首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
湿润速率和粘粒含量对红壤沟间侵蚀的影响   总被引:4,自引:0,他引:4  
An aggregate stability test and a simulated rainfall test were conducted on four representative Ultisols from southeastern China. The soils selected, with clay contents ranging between 117 and 580 g kg-1 , were derived from shale and Quaternary red clay. The stability of aggregates (2–5 mm in diameter) obtained from the soil samples were determined by the Le Bissonnais method. For determination of infiltration, runoff, and erosion, the soil samples were packed in 30 cm × 60 cm trays, wetted at rates of 2, 10, and 60 mm h-1 , and then exposed to simulated rainfall at 60 mm h-1 for 1 h. The results indicated that both aggregate stability and slaking caused by fast wetting increased with increasing clay content. The effect of wetting rate (WR) on infiltration and seal formation varied with clay contents. In the soil with low clay content (sandy loam), the infiltration rate was affected slightly by WR due to low aggregate stability and slaking. In the soils with medium clay content (silt clay loam and clay), WR affected infiltration significantly due to the high aggregate slaking force. In the soil with high clay content, the effect of WR on infiltration was significant, but not as evident as in the soils with medium clay content, which may be related to high aggregate stability by wetting partially compensating for slaking force. The effect of WR on soil loss was similar to that of runoff, but more pronounced. The findings from this study indicated that the relationship between wetting rate and clay content should be considered when predicting interrill erosion in Ultisols.  相似文献   

2.
雨滴机械打击和消散作用对土壤团聚体的破坏特征   总被引:9,自引:1,他引:9  
土壤团聚体是土壤结构的基本单元,其稳定性是描述土壤抵抗侵蚀过程中破坏作用的重要指标。但溅蚀过程中,雨滴对团聚体的消散和机械打击两种破坏作用的相对贡献及其破坏机制尚未明晰。利用酒精和超纯水作为雨滴形成材料,模拟机械打击单独作用及消散和机械打击共同作用,分别在五个高度(0.5、1、1.5、2和2.5 m)对塿土和黄绵土进行溅蚀实验。结果表明:当降雨动能相同时,塿土的溅蚀率均小于黄绵土。同时,超纯水雨滴对土壤的机械打击和消散共同作用所导致的溅蚀率均大于酒精雨滴单一机械打击作用的溅蚀率。随着降雨动能增加,两种雨滴对两种土壤的溅蚀率均呈幂函数增加;团聚体因消散破坏作用和机械打击作用的溅蚀率均亦随之增加。但两种土壤的消散破坏作用和机械打击作用的贡献率分别随着降雨动能增加而减小和增加。在相同降雨动能时,塿土消散破坏作用的贡献率均大于黄绵土,而机械打击作用贡献率均小于黄绵土。研究结果对深入理解溅蚀过程中团聚体破坏机理及评价溅蚀过程中团聚体稳定性具有重要意义。  相似文献   

3.
中国亚热带红壤团聚体稳定性与土壤化学性质的关系   总被引:16,自引:1,他引:16  
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and Al oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates, especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm. In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

4.
The stability of aggregates in the surface soil is crucial to soil erosion and runoff generation. Thus, to understand the stability and the breakdown mechanisms of soil aggregates as well as the relationship between aggregate stability and selected soil chemical properties, such as different forms of Fe and A1 oxides, organic matter, CEC and clay content, the aggregates of slightly and severely eroded red soils derived from Quaternary red clay in subtropical China were analyzed using the routine wet sieving and the Le Bissonnais methods. The results indicated that the aggregates of the severely eroded soils were more stable than those of the slightly eroded soils. Different aggregate breakdown mechanisms resulted in different particle size distribution. The slaking from entrapped air in aggregates severely destroyed the soil aggregates,especially in the slightly eroded soils. Meanwhile, mechanical breakdown and microcracking had little effect on the aggregates compared to slaking. The fragments resulting from slaking were mainly microaggregates that increased in size with increasing clay content. The main fragment size of the slightly eroded soils was 1.0-0.2 mm, while for the severely eroded soils it was 5.0-2.0 mm and 1.0-0.5 mm. Overall, more than 20% of the fragments were smaller than 0.2 mm.In addition, aggregate stability was positively and often significantly correlated with Fed, Ald, Feo and clay content, but significantly and negatively correlated to SOC.  相似文献   

5.
In previous studies, periodic sampling of topsoils on runoff plots on sandy soils at the Hilton experimental site, Shropshire, UK, suggested erosion decreased the topsoil clay content and increased the coarse fraction. However, a comparison of soil and sediment properties suggested erosion selectively removed sand. Therefore, to cross-check the effects of erosion on soil properties, topsoil samples were collected from bare, eroded runoff plots and compared with samples from adjacent non-eroded grassland. Bare, eroded soil was stonier and particularly deficient in sand compared with grassed soil. Textural differences were very marked in the medium and coarse sands, especially the 0.5–1.0 mm fraction. On the basis of mean properties, the grassed soil was a very slightly stony loamy sand and the bare soil a slightly stony sandy loam. Soil organic matter was significantly less in the bare soils than the grassed soils and thus may have contributed to the higher erodibility of sands in bare soils.  相似文献   

6.
Five simulated rainstorms, each with a different rainfall intensity pattern but all delivering the same total kinetic energy to the soil surface, were applied to three different soils in a laboratory flume. The storm patterns were: constant rainfall intensity, increasing intensity, decreasing intensity, increasing then decreasing intensity and decreasing then increasing intensity. The three soils were: a clay loam, a sandy loam and a sandy soil. No differences in total runoff were observed that were consistent across the three soil types. However, consistent differences were observed in the amount and size distribution of the eroded sediment. In particular, the constant-intensity storm yielded an average soil loss of 75% of the varying-intensity storms, and the eroded sediment from the constant-intensity storms had a lower clay content than that from the varying-intensity storms. In contrast to the differences in amount and size distribution of eroded sediment, splashed sediment exhibited much smaller differences. Interrill erosion rates are widely assumed to vary with rainfall intensity to the power 2, but this relationship has been obtained from experiments over a range of rainfall intensities, but in which rainfall intensity has been constant in each experiment. The experiments reported here, undertaken using variable rainfall intensity within each experiment, indicates an exponent of 2.55. The experiments demonstrate that the assumption that a given rainfall intensity falling on a given soil for a given amount of time will result in a given amount of runoff and erosion is unsound. They point to the need for a greater understanding of the processes of interrill sediment detachment and transport in order to model successfully erosion under temporally varying rainfall.  相似文献   

7.
This research aims to improve erosion control practice in the Loess Plateau, by studying the surface erosion processes, including splash, sheet/interrill and rill erosion in four contrasting soils under high rainfall intensity (120 mm h−1) with three-scale indoor artificial experiments. Four contrasting soils as sandy loam, sandy clay loam, clay loam and loamy clay were collected from different parts of the Loess Plateau. The results showed that sediment load was significantly impacted by soil properties in all three sub-processes. Splash rate (4.0–21.6 g m−2∙min−1) was highest in sandy loam from the north part of the Loess Plateau and showed a negative power relation with the mean weight diameter of aggregates after 20 min of rainfall duration. The average sediment load by sheet/interrill erosion (6.94–42.86 g m−2∙min−1) was highest in clay loam from middle part of the Loess Plateau, and the stable sediment load after 20 min showed a positive power relation with the silt content in soil. The average sediment load increased dramatically by rill and interrill erosion (21.03–432.16 g m−2∙min−1), which was highest in loamy clay from south part of the Loess Plateau. The average sediment load after the occurrence of rill showed a positive power relation with clay content and a negative power relation with soil organic matter content. The impacts of slope gradient on the runoff rate and sediment load also changed with soil properties. The critical factors varied for different processes, which were the aggregate size for splash erosion, the content of silt particles and slope gradient for sheet/interrill erosion, and the content of clay particles, soil organic matter and slope gradient for rill erosion. Based on the results of the experiments, specific erosion control practices were proposed by targeting certain erosion processes in areas with different soil texture and different distribution of slope gradient. The findings from this study should support the improvement of erosion prediction and cropland management in different regions of the Loess Plateau.  相似文献   

8.
Interrill erosion depends on soil detachment and sediment transport, which are affected by seal formation and runoff. The objective of this study was to investigate the effect of wetting rate (WR) on runoff and soil erosion in semi-arid Israeli soils varying in clay content and exchangeable sodium percentage (ESP). Six soils, ranging in clay content between 90 and 680 g kg−1 and ESP between 0.9 and 20, were packed in 0.2 m×0.4 m trays, wetted at 3 WRs (2, 8, or 64 mm h−1), and thereafter exposed to 60 mm of distilled water rain in a laboratory rainfall simulator. Under non-sodic conditions (ESP<2), highest runoff and erosion were obtained from loam (220 g kg−1 clay and 350 g kg−1 silt) which was ascribed to its high susceptibility to seal formation, runoff and detachability. Runoff and erosion increased with an increase in ESP and WR. The effect of WR on runoff and erosion was negligible in loamy sand and generally increased with an increase in clay content. In clay soils (>600 g kg−1 clay), WR played a greater role in determining runoff and erosion compared with raindrop impact. A linear type dependence existed between erosion and runoff for soils with ESP<5 or when slow WR was used. For high ESP soils, or when medium or fast WR were used, an exponential type relation described better the dependence of erosion on runoff. It is suggested that for sodic soils or for conditions favoring aggregate slaking, runoff level and its velocity were high enough to initiate rill erosion that supplemented raindrop detachment in markedly increasing erosion.  相似文献   

9.
鄂南第四纪粘土红壤团聚体的稳定性及其稳定机制初探   总被引:11,自引:1,他引:11  
用湿筛法和LeBissonnais法研究了鄂南第四纪红粘土母质发育的两种侵蚀程度的红壤团聚体的稳定性,并且分析了影响供试土壤团聚体稳定性的土壤性质。结果表明,轻度侵蚀的耕作土壤团聚体的稳定性较低,在水的作用下易崩解成较小粒径的水稳性团聚体;强度侵蚀的土壤表层团聚体的稳定性较高,崩解后产生较多的水稳性大团聚体。引起土壤团聚体破坏的主要作用机制是土壤团聚体中的闭蓄空气爆破引起的消散作用;研究区第四纪红壤团聚体的主要胶结物质是土壤中的粘粒、游离氧化铁铝和无定形铁。由于供试土壤中有机质含量很低,在本研究中,有机质含量与土壤团聚体稳定性之间没有显著正相关关系。  相似文献   

10.
Soil erosion by water causes substantial on‐site degradation and off‐site damages in the densely populated state of North Rhine‐Westphalia (Germany). Measures of soil conservation should be adjusted to soil erodibilities and should be based on an understanding of the processes involved in water erosion including aggregate breakdown, rainsplash erosion, surface sealing, and soil loss. For a state‐wide assessment of erosion processes and erodibilities, we tested representative cultivated soils of North Rhine‐Westphalia in laboratory and field experiments with artificial rain. In the laboratory experiments described in this paper, rainsplash erosion, sealing susceptibility, and interrill erodibility of 25 topsoils filled in 0.5 m2 boxes were investigated. Results of different aggregate‐stability tests correlate with organic‐matter contents but not with parameters of rainsplash or soil loss. On most soil materials, rainsplash increases or maintains constant rates in the course of the simulation runs indicating that the soil surface did not attain a higher shear resistance. High sealing susceptibilities are found for soils of quite different textures ranging from loam sand to silt clay, whereas other silt clays, clay loams, and some clay silts maintain high infiltration rates. A trend of increasing sealing susceptibility and total soil loss with increasing clay content is observed for the loam sands to sand loams. Dynamics of soil loss is largely governed by runoff rates. Total soil loss is also determined by sediment concentration in surface runoff, which is low on most clayey soils, on loam sands poor in clay, and on a sand loam, and high in the case of highly erodible clay silts, loam sands, and sand loams. The most crust prone soils are not necessarily the most erodible. On most soils, soil‐loss rates do not stabilize until the end of the rainfall experiments. For comparing the interrill erodibilities of the soils, total soil loss is preferred instead of interrill erodibility factors (Ki, Kiq) published in the literature.  相似文献   

11.
降雨过程中红壤表土结构变化与侵蚀产沙关系   总被引:11,自引:1,他引:11  
通过人工模拟降雨和表土微形态观测,研究了发育于泥质页岩、第四纪红粘土和花岗岩3种母质的红壤在降雨侵蚀过程中表土土壤结构的变化及其对侵蚀的影响。结果表明:降雨过程中,泥质页岩红壤极易形成土壤结皮,增加径流,响应结皮的形成,径流速率和含沙量较高,且迅速达到最大值,随后径流稳定而含沙量持续下降。第四纪红粘土红壤团聚体稳定,较难形成结皮,且结皮易被破坏,导致侵蚀过程中产流产沙量较低,均随降雨时间的延长而呈缓慢上升趋势。花岗岩红壤基本上不能产生结皮,粗化现象严重,因此产流量和产沙量也较低;由于土壤团聚体稳定性差以及径流的选择性运移,泥质页岩红壤和花岗岩红壤侵蚀泥沙中细颗粒(<0.02mm)含量远高于土壤中该粒径颗粒。而第四纪红壤侵蚀泥沙中粗颗粒较多,以多级团聚体的团聚体为主。  相似文献   

12.
Wind erosion produces textural changes on topsoil of semiarid and arid environments; however, the selection of particles on different textured soils is unclear. Our objectives were to evaluate textural changes induced by wind erosion on cultivated soils of different granulometry and to asses if textural changes produced by wind erosion are linked to aggregation of granulometric particles into different sizes of aggregates formed in contrasting textured soils. Considering this, we studied the particle size distribution (PSD) with full dispersion (PSDF) of 14 cultivated (CULT) and uncultivated (UNCULT) paired soils and, on selected sites, the PSD with minimum dispersion (PSDMIN) and the quotient PSDMIN/F. Results showed that the content of silt plus clay was lower in CULT than in UNCULT in most of the sites. The highest removal of silt was produced in soils with low sand and high silt content; meanwhile, the highest removal of clay was observed in soils with medium sand content. According to PSDMIN, particles of 250–2,000 μm predominated in the sandy soil, in the loamy soil particles between 50 and 250 μm and in the silty loam soil particles between 2 and 50 μm. For clay sized particles, PSDMIN/F was lower than 1 in all soils and managements, but this quotient was higher in CULT compared with UNCULT only in the loamy soil. This means a decrease of clay accumulation in aggregates of larger sizes produced by agriculture, which indicates an increase in the risk of removal of these particles by wind in loamy soils. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
Two field experiments in which straw has been removed or incorporated for 17 yr (loamy sand) and 10 yr (sandy clay loam) were sampled to examine the effect of straw on the C and N contents in whole soil samples, macro-aggregate fractions and primary particle-size separates. The particle size composition of the aggregate fractions was determined. Aggregates were isolated by dry sieving. Straw incorporation increased the number of 1–20 mm aggregates in the loamy sand but no effect was noted in the sandy clay loam. Straw had no effect on the particle size composition of the various aggregate fractions. After correction for loose sand that accumulated in the aggregate fractions during dry sieving, macro-aggregates appeared to be enriched in clay and silt compared with whole soil samples. Because of the possible detachment of sand particles from the exterior surface of aggregates during sieving operations, it was inferred that the particle size composition of macro-aggregates is similar to that of the bulk soil. The organic matter contents of the aggregate fractions were closely correlated with their clay + silt contents. Differences in the organic matter content of clay isolated from whole soil samples and aggregate fractions were generally small. This was also true for the silt-size separates. In both soils, straw incorporation increased the organic matter content of nearly all clay and silt separates; for silt this was generally twice that observed for clay. The amounts of soil C, derived from straw, left in the loamy sand and sandy clay loam at the time of sampling were 4.4 and 4.5 t ha?1, corresponding to 12 and 21% of the straw C added. The C/N ratios of the straw-derived soil organic matter were 11 and 12 for the loamy sand and sandy clay loam, respectively.  相似文献   

14.
在贵阳市乌当区采集了白云岩、石灰岩、钙质紫色砂页岩等9种母质(岩)上发育的土壤样品763个,分别进行了土壤主要理化性质的测定和差异性分析。结果表明不同母质(岩)发育的土壤理化性质具有很大的差异:红色粘土、老风化壳和页岩上发育的土壤pH值均为酸性至强酸性,有机质和CEC含量中等,土壤质地较粘重;石灰岩、白云岩和钙质紫色砂页岩上发育的土壤pH值为中性至微碱性,有机质和CEC含量较高,质地较为适中;砂页岩和河流冲积物上发育的土壤pH值为酸性至中性,其余理化性质为中等水平;砂岩发育的土壤pH值为强酸性,其余理化性质均较差。  相似文献   

15.
Application of organic wastes to cultivated lands can replace mineral fertilizers but may also alter soil physical properties and enhance pollution potential. The objective of this study was to investigate the effects of biosolids [composted manure (MC) and activated sludge (AS)] and specific biosolid component [orthophosphate (OP), phytic acid (PA) and humic acid (HA)] application on soils differing in texture [loamy‐sand (Ramat‐HaKovesh, RH), loam (Gilat, GL) and clay (Bet‐Dagan, BD)], infiltration rate, runoff volume and soil sediment loss. The soils were packed in erosion boxes (400 × 200 × 40 mm) and subjected to six consecutive simulated rainstorms, each of 186 mm deionized water. The results showed that runoff volume and sediment loss from untreated soils increased with increasing clay contents. In treated soils, the response to AS application differed from the response to other amendments; in the BD clay and GL loam, it was the only amendment that caused a decrease in sediment removed by runoff. In the RH loamy‐sand, all amendments reduced the final infiltration rate, but only AS and HA increased the measured runoff. It is proposed that the difference in the response of the soils to the amendments is associated with the soil's ability to attenuate changes in the negative charge on the clay edges following the increase in the specific adsorption of charged anions, thus controlling clay swelling and maintaining aggregate integrity. The effects of amending soils with a source of organic matter in order to control runoff and soil erosion are not straight forward and depend on soil and amendment properties. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Reduction of aggregate size in the upper, tilled soil layer as a result of one wet/dry cycle was observed for sandy soil and clay soils. Bulk density of aggregates tended to increase as their size diminished for the clay after the wet/dry cycle, whereas similar changes in bulk density for the loam were observed only for aggregates smaller than 5.6 cm. Slaking and water-drop impact seem to be the major factors in reducing the aggregate size of the sandy loam, while swelling and shrinkage affect clay aggregates of all size groups, but only aggregates smaller than 4.0 mm for the sandy loam. Tensile strength of the sandy loam aggregates was related to the axis along which the stresses were applied. A definite directional dependence of tensile strength was observed, e.g. the shorter the axis, the larger the tensile strength. The directional strength dependence was apparently not affected by one wet/dry cycle.  相似文献   

17.

Purpose  

Depositional seals, formed when turbid waters infiltrate into soils, lead to a reduction in soil hydraulic conductivity (HC) and enhance runoff and soil erosion. Since clay size particles constitute a dominant proportion of depositional seals, soil texture and clay mineralogy play a significant role in determining the seal’s hydraulic characteristics. Presence of high molecular weight anionic polyacrylamide (PAM) in suspension flocculates fine sediments, and therefore, its application to the soil surface may modify the characteristics of the depositional seal. The impact of PAM on the latter is expected to be influenced by soil properties. The aim of this study was to elucidate the effects of PAM application on clay flocculation and the HC of depositional seals formed in four soils varying in texture (ranging from loamy sand to clay loam), and diverse proportions of clay mineral constituents (kaolinite, smectite, and vermiculite).  相似文献   

18.
《Geoderma》2006,130(1-2):1-13
Dilution of high-sodicity soil water by low-sodicity rainfall or irrigation water can cause declining soil hydraulic conductivity (K) by inducing swelling, aggregate slaking and clay particle dispersion. Investigations of sodicity-induced reduction in K are generally restricted to repacked laboratory cores of air-dried and sieved soil that are saturated and equilibrated with sodic solution before tests are conducted. This approach may not yield a complete picture of sodicity effects in the field, however, because of loss of antecedent soil structure, small sample size, detachment of the sample from the soil profile, reliance on chemical equilibrium, and differing time scales between laboratory and field processes. The objectives of this study were to: (i) compare the electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) in laboratory cores of intact field soil that had, or had not, undergone prior saturation and equilibration with sodic solution; (ii) compare the pressure infiltrometer (PI) field method with the intact laboratory soil core (SC) method for assessing sodicity effects on saturated soil hydraulic conductivity; and (iii) characterize hydraulic conductivity reduction in a salt-affected sandy loam soil and a salt-affected clay soil in Sicily as a result of diluting high-sodicity soil water with low-sodicity water.In terms of EC, ESP and SAR, quasi-equilibrium between soil and infiltrating solution was attainable in 0.08 m diameter by 0.05 m long laboratory cores of intact clay soil, regardless of whether or not the cores were previously saturated and equilibrated with solutions of SAR=0 or 30. In the sandy loam soil, the PI and SC methods produced statistically equivalent linear reductions in K as a result of diluting increasingly sodic soil water (SAR=0, 10, 20, 30) with deionised water. In the clay soil, the PI method produced no significant correlation between initial soil water SAR and K reduction, while the SC method produced a significant log-linear decline in K with increasing soil water SAR. Sodicity-induced reductions in K ranged from 3–8% (initial soil water SAR=0) to 85–94% (initial soil water SAR=30) in the sandy loam, and from 9–13% (initial soil water SAR=0) to 42–98% (initial soil water SAR=30) in the clay. The reductions in K were caused by aggregate slaking and partial blocking of soil pores by dispersed clay particles, as evidenced by the appearance of suspended clay in the SC effluent during infiltration of deionised water. As a result, maintenance of K in these two salt-affected soils will likely require procedures to prevent or control the build-up of sodicity.  相似文献   

19.
《CATENA》1988,15(6):565-576
A knowledge of some biophysical factors controlling the stability of microaggregates is important in understanding the mechanism involved in soil slaking, surface sealing, crusting, and erosion by water. A laboratory study was undertaken to evaluate the role of antecedent moisture content, cattle manure and wetting and drying cycles on the stability of microaggregates (<0.2 mm) of three texturally-contrasting soils from Lamporecchio, Vicarello and Cremona in northcentral Italy.In all experiments the order of microaggregate stability was Vicarello (clay) > Cremona (sandy-clay loam) > Lamporecchio (sandy loam) soils. This reflected decreasing clay contents and silica: alumina ratio. Maximum aggregation of particles <0.05 mm occurred at about −1.5 MPa moisture content in all soils. At the highest antecedent moisture content used (50%, w/w), the aggregation of the <0.05 mm particles was 2.77, 14.96 and 12.86% respectively for Lamporecchio, Vicarello and Cremona soils.In the Lamporecchio soil, aggregation of particles <0.05 mm increased with manure rate whereas in the Cremona and Vicarello soils, maximum aggregation of the <0.05 mm and <0.002 mm particles was obtained at the 2 and 6% rates respectively. The least disaggregation of particles <0.2 mm occurred at the 3 cycles of wetting and drying in all soils while maximum disaggregation was obtained at the 15 cycles.  相似文献   

20.
南方花岗岩区不同侵蚀土壤治理效果的研究   总被引:7,自引:0,他引:7  
花岗岩红色风化壳广泛分布于我国南方山地丘陵区.其中的红色粘土层质地粘重且被铁铝氧化物胶结,与其下部的砂土碎屑层相比具有很强的抗蚀能力,对该区侵蚀的发展和治理具有重要意义.本研究通过对保留红色粘土层和砂石碎屑层裸露两种类型的侵蚀土壤在治理过程中保持措施的选择、植被和土壤肥力的恢复与土壤发育特点进行对比,说明了花岗岩区的侵蚀土壤在保留红土层时,土壤退化的程度轻,治理较容易,植被和土壤生产力的恢复较快;一旦红土层被侵蚀贻尽,侵蚀的速度加快,治理过程中植被和土壤生产力的恢复也慢.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号