protein samples was developed. The isopeptide was baseline-separated from three other isomers containing lysyl and glutamyl residues by reverse-phase high-performance liquid chromatography after exhaustive proteolytic digestion of the samples cross-linked by a microbial transglutaminase (MTG). Highly selective detection was performed by electrospray mass spectrometry in MS/MS mode. Demonstrating the applicability of the suggested analytical procedure, enzymatic cross-linking of protein isolates from soy [Glycine max (L.) Merr.], pea [Pisum sativum L.], and the sweet lupin species Lupinus albus L. and Lupinus angustifolius L. was investigated after incubation with 0.01 g of MTG/100 g of protein for 0-240 min at 40 degrees C. The liquid chromatography-mass spectrometry (LC-MS) method was successfully applied to monitor the kinetics of epsilon-(gamma-glutamyl)lysine isopeptide formation. Since the calculated initial levels of epsilon-(gamma-glutamyl)lysine in the genuine leguminous protein isolates were between 40 and 77 micromol/100 g, an isopeptide detection limit of 0.5 microg/mL, corresponding to approximately 50 micromol/100 g of protein, was shown to suffice for quantifying the cross-linking rate enzymatically induced by MTG. Concentrations of epsilon-(gamma-glutamyl)lysine in the texturized proteins ranged from 100 to 500 micromol/100 g of protein.  相似文献   

13.
Plants derived through agricultural biotechnology, or genetically modified organisms (GMOs), may affect human health and ecological environment. A living GMO is also called a living modified organism (LMO). Biotech cotton is a GMO in food or feed and also an LMO in the environment. Recently, two varieties of biotech cotton, MON 15985 and MON 88913, were developed by Monsanto Co. The detection method is an essential element for the GMO labeling system or LMO management of biotech plants. In this paper, two primer pairs and probes were designed for specific amplification of 116 and 120 bp PCR products from MON 15985 and MON 88913, respectively, with no amplification from any other biotech cotton. Limits of detection of the qualitative method were all 0.05% for MON 15985 and MON 88913. The quantitative method was developed using a TaqMan real-time PCR. A synthetic plasmid, as a reference molecule, was constructed from a taxon-specific DNA sequence of cotton and two construct-specific DNA sequences of MON 15985 and MON 88913. The quantitative method was validated using six samples that contained levels of biotech cotton mixed with conventional cotton ranging from 0.1 to 10.0%. As a result, the biases from the true value and the relative deviations were all within the range of +/-20%. Limits of quantitation of the quantitative method were all 0.1%. Consequently, it is reported that the proposed detection methods were applicable for qualitative and quantitative analyses for biotech cotton MON 15985 and MON 88913.  相似文献   

14.
Identification of species-specific DNA in feedstuffs   总被引:2,自引:0,他引:2  
Due to the menace of transmission of spongiform encephalopathies, feed components intended for ruminant nutrition must be checked for the presence of ruminant-derived materials. A sensitive method for the identification of bovine- and ovine- and also swine- and chicken-specific mitochondrial DNA sequences based on Polymerase Chain Reaction (PCR) has been developed. The specificity of the primers for PCR has been tested using samples of DNA of other vertebrate species, which may also be present in rendering plant products intended for feed manufacture. The method allows the detection in concentrate mixtures of 0.01% of the target species derived material. The identity of a sample containing 0.1% of bovine, ovine, swine, and chicken meat-and-bone meal has further been confirmed by sequencing.  相似文献   

15.
Due to the potential for intentional contamination of food with crude preparations containing ricin, a real-time PCR method was developed for the detection of castor plant material in ground beef. One primer pair was identified and confirmed to be castor-specific and efficient for amplification of ricin in DNA extracts from castor or beef matrices. Of three different DNA extraction protocols compared, the hexadecyltrimethylammonium bromide (CTAB) method yielded the highest quality of DNA for QPCR assay. The detection limit for castor contamination in ground beef samples was <0.001% (<10 microg of castor acetone powder per gram of beef, corresponding to 0.5 microg of ricin), indicating excellent sensitivity for the assay, well below the threshold for oral toxicity.  相似文献   

16.
The detection of genetically modified organisms (GMOs) in food and feed is an important issue for all the subjects involved in raw material control, food industry, and distribution. Because the number of GMOs authorized in the EU increased during the past few years, there is a need for methods that allow a rapid screening of products. In this paper, we propose a method for the simultaneous detection of four transgenic maize (MON810, Bt11, Bt 176, and GA21) and one transgenic soybean (Roundup Ready), which allows routine control analyses to be sped up. DNA was extracted either from maize and soybean seeds and leaves or reference materials, and the recombinant DNA target sequences were detected with 7 primer pairs, accurately designed to be highly specific for each investigated transgene. Cross and negative controls were performed to ensure the specificity of each primer pair. The method was validated on an interlaboratory ring test and good analytical parameters were obtained (LOD = 0.25%, Repeatability, (r) = 1; Reproducibility, (R) = 0.9). The method was then applied to a model biscuit made of transgenic materials baked for the purpose and to real samples such as feed and foodstuffs. On account of the high recognition specificity and the good detection limits, this multiplex PCR represents a fast and reliable screening method directly applicable in all the laboratories involved in raw material and food control.  相似文献   

17.
An international CCQM-P60 pilot study involving eight national metrological institutes was organized to investigate if the quantification of genetically modified (GM) corn powder by real-time PCR was affected by the DNA extraction method applied. Four commonly used extraction methods were compared for the extraction of DNA from a GM Bt176 corn powder. The CTAB-based method yielded the highest DNA template quantity and quality. A difference in the 260 nm/230 nm absorbance ratio was observed among the different extraction methods. Real-time amplification of sequences specific for endogenous genes zein and hmg as well as transgenic sequences within the cryIA(b) gene and a fragment covering the junction between the transformed DNA and the plant genome were used to determine the GM percentage. The detection of the transgenic gene was affected by the quantity and quality of template used for the PCR reaction. The Bt176 percentages measured on diluted or purified templates were statistically different depending on the extraction method applied.  相似文献   

18.
In this paper, the possibilities of capillary gel electrophoresis (CGE) to detect transgenic maize in flours are shown. The method is based on the extraction and amplification by the polymerase chain reaction (PCR) of a specific DNA fragment from transgenic maize and its subsequent analysis by CGE with UV detection or laser-induced fluorescence (LIF). Some useful considerations regarding the optimization of DNA extraction and amplification conditions are given. Also, a comparison is established between the two CGE protocols for DNA detection based on ultraviolet absorption (CGE-UV) and LIF (CGE-LIF). The requirements, advantages, and limitations of both CGE methods are discussed. To our knowledge, this is the first paper on the use of CGE-LIF to detect transgenic food.  相似文献   

19.
With the development of genetically modified organism (GMO) detection techniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMO detection, and real-time PCR is the most effective and important method for GMO quantification. An event-specific detection strategy based on the unique and specific integration junction sequences between the host plant genome DNA and the integrated gene is being developed for its high specificity. This study establishes the event-specific detection methods for TC1507 and CBH351 maizes. In addition, the event-specific TaqMan real-time PCR detection methods for another seven GM maize events (Bt11, Bt176, GA21, MON810, MON863, NK603, and T25) were systematically optimized and developed. In these PCR assays, the fluorescent quencher, TAMRA, was dyed on the T-base of the probe at the internal position to improve the intensity of the fluorescent signal. To overcome the difficulties in obtaining the certified reference materials of these GM maizes, one novel standard reference molecule containing all nine specific integration junction sequences of these GM maizes and the maize endogenous reference gene, zSSIIb, was constructed and used for quantitative analysis. The limits of detection of these methods were 20 copies for these different GM maizes, the limits of quantitation were about 20 copies, and the dynamic ranges for quantification were from 0.05 to 100% in 100 ng of DNA template. Furthermore, nine groups of the mixed maize samples of these nine GM maize events were quantitatively analyzed to evaluate the accuracy and precision. The accuracy expressed as bias varied from 0.67 to 28.00% for the nine tested groups of GM maize samples, and the precision expressed as relative standard deviations was from 0.83 to 26.20%. All of these indicated that the established event-specific real-time PCR detection systems and the reference molecule in this study are suitable for the identification and quantification of these GM maizes.  相似文献   

20.
《Applied soil ecology》2011,47(3):372-382
The proper identification and quantification of F. oxysporum populations inhabiting soil and plant rhizosphere niches are of importance for soil microbial ecology and plant pathology. In this study, we report the improvement of a PCR protocol for the specific identification of the F. oxysporum species complex and its conversion into a real-time qPCR assay for the quantification up to 1 pg of the fungus DNA in soil and different plant tissues. The amplification efficiency, sensibility and reproducibility of qPCR assays were not influenced by presence of non-target DNA from either plant or soil. The applicability of the newly developed qPCR protocol for F. oxysporum population studies was demonstrated using the technique for quantifying the fungus in different complex environmental samples. The use of the qPCR protocol allowed to accurately quantify up to 25 pg of F. oxysporum/g of naturally infested field soil, as well as to identify significant differences in the amount of F. oxysporum DNA in roots of different chickpea cultivars grown in a field soil infested with diverse pathogenic and nonpathogenic F. oxysporum populations. This qPCR protocol may be especially important for studies on soil microbial ecology and plant pathology since it provides a new opportunity for analyzing F. oxysporum populations and their interactions with the soil microflora, environment and plant host genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号