首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
绿肥作为清洁的有机肥源,在培肥地力和替代化肥方面具有重要作用,明确中国不同区域绿肥产量及养分含量特征,旨在为绿肥种植和绿肥替代化肥提供理论依据和数据支撑。本研究通过检索中国知网数据库和相关书籍的绿肥产量及养分含量,收集整理了包含17种我国常见绿肥的3431个数据变量,整合分析了我国常见绿肥的产量和氮磷钾养分含量特征,比较了几种主要绿肥在我国不同区域的产量及养分含量差异,评估了不同区域种植绿肥替代化学氮肥的潜力。结果表明,我国绿肥鲜草产量平均为38.0 t·hm~(-2)(含水量平均81.0%)、变幅大(0.7~186.7 t·hm~(-2)),其中黑麦草、沙打旺、柱花草和红三叶平均产量42.5 t·hm~(-2),均显著高于其他绿肥种类。17种常见绿肥的平均含氮量为28.0 g·kg~(-1)(干基计),箭筈豌豆、苕子、苜蓿、金花菜和白三叶等豆科绿肥含氮量均在30.0 g·kg~(-1)以上;常见绿肥的平均含磷量为7.0 g·kg~(-1),苕子和二月兰含磷量最高,均在8.0 g·kg~(-1)以上;常见绿肥的平均含钾量为25.3 g·kg~(-1),二月兰和紫云英含钾量最高,均在32.0 g·kg~(-1)以上。常见绿肥氮磷钾养分累积量平均为214.4 kg·hm~(-2)、48.4 kg·hm~(-2)和165.1 kg·hm~(-2),不同种类之间存在显著差异,其中以沙打旺、黑麦草、红三叶草、苜蓿和柱花草氮(N)、磷(P_2O_5)和钾(K_2O)累积量最高,分别在250.0 kg·hm~(-2)、50.0 kg·hm~(-2)和191.7 kg·hm~(-2)以上。分析不同气候区域绿肥养分累积状况发现,紫云英最适宜种植于南方丘陵谷地稻肥复种及茶果肥(草)间套种区;箭筈豌豆适宜种植于东北粮草(肥)轮作区和长江流域稻麦棉肥(草)复套间种区;苕子最适宜种植于长江流域稻麦棉肥(草)复套间种区;苜蓿最适宜种植于滨海稻肥(草)复种区;白/红三叶最适宜种植于西南山地丘陵粮肥(草)复间套种区;而黑麦草更适宜种植于滨海稻肥(草)复种区和南方丘陵谷地稻肥复种及茶果肥(草)间套种区。根据不同区域主要豆科绿肥产量、固氮量及种植面积进行固氮潜力评估表明,当前中国绿肥种植面积约448.6万hm~2,相当于生产39.5~80.8万t氮肥;如果按照中国可种植绿肥的潜在面积4600.0万hm~2估算,相当于生产405.3~828.1万t的氮肥,豆科绿肥具有较高的化肥替代潜力。在绿肥生产过程中,应针对本区域适应性强的绿肥进行重点推广应用。  相似文献   

2.
施用磷肥对紫花苜蓿营养价值和氮磷利用效率的影响   总被引:3,自引:0,他引:3  
于铁峰  刘晓静  郝凤 《草业学报》2018,27(3):154-163
为探究施磷对紫花苜蓿增产效应、营养价值及氮、磷利用率的影响,探明施磷对紫花苜蓿蛋白质合成、积累影响的原因,选用品种甘农3号,在田间小区条件下优化氮肥基础上研究了不同磷素水平(P0:0 kg·hm-2;P1:126 kg·hm-2;P2:252 kg·hm-2)对紫花苜蓿生产性能、营养价值、氮、磷利用率及氮代谢关键酶的影响。结果表明,在适宜的氮肥施用量的基础上,126 kg·hm-2处理紫花苜蓿年总产量最高,为33312.3 kg·hm-2,显著高于0和252 kg·hm-2处理(P<0.05),126和252 kg·hm-2处理的硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性、粗蛋白含量和总蛋白产出量、氮素吸收效率和氮素生产效率均显著高于0 kg·hm-2处理(P<0.05),且各指标均在126 kg·hm-2处理达最大值,252 kg·hm-2处理反而下降,说明对紫花苜蓿施用磷肥可显著增产,提升品质及提高N、P利用率;磷肥的施用量在紫花苜蓿的产量、品质和利用率的角度均表现为报酬递减规律,说明在紫花苜蓿的生产中磷肥的施用量存在阈值。在施磷水平中表现最优的是126 kg·hm-2。适宜的磷素主要通过激发 NR和GS活性,加强自身的氮代谢能力促进对氮素的吸收和同化,从而提高紫花苜蓿产量、品质及氮素利用效率。  相似文献   

3.
为探讨海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响,确定该地区饲用小黑麦的合理施肥量,于2014-2016年连续两年以饲用小黑麦中饲 1048 为试验材料,设置不同氮、磷肥单因素试验,氮肥(N)试验处理为:0、60、120、180、240、300 kg·hm-2,磷肥(P2O5)试验处理为:0、45、90、135、180、225 kg·hm-2,测定并分析了不同氮、磷肥处理下饲用小黑麦产草量、农艺性状、营养品质以及土壤养分等相关指标的变化。结果表明,不同氮、磷肥处理下饲用小黑麦两年平均干草产量、ADF和NDF含量和不施肥处理差异不显著,全株粗蛋白含量均显著高于不施肥处理(P<0.05),故施氮磷肥对饲用小黑麦增产效果不明显,但在提高粗蛋白含量方面具有一定促进作用。综合分析得出,在海河平原区肥力较差土壤上种植饲用小黑麦需施肥,建议施氮肥120~180 kg·hm-2,磷肥90~135 kg·hm-2。肥力较好的土壤种植饲用小黑麦可以不施肥或隔年施一次,施肥量同土壤肥力较差地块。  相似文献   

4.
施磷对滴灌苜蓿干草产量及磷素含量的影响   总被引:2,自引:0,他引:2  
为探讨不同施磷量对滴灌苜蓿干草产量、吸磷量及苜蓿磷素利用效率的影响,明确不同磷素水平下土壤全磷和速效磷的含量分布特征。试验设4种施磷梯度,分别为施P2O5 0 kg·hm-2(CK)、50 kg·hm-2(P1)、100 kg·hm-2(P2)、150 kg·hm-2(P3),采用滴灌水肥一体化施肥方式,平均分4次分别在返青后的分枝期、第1茬、第2茬、第3茬刈割后3~5 d施入。结果表明,各茬次苜蓿植株叶片、茎秆磷含量在P2处理下达到最大值,其中叶片磷含量数值分别为0.223%,0.275%,0.292%和0.218%;茎秆磷含量数值分别为0.202%,0.223%,0.201%和0.146%。苜蓿叶片磷含量大于茎秆磷含量。滴灌苜蓿植株的干草产量、吸磷量随着施磷量的增加呈先增加后降低的趋势,在第1茬P2处理达到最大值,数值分别为6.54 t·hm-2和13.78 kg·hm-2。土壤全磷含量、速效磷含量随着施磷量的增加呈逐渐增大的趋势,且各施磷处理显著大于未施磷处理(P<0.05),滴灌苜蓿总干草产量在P2处理条件下达到最大,达21.24 t·hm-2。苜蓿的磷素利用效率为随施磷量的增加呈逐渐降低的趋势,P1处理苜蓿的磷素利用效率在第1茬达到最大值为28.37%。滴灌苜蓿植株吸磷量与干草产量呈极显著正相关(P<0.01)。当施P2O5为100 kg·hm-2(P2)时,能够有效促进苜蓿根系对土壤速效磷的吸收,提高苜蓿磷素利用效率,进而提高滴灌苜蓿干草产量。  相似文献   

5.
骆凯  张吉宇  王彦荣 《草业学报》2018,27(7):112-119
适宜的种子生产技术是保证优良品种成功推广的重要基础。2014-2016年,在甘肃河西走廊地区研究了不同株距(30、45、60 cm)以及不同施磷肥量(0、40、80、120 kg·hm-2 P2O5)对黄花草木樨两个品种‘天水’和‘Norgold’种子产量及产量构成因素的影响。结果表明,密度和施肥量以及二者的互作极显著影响黄花草木樨的实际种子产量(P<0.01)。 ‘天水’在60 cm株距和80 kg·hm-2施磷肥条件下,两年的平均种子产量最高,为1234 kg·hm-2;而对于‘Norgold’,2015和2016年皆为45 cm株距、80 kg·hm-2施磷肥条件下的种子产量最高,分别为1613和1428 kg·hm-2。通径分析表明,对种子产量影响最大的种子产量构成因素为生殖枝数。  相似文献   

6.
为明确呼伦贝尔地区人工栽培草地无芒雀麦的适宜播种密度,在呼伦贝尔人工栽培草地播种密度控制平台按照播种密度由低到高设置5个处理组,分别为W1(7.5 kg·hm-2)、W2(15.0 kg·hm-2)、W3(22.5 kg·hm-2)、W4(30.0 kg·hm-2)、W5(37.5 kg·hm-2),研究土壤微生物对无芒雀麦播种密度的响应特征,并分析了呼吸熵的主要影响因素。结果表明:随着无芒雀麦播种密度的增加,不同时期下无芒雀麦地上生物量呈先升高后降低的趋势,W4(30.0 kg·hm-2)达到最大值829.4 kg·hm-2,W3(22.5 kg·hm-2)其次,地下生物量间差异不显著;微生物特性和土壤酶活性中微生物量碳主要呈现先降低后升高的趋势;微生物量氮土壤浅层0~10 cm总体变化平稳,土壤深层10~20 cm呈下降趋势;土壤酶活性的数值显示在第1次刈割期显著高于第2次刈割期,但同时期之间差异不显著;通过探求呼吸熵的主要影响因素结合其影响系数,可得出土壤微生物特性及酶活性对无芒雀麦W4(30.0 kg·hm-2)播种密度具有最佳响应。  相似文献   

7.
为探明平衡施肥对紫花苜蓿光合特性及产量的影响,并明确光合特性各因子对紫花苜蓿产量形成的贡献,以“甘农3号”紫花苜蓿为材料,采用“3414”试验设计,通过田间试验研究,探讨了平衡施肥对紫花苜蓿产量形成的关键因子—光合特性的影响及其产量效应。结果表明:1)平衡施肥可通过提高紫花苜蓿的叶绿素含量、RuBP羧化酶活性、光合速率、碳水化合物含量、群体叶面积指数以增强光合特性,并且N 103.5 kg·hm-2、P2O5 105 kg·hm-2、K2O 90 kg·hm-2配施最有利于提高紫花苜蓿的光合特性;2)平衡施肥可显著提高紫花苜蓿干草产量,以N 103.5 kg·hm-2、P2O5 105 kg·hm-2、K2O 90 kg·hm-2配施对产量的提高最显著,年总干草产量达到25636.26 kg·hm-2,相比肥料偏施,平衡施肥才能保障紫花苜蓿高效生产;3)通过主成分归一化分析可知,群体叶面积指数、RuBP羧化酶活性、叶绿素是对紫花苜蓿产量形成贡献率最大的光合因子,其产量贡献率依次为22.8%、21.3%、15.9%。综上,平衡施肥是紫花苜蓿获得高产的重要栽培措施之一;通过调控紫花苜蓿群体叶面积指数、RuBP羧化酶活性和叶绿素含量等主要光合因子,可有效提高紫花苜蓿生产性能。  相似文献   

8.
以放牧(CK)、深翻耕(S)、浅翻耕(Q)、免耕(M)和封育(F)5种不同生态恢复措施处理的荒漠草原为对象,研究不同恢复措施条件下0~40 cm土层土壤有机碳,全氮储量的变化特征。结果表明,0~10 cm和10~20 cm土层,有机碳含量均以浅翻耕处理草地最高,分别为14.90和14.50 g·kg-1,显著高于深翻耕处理草地、封育草地和放牧草地(P<0.05);20~30 cm土层,不同处理草地有机碳含量变化范围为5.03~9.93 g·kg-1,以浅翻耕处理草地最高,封育草地最低(P<0.05)。土壤全氮含量,0~10 cm和10~20 cm土层均以浅翻耕处理草地最高,分别为0.17和0.22 g·kg-1,显著高于封育和放牧草地(P<0.05);20~30 cm和30~40 cm土层均以深翻耕处理草地最高,分别为0.14和0.13 g·kg-1,显著高于封育草地(P<0.05)。不同处理草地各土层土壤有机碳和全氮密度的分布范围为0.49~1.58 kg·m-2和0.013~0.039 kg·m-2,其中,0~40 cm各土层有机碳密度及0~10 cm和10~20 cm土层全氮密度均以浅翻耕处理草地较高,封育草地较低,20~40 cm土层全氮密度以深翻耕处理草地最高,封育草地较低。0~40 cm各土层土壤有机碳和全氮储量均以浅翻耕处理草地最高,分别为47.72和1.09 t·hm-2,显著高于封育草地(P<0.05)。浅翻耕处理草地更有利于该区荒漠草原土壤有机碳和全氮储量的积累。  相似文献   

9.
为了研究宁夏引黄灌区水肥耦合对羊草产量、品质及种子产量的影响,以中科2号羊草为研究材料,采用双因素裂区试验设计,主区为水分处理,副区为肥料处理,运用二次多项式逐步回归及归一化方法,寻求满足多目标综合效益最大化的灌水施肥制度。结果表明,灌水对种子和干草的产量、肥料偏生产力(PFP)、灌溉水分利用率(iWUE)和品质均有显著影响(P<0.05);施肥对种子和干草的产量、PFP、品质和干草iWUE有显著影响(P<0.05);水肥交互对千粒重、抽穗率、品质、干草PFP和iWUE均有显著影响(P<0.05)。灌水量为360 mm、施肥量为132 kg·hm-2时种子产量最高,灌水量为360 mm、施肥量为540 kg·hm-2时干草产量和相对饲喂价值(RFV)最高。综合分析得出,水肥耦合效应根据羊草生产目的而定。羊草种植以收获干草和饲草品质为目的,可将灌水量定为288~360 mm、施肥量为324~540 kg·hm-2;羊草种植以收获种子和肥料高效利用为目的,可将灌水量定为288~360 mm、施肥量为108~216 kg·hm-2。  相似文献   

10.
以内蒙古呼伦贝尔地区种植的苜蓿为研究对象,分别于2015年7和9月,针对5种不同播种量(6,9,12,15和18 kg·hm-2)条件下苜蓿栽培草地微生物特性及呼吸特性展开研究。结果表明,地上生物量与地下生物量在播种量为12 kg·hm-2时达到最大值,微生物生物量碳7月的10~20 cm土层与9月的0~10 cm和10~20 cm土层均在播种量为18 kg·hm-2时达到最大值,微生物量碳在7月整体高于9月,而土层0~10 cm两月间差距较大,土层10~20 cm差距较小,微生物生物量氮与碳表现出相似的变化规律,微生物量氮在7月整体高于9月;呼吸熵与微生物呼吸变化趋势一致,其中播种量为12 kg·hm-2时呼吸熵值最低;在7和9月播种量为18和12 kg·hm-2时呼吸强度与呼吸熵无显著差异;土壤微生物碳、微生物呼吸、呼吸熵对苜蓿不同播种量的种植方式有一定的响应作用;不同播种量结合植株生物量、土壤微生物呼吸、呼吸熵等指标,结果为播种量18 kg·hm-2时效果最好。  相似文献   

11.
在陇中旱农区,依托2012年布设的田间定位试验研究了种植密度与施氮量对全膜双垄沟播玉米光合特性、产量及产量构成要素的影响。采用裂区设计,主处理为种植密度:4.5(D1)、5.25(D2)、6(D3)、6.75万株·hm-2(D4);副处理为施氮水平:施纯氮200(N2)和300 kg·hm-2 (N3)。结果表明:1)随着玉米种植密度和施氮量的增加,玉米的叶面积指数增加,但叶片的叶绿素含量减小;2)施氮量对玉米的光合作用影响不显著,但玉米光合作用随种植密度增加而减弱;3)D2N2处理下的玉米产量最高,D2的籽粒产量和生物产量较D1分别增加了15.2%和14.5%,N2的籽粒产量和生物产量较N3增加了10.9%和4.8%。4)玉米籽粒产量与穗数、穗粒数显著正相关,与百粒重无显著相关关系。因此,在陇中旱农区应用全膜双垄沟播技术种植玉米,密度为5.25万株·hm-2,施纯氮200 kg·hm-2左右时,叶片光合作用关系协调,有利于穗数和穗粒数的增加,从而提高玉米籽粒产量。  相似文献   

12.
为发掘玉米密植增产潜力,探明耐密植玉米品种“正红6号”常规施肥下的密植效应,在川中丘陵区中江县布置田间试验,设置5.25(CK,实际生产密度)、6.00、6.75、7.50、8.25万株·hm-2 5个种植密度,研究“正红6号”不同种植密度下生长、倒伏及产量等的响应。结果表明,随种植密度增加,株高、穗位高和叶面积指数都随之增大,而茎粗随之减小;平均每增加0.75万株·hm-2,株高、穗位高分别平均增大6.47 cm、2.13 cm,最大叶面积指数平均增大0.46,茎粗平均减小0.46 mm。密植后,单株地上部干物质量下降,群体地上部干物质量增加;叶和茎鞘干物质转运量增加,茎鞘干物质转运率先增加后降低,而叶干物质转运率降低;成熟期各部位干物质分配比重为:籽粒>茎>叶>穗轴>叶鞘>苞叶,各部位对密植的响应不同。随着密度增加,倒伏率与倒折率显著增大,空秆率、穗下垂率增大,双穗率减小;穗数显著增加,穗长、穗粗、穗粒数、千粒质量和收获指数呈下降趋势,秃尖长呈上升趋势。籽粒产量随密度增加先增加后降低,7.50万株·hm-2时籽粒产量最大,相比对照显著增产38.02%。由此可知,玉米密植增大了茎秆倒伏倒折风险,在一定范围内,可以通过提高群体干物质生产力来弥补单株生产力的下降,从而获得高产。经模拟,川中丘陵区“正红6号”作为春玉米的适宜密植密度为7.94万株·hm-2。  相似文献   

13.
张炳武  张新跃 《草业科学》2013,30(12):2029-2034
对成都平原典型代表区饲用玉米(Zea mays)-多花黑麦草(Lolium multiflorum)种植系统(简称CIS系统)内氮素需求、转移、利用、通量与氮素平衡进行了分析。结果表明,不施氮条件下饲用玉米地上部生物量和氮素累积量分别达26 756.82和317.39 kg·hm-2,与施氮条件下相比差异不显著。施氮改变土壤氮含量,影响了饲用玉米在不同生育期地上部和根系的干物质和氮素累积,但不影响收获期最终干物质和氮素累积;不同处理条件下,饲用玉米生长期内土壤(0-50 cm)氮素矿化量(283.34 kg·hm-2)和播前土壤矿质氮量(139.58 kg·hm-2)是饲用玉米氮素需求主要供给来源,分别占不施氮条件下氮素有效累积(地上植株和根系)的86.53%和42.50%;施氮(纯氮246.30 kg·hm-2)条件下,氮素吸收效率、氮肥利用率和氮肥表观利用率分别为0.49 kg·kg-1、5.95%和5.45%;土壤氮素残留和其它损失是氮素转移的主要途径,分别占氮肥总量的41.60%和51.44%,氮素地表径流、淋溶及其它损失分别是不施氮条件下的13.17倍、16.67%和46.92倍。  相似文献   

14.
为探究不同品种葡萄渣对紫花苜蓿蛋白水解和有氧稳定性的影响,采用“甘农四号”紫花苜蓿作为青贮原料,分别添加马尔贝克(MC)、美乐(MT)、蛇龙珠(CG)3个品种葡萄渣50、100和150 g·kg-1调制青贮饲料。试验共设置10个处理组,对苜蓿青贮后发酵品质、蛋白组分、蛋白质降解酶、微生物数量及有氧稳定性进行测定及分析。结果表明:3种葡萄渣在100和150 g·kg-1的添加量下,均显著降低了青贮pH值(P<0.05);非蛋白氮含量随葡萄渣添加量增加而下降,以马尔贝克150 g·kg-1最低,为430.25 g·kg-1;添加葡萄渣降低了青贮中氨态氮含量,但添加量的变化对氨态氮含量影响不明显;美乐150 g·kg-1对青贮羧基肽酶抑制作用最强,酶活性由17.56 μmol·h-1下降至6.51 μmol·h-1;葡萄渣增加了青贮发酵后乳酸菌数量,且抑制了霉菌的生长,蛇龙珠150 g·kg-1乳酸菌数量最高,对照霉菌数量为3.02 log10 cfu·g-1,显著高于其他处理(P<0.05);3种葡萄渣均减缓了青贮有氧暴露阶段霉变腐败速度,其中美乐150 g·kg-1处理组有氧腐败所用时间最长。综上所述,不同品种葡萄渣均能改善苜蓿青贮发酵品质,抑制蛋白酶活性,减少青贮蛋白水解程度,并提高了苜蓿青贮有氧稳定性。  相似文献   

15.
西北干旱灌区紫花苜蓿高产田施肥效应及推荐施肥量研究   总被引:2,自引:0,他引:2  
为揭示紫花苜蓿氮、磷、钾肥效应,采用“3414”不完全正交回归设计,对紫花苜蓿氮、磷、钾肥合理配比施肥效应进行研究,同时对紫花苜蓿产量及蛋白总量进行肥效模型拟合。结果表明,氮、磷、钾对建植2年苜蓿产量的贡献为钾>磷>氮,对建植3年苜蓿产量的贡献为磷>钾>氮,建植2与3年苜蓿交互效应均表现为氮磷>氮钾>磷钾。氮、磷、钾对建植2年苜蓿蛋白总量的贡献为氮>钾>磷,对建植3年苜蓿蛋白总量的贡献为氮>磷>钾。建植2年苜蓿氮磷肥互作效应明显优于氮钾、磷钾互作;建植3年苜蓿氮磷、氮钾交互对苜蓿蛋白总量的增产效果明显大于磷钾交互。采用频度分析法,通过模拟寻优,得出建植2年紫花苜蓿目标产量大于平均产量17522kg·hm^-2时,优化施肥量为氮56.27~67.51kg·hm^-2、磷77.69~90.48kg·hm^-2、钾76.43~87.18kg·hm^-2;建植3年紫花苜蓿目标产量大于平均产量19234.1kg·hm^-2时,优化施肥量为氮46.75~57.66kg·hm^-2、磷80.15~92.28kg·hm^-2、钾57.79~69.74kg·hm^-2;建植2年紫花苜蓿目标蛋白总量大于平均2115kg·hm^-2时,优化施肥量为氮66.35~77.48kg·hm^-2、磷79.34~92.87kg·hm^-2、钾73.68~85.38kg·hm^-2;建植3年紫花苜蓿目标蛋白总量大于平均2656kg·hm^-2时,优化施肥量为氮68.44~79.50kg·hm^-2、磷72.74~85.96kg·hm^-2、钾50.68~61.61kg·hm^-2。  相似文献   

16.
用食物当量评价草地农业的生产力   总被引:1,自引:0,他引:1  
根据食物当量的概念和模型,通过引入牧草消化率后饲草食物当量计算的能量和蛋白质系数,对原始模型进行了修正。以1 kg苜蓿(标准食部100%,含水量10%,总能14.267 MJ·kg-1, 蛋白质含量229 g·kg-1,干物质消化率65.48%)作为标准饲草,计算并比较了天然草地、栽培牧草、青贮饲料与粮食秸秆等草地资源的食物当量,对不同地域、不同空间尺度、不同利用方式的土地资源的生产力进行了统一量纲上的对比。结果表明,我国牧草的饲草食物当量总体在0.2~1.2 FEU·kg-1,其中豆科牧草的饲草食物当量在0.4~1.2 FEU·kg-1,其中能量与蛋白兼优、消化率高的银合欢嫩叶为1.2 FEU·kg-1;禾本科牧草的饲草食物当量在0.2~1.0 FEU·kg-1,暖季型牧草多年生黑麦草为1.0 FEU·kg-1;青贮饲草(包括青贮秸秆)的食物当量为0.1~0.7 FEU·kg-1;秸秆的食物当量约为0.2 FEU·kg-1。夏季21个主要天然草地类型 (如荒漠草原和高寒草甸)的FEU生产能力为142~2739 FEU·hm-2,玛曲的高寒草甸及河北草甸草原约在1300 FEU·hm-2以上。FEU作为一种快速、易于计算和解释的牧草、畜牧饲料和饲料作物的饲料价值的测量管理单位,打破了单纯以谷物为粮食的传统食物观,统一了食物的标准,即将各个地域、农业系统、饲草和家畜种类、饲草加工和利用方式的食物按统一的标准计算,可以对居民的饮食结构和区域农业结构起指导作用,可为推动我国农业供给侧改革提供决策依据。  相似文献   

17.
植物生长调节剂已经广泛推广运用于牧草种子生产。以“滇北”鸭茅为试验材料,通过两年的大田试验探讨了不同浓度的矮壮素(500、750、1000、1250 g·hm-2)和不同浓度抗倒酯(100、200、300、400 g·hm-2)两种植物生长调节剂及其混合制剂(500+50、500+150、1000+50、1000+150 g·hm-2)对鸭茅种子产量的影响。试验结果表明:喷施3种生长调节剂对鸭茅种子的产量均有提升,以混施矮壮素和抗倒酯(500+150 g·hm-2)效果最佳,增产达46.2%。此外试验发现,生长调节剂主要是通过增加鸭茅种子田单位面积的生殖枝数目和结实率来提高鸭茅种子产量。喷施植物生长调节剂对千粒重及每穗小花数没有显著影响。  相似文献   

18.
高丽敏  田倩  苏晶  沈益新 《草业学报》2020,29(4):192-198
为探究氮肥施用对饲用甜高粱生长及氮肥利用率的影响,明确长江下游农区种植的适宜施氮量,采用大田试验,以“大力士”为试验材料,研究了不同施氮水平(0、100、200、300 kg·hm-2,分别用N0、N1、N2、N3表示)对甜高粱生物量、氮素吸收和分配以及氮肥利用率的影响。结果表明:1)甜高粱生物量及生长速率随氮肥用量的增加而增加,N2及N3处理间无显著差异(P>0.05),采用线性加平台分析表明,拔节期收获最大生物量所需的最低氮肥用量为244.50 kg·hm-2;2)随生育期的推进,叶片氮素分配比例降低,茎秆氮素分配比例增加;随着供氮量的增加,叶片和茎秆氮素浓度及累积量、茎秆氮素分配比例均显著增加,叶片氮素分配比例降低;3)干物质生产效率及氮素干物质生产效率均随氮肥用量的增加而降低,不同处理间氮素农艺效率无显著性差异,氮肥表观回收率以N2处理最高。因此,氮肥施用对甜高粱的生长起着重要的作用,长江下游农区饲用甜高粱种植的每茬氮肥用量以244.50 kg N·hm-2为宜。过量施用氮肥不仅不会持续提高甜高粱的生物量,还会导致氮肥利用率的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号