首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
自然光照下基于粒子群算法的农业机械导航路径识别   总被引:12,自引:0,他引:12  
针对农业机械视觉导航线提取易受光照变化影响及常规导航线识别算法实时性低、抗干扰能力差等问题,对自然光照条件下基于机器视觉的农业机械导航路径识别技术进行了研究。首先,在YCr Cb颜色模型的基础上构建与光照无关的Cg分量,选择2Cg-Cr-Cb特征因子对图像进行灰度化处理,以降低光照变化对图像分割的影响;然后,采用改进K-means聚类方法进行图像分割,将绿色作物信息从土壤背景中分离出来,并通过形态学滤波方法滤除二值图像中存在的杂草干扰信息;最后,根据图像中作物行的特点建立作物行直线方程约束模型,利用粒子群算法对作物行直线进行寻优求解,进而得到导航线。实验结果表明,不同光照条件下对2Cg-Cr-Cb灰度图像进行图像分割,可以清晰完整地将作物从土壤背景中分离出来,分割图像受光照变化影响较小并且不会引入背景噪声;基于粒子群算法的导航线检测方法可以快速准确地提取出导航路径,对于不同农田作物和作物不同生长阶段具有较高的适应性,相比于常规导航线识别算法具有实时性高、鲁棒性好等优点。  相似文献   

2.
人工养殖的雄性梅花鹿在发情期间攻击行为剧增,易造成鹿茸损伤,自动监测其攻击行为能为研究减少攻击行为提供重要依据。本文基于注意力机制和长短记忆序列研究了一种光流注意力网络(Optical flow attention attacking recognition network, OAAR),对梅花鹿的攻击、采食、躺卧、站立行为进行识别。OAAR网络包括前置网络、基础网络和时序网络,前置网络由LK光流算法(Lucas kanade optical flow algorithm)组成,用于提取RGB数据光流信息;基础网络中采用自注意力模块,将ResNet-152网络改造为ARNet152(Attention ResNet-152),用于将RGB、光流数据集经ARNet152提取特征后输入时序网络;时序网络采用添加注意力模块的长短记忆序列(Attention long short term network, ALST),并通过分类器输出行为得分和分类结果。视频数据集包括10 942段,共310 574帧,划分为攻击、采食、站立和躺卧4个大类,攻击行为又划分为撞击、脚踢和追逐3个小类;训练集、验...  相似文献   

3.
结合我国养猪业、国产Linux操作系统和农业专家系统的发展现状,研究构件开发技术与智能推理技术等关键技术,开发具有查询统计和智能决策功能的养猪专家系统,实现品种选择、猪舍设计、饮食管理、饲料水平、肥育分析、粪便管理、繁殖管理以及疾病诊断与防治等方面的综合管理,为养猪业产前、产中与产后全过程提供高效信息服务。  相似文献   

4.
基于改进ByteTrack算法的群养生猪行为识别与跟踪技术   总被引:2,自引:0,他引:2  
群养生猪行为的识别与跟踪是智能养殖中监测猪只健康的关键技术。为在猪只重叠与遮挡复杂场景中,实现群养生猪行为识别与稳定跟踪,提出了改进ByteTrack算法。首先,采用YOLOX-X目标检测器实现群养生猪检测,然后,提出改进ByteTrack多目标跟踪算法。该算法改进包括:设计并实现BYTE数据关联的轨迹插值后处理策略,降低遮挡造成的IDs错误变换,稳定跟踪性能;设计适合群养生猪的检测锚框,将YOLOX-X检测算法中的行为类别信息引入跟踪算法中,实现群养生猪行为跟踪。改进ByteTrack算法的MOTA为96.1%,IDF1为94.5%,IDs为9,MOTP为0.189;与ByteTrack、DeepSORT和JDE方法相比,在MOTA与IDF1上均具有显著提升,并有效减少了IDs。改进ByteTrack算法在群养环境下能实现稳定ID的猪只行为跟踪,能够为无接触式自动监测生猪提供技术支持。  相似文献   

5.
基于计算机视觉的番茄营养元素亏缺的识别   总被引:15,自引:5,他引:15  
以肉眼不易识别的番茄缺氮和缺钾初期为研究对象,对体现在叶片颜色和纹理上的缺素症状进行了特征提取,利用遗传算法对提取的众多缺素特征进行优化组合,选择出用于模式识别分类器设计的特征向量,建立了二叉树分类法对番茄缺素进行模式识别的框架,在该框架下,基于模糊K-近邻法建立了缺素的模式识别系统,并进行了识别测试。结果表明,对不易肉眼判别的番茄缺氮和缺钾初期叶片的识别准确度在85%以上,能够满足生产要求。  相似文献   

6.
水稻杂株是品种形成过程中的干扰因素,对水稻产业具有较大的危害。水稻杂株的防除以识别为前提,但目前的识别方法消耗大量人力,识别的效率也不理想。计算机视觉是一种图像分析处理技术,在农业领域的应用较广。为此,设计了基于计算机视觉的水稻杂株识别方法,拍摄图像后依次进行预处理、灰度化和二值化,最后根据外观特征采用阈值分割法将杂株识别并提取出来。试验结果表明:秧苗期水稻杂株的性状特征最少,导致计算机视觉的识别效果较差;计算机视觉在抽穗期的识别率最高,误识率最低,具有良好的识别效果。因此,这种识别方法最适合在水稻的抽穗期使用,可以为水稻的品种形成提供技术支撑。  相似文献   

7.
为降低冷冻食品加工中工人操作时手部被割伤的风险,提出基于机器视觉的切割机安全防护系统识别技术,系统利用彩色相机对切割机工作区域进行实时监控,以锯条位置为参考点设置不同的危险区域,对采集的图像进行分析处理,针对工人操作时的手套颜色受照明影响大,提出拮抗色感知颜色特征提取与高斯混合模型分类相结合的目标颜色识别方法,对手套的颜色特征进行分类检测,通过形态学处理与特征量统计判定最终结果,判别工人手部所处的危险等级。实现了整个切割机的安全防护系统设计,其实验测试结果表明,系统能够准确识别不同照明条件下的手套颜色特征,相比HSV和CIE Lab颜色空间,降低了图像处理时间,单幅图像处理时间为39.18 ms,具有较好的鲁棒性,满足了安全防护系统实时性和可靠性的要求。  相似文献   

8.
Hough圆变换算法可以解决成熟番茄果实识别问题,但计算量较大,且由于番茄非标准球形、多果重叠、茎叶遮挡等问题,识别准确率有待进一步提高,因此本文对其改进,设计一种实现番茄收获机器人视觉系统的成熟果实识别算法.首先对采集到的图像下采样,以减少计算量;然后进行基于颜色信息的背景分割,得到成熟番茄果实为目标的二值图像;并在...  相似文献   

9.
基于计算机视觉的成熟番茄识别研究   总被引:1,自引:0,他引:1  
以番茄图像为研究对象,提出一种成熟番茄识别方法。首先,以HSI模型中的色调分量为基础进行图像分割,提取出成熟番茄目标图像;然后,再采用最大方差自动取阈值法进行分割处理,对得到的目标图像进行轮廓提取;最后,对轮廓曲线采用Hough变换的方法进行识别,以同一个轮廓圆识别的多个极值点的均值作为最终识别结果,在Hough变换之前采用最小外接矩形法进行有效区域标记,提高了Hough变换的效率。通过多幅番茄果实图像的仿真测试表明:本算法对果实遮掩度为0、小于50%、大于50%这3种情况的识别率分别为78.7%、6 8.1%、4 1.9%,平均识别率达到7 0.6%。本算法对于成熟番茄可以较好识别,尤其对于存在重叠情况的番茄,识别准确率较高。  相似文献   

10.
为进一步提升我国植保无人机通信系统的作业效率,基于迭代计算思维,针对其无线通信信号的识别与处理模块展开分析。以通信路径原理为基础,以通信信道资源识别、功率改进为切入点,搭建准确的通信迭代计算模型,进行特性分析与关联匹配设置,并展开整机通信作业参数试验效果验证。结果表明:基于迭代算法分析的无线通信信号识别与处理各模块功能运行稳定,信号时延率与信道误码率均相对降低,通信的识别准确率相对提升8.94%,整体通信综合效率提升至96.93%。此迭代算法分析准确,设计效果明显,对于类似智慧型农机装备的通信质量与通信效率提升有较好的参考价值。  相似文献   

11.
基于改进DeepSORT的群养生猪行为识别与跟踪方法   总被引:1,自引:0,他引:1  
为改善猪只重叠与遮挡造成的猪只身份编号(Identity,ID)频繁跳变,在YOLO v5s检测算法基础上,提出了改进DeepSORT行为跟踪算法。该算法改进包括两方面:一针对特定场景下猪只数量稳定的特点,改进跟踪算法的轨迹生成与匹配过程,降低ID切换次数,提升跟踪稳定性;二将YOLO v5s检测算法中的行为类别信息引入跟踪算法中,在跟踪中实现准确的猪只行为识别。实验结果表明,在目标检测方面,YOLO v5s的mAP为99.3%,F1值为98.7%。在重识别方面,实验的Top-1准确率达到99.88%。在跟踪方面,改进DeepSORT算法的MOTA为91.9%,IDF1为89.2%,IDS为33;与DeepSORT算法对比,MOTA和IDF1分别提升了1.0、16.9个百分点,IDS下降了83.8%。改进DeepSORT算法在群养环境下能够实现稳定ID的猪只行为跟踪,能够为无接触式的生猪自动监测提供技术支持。  相似文献   

12.
基于机器视觉的奶牛发情行为自动识别方法   总被引:3,自引:0,他引:3  
及时检测奶牛发情、适时人工授精、减少空怀奶牛,是奶牛养殖场增加产奶量的关键手段。针对基于运动量和体温等体征的接触式奶牛发情识别方法会造成奶牛应激反应且识别准确率不高的问题,提出了一种非接触式奶牛发情行为自动识别方法。该方法首先使用改进的高斯混合模型实现运动奶牛目标检测,然后基于颜色和纹理信息去除干扰背景,再利用AlexNet深度学习网络训练奶牛行为分类网络模型,识别奶牛爬跨行为,最终实现对奶牛发情行为的自动识别。在供试数据集上的试验结果表明,本文方法对奶牛发情的识别准确率为100%,召回率为88.24%。本文方法可应用于奶牛养殖场的日常发情监测中,为生产管理提供辅助决策。  相似文献   

13.
基于YOLO v3与图结构模型的群养猪只头尾辨别方法   总被引:1,自引:0,他引:1  
在利用视频监控技术对群养猪只进行自动行为监测时,对猪只准确定位并辨别其头尾位置对提高监测水平至关重要,基于此提出一种基于YOLO v3(You only look once v3)模型与图结构模型(Pictorial structure models)的猪只头尾辨别方法。首先,利用基于深度卷积神经网络的YOLO v3目标检测模型,训练猪只整体及其头部和尾部3类目标的检测器,从而在输入图像中获得猪只整体及头尾部所有的检测结果;然后,引入图结构模型,描述猪只的头尾结构特征,对每个猪只整体检测矩形框内的头尾部位组合计算匹配得分,选择最优的部位组合方式;对部分部位漏检的情况,采取阈值分割与前景椭圆拟合的方法,根据椭圆长轴推理出缺失部位。在实际猪场环境下,通过俯拍获得猪舍监控视频,建立了图像数据集,并进行了检测实验。实验结果表明,与直接利用YOLO v3模型相比,本文方法对头尾定位的精确率和召回率均有一定提高。本文方法对猪只头尾辨别精确率达到96.22%,与其他方法相比具有明显优势。  相似文献   

14.
蔬菜种子包衣工作参数的智能调节,能提高包衣加工效率和成品质量。为了研究包衣工作参数的智能调节,提出了基于机器视觉的蔬菜种子包衣品质鉴定方法。针对蔬菜种子包衣过程中种子包衣完整性、包衣颜色深浅、包衣颜色均匀性3个重要指标,提出依据单粒种子的种子包裹率、种子颜色及纹理特征将包衣种子分为合格与非合格两类。对于种子图像中粘连的问题,采用分水岭算法将图像分割为单粒种子。通过对单粒种子的多阈值分割,实现种子包衣完整率的计算。基于HSI颜色空间提取H、S分量的颜色矩特征与I分量的灰度共生矩阵特征,融合种子包衣完整率、颜色矩特征和灰度共生矩阵特征这3种特征为一个11维特征向量,构建基于径向基核函数的支持向量机分类器对包衣结果进行品质鉴定。实验选用包衣后辣椒种子验证算法,结果表明:包衣结果识别准确率为90.93%。该研究可为后续研究包衣机工作参数的智能调节奠定理论基础。  相似文献   

15.
传统农业中覆盖式喷洒除草剂,不但浪费除草剂和人力资源,而且污染环境,因此采用计算机视觉技术把杂草从农作物和土壤的背景中识别出来,定量与定位地喷洒化学制剂就显得极为重要.动态杂草识别与喷洒系统不但与识别算法有关,还与摄像头的安装高度、安装角度以及喷头的距离有很大的关系.为了达到精确喷洒的目的,对系统的计算机视觉部分进行了深入的研究和设计,通过大量试验进行验证,为动态杂草识别与喷洒系统的精确喷洒做好了充分的准备.  相似文献   

16.
为了从混合的饱满红枣和干瘪红枣中识别出干瘪红枣,首先分析了颜色空间模型的特性,选择灰度图、RGB颜色空间模型的R分量、L*a*b*颜色空间模型的a*分量,并使用不同的梯度算子作为对比;然后通过形态学运算、逻辑运算去除异常梯度,进行梯度归一化变换;最后采用归一化的梯度直方图作为红枣表面的纹理特征表示方法,并计算其梯度分布不均匀性作为判别准则。利用12通道红枣分选机采集240幅饱满与202幅干瘪红枣图像作为样本图像。实验结果表明,采用简单梯度算子对L*a*b*模型的a*分量提取纹理信息效果最好,误判率为0.83%,正确识别率高达99.01%。  相似文献   

17.
史立新 《农机化研究》2021,43(3):240-244
首先介绍了基于视觉的目标对象检测算法,然后介绍了计算机姿态识别与传感器检测技术,并确定了玉米定向精播种粒品质动态检测方法,进行了实际的测试试验.测试结果表明:基于计算机姿态识别的玉米定向精播种粒品质动态检测准确率在95%以上,精准度较高,符合设计需求,能够实现对玉米定向的精准播种,对玉米种粒的无人化播种具有重要的现实意...  相似文献   

18.
李旺  唐少先 《湖南农机》2012,39(1):176-178
农作物病害种类繁多,直接影响农作物的产量和品质,造成不可估量的损失.利用图像处理和模式识别技术简便、快速的识别农作物病害,为及时采取防治措施提供必要信息.为此,对图像处理在农作物的病害识别进行全面地论述.首先简单地介绍了图像处理在农作物病害识别中的重要性和概述,然后分别从国外和国内两个方面论述图像处理在农作物病害识别中的进展,最后指出了当今国内外研究中存在的问题和今后进一步研究的方向.  相似文献   

19.
肉牛活动过程中所表现出的行为是肉牛健康状况的综合体现,实现肉牛行为的快速准确识别,对肉牛疾病防控、自身发育评估和发情监测等具有重要作用。基于机器视觉的行为识别技术因其无损、快速的特点,已应用在畜禽养殖行为识别中,但现有的基于机器视觉的肉牛行为识别方法通常针对单只牛或单独某个行为开展研究,且存在计算量大等问题。针对上述问题,本文提出了一种基于SNSS-YOLO v7(Slim-Neck&Separated and enhancement attention module&Simplified spatial pyramid pooling-fast-YOLO v7)的肉牛行为识别方法。首先在复杂环境下采集肉牛的爬跨、躺卧、探究、站立、运动、舔砥和互斗7种常见行为图像,构建肉牛行为数据集;其次在YOLO v7颈部采用Slim-Neck结构,以减小模型计算量与参数量;然后在头部引入分离和增强注意力模块(Separated and enhancement attention module, SEAM)增强Neck层输出后的检测效果;最后使用SimSPPF(Simplified ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号