首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
【目的】通过对大豆γ-生育酚进行混合遗传和QTL定位分析,了解其遗传机制,定位其主效QTL,为高γ-生育酚含量大豆品种的选育奠定基础。【方法】以栽培大豆晋豆23为母本,以山西农家品种大豆灰布支黑豆为父本杂交衍生的重组自交系作为供试群体构建遗传图谱。图谱全长2 047.6 cM,平均图距8.8 cM,包括227个SSR标记,232个标记位点。重组自交系试验群体及亲本材料分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁试验基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的γ-生育酚含量。采用主基因+多基因混合遗传分离分析法,对大豆γ-生育酚含量进行混合遗传分析;采用WinQTLCart2.5复合区间作图法,对大豆γ-生育酚含量进行QTL定位分析。【结果】主基因+多基因混合遗传分析表明,γ-生育酚受2对重叠作用主基因×加性多基因控制。遗传基因分布在双亲中。三亚试验数据检测出2对主基因间上位性效应值为0.4010—0.5169和多基因的加性效应值为0.1797—0.2146,主基因遗传率为11.27%—13.05%,多基因遗传率为82.51%—86.55%,多基因效应大于主基因效应。原阳试验数据检测到2对主基因间上位性效应值为0.9646—1.8455,主基因遗传率为39.51%—58.96%,没有检测出多基因效应。采用WinQTLCart 2.5复合区间作图(CIM)共检测到9个影响γ-生育酚的QTL,分布于A1(Chr.5)、A2(Chr.8)、C1(Chr.4)、K(Chr.9)、M(Chr.7)和G(Chr.8)6条染色体中,单个QTL的贡献率为7.29%—29.55%。qγ-G-1同时在2011年原阳、2012年三亚、2015年三亚3个环境下检测到,且均定位在G(Chr.18)染色体Satt275—Satt038标记区间0.01 cM处,解释的表型变异分别为8.97%、8.12%和7.91%。qγ-A1-1同时在2011年原阳和2015年原阳2个环境下检测到,且均定位在A1(Chr.5)染色体Satt276—Satt364标记区间0.01 cM处,解释的表型变异分别为29.54%和28.23%。qγ-G-1和qγ-A1-1 2个QTL能够稳定遗传。【结论】γ-T最适遗传模型符合MX2-Duplicate-A,即2对重叠作用主基因×加性多基因模型。其遗传同时受到基因型、环境和上位性的影响。检测到γ-T的2个稳定主效QTL,Satt275—Satt038和Satt276—Satt364是共位标记区间。  相似文献   

2.
大豆α-生育酚的遗传与QTL分析   总被引:1,自引:1,他引:0  
【目的】 通过对大豆α-生育酚进行遗传和QTL分析,研究其遗传机制,定位其主效QTL,为高α-生育酚含量的大豆品种选育奠定遗传学基础。【方法】 以栽培大豆晋豆23为母本、山西农家品种大豆灰布支黑豆(ZDD02315)为父本杂交衍生的447个RIL作为供试群体构建遗传图谱,试验群体及亲本分别于2011年、2012年和2015年夏季在河南省农业科学院原阳试验基地种植,冬季在海南省三亚南繁基地种植。田间试验采取随机区组设计,2次重复。从6个环境中每个家系选取15.00 g籽粒饱满,大小一致的大豆种子,利用高效液相色谱法定性、定量测定样品中的α-生育酚含量。采用主基因+多基因混合遗传分离分析法和WinQTLCart 2.5复合区间作图法,对大豆α-生育酚含量进行主基因+多基因混合遗传分析和QTL定位。【结果】 基于主基因+多基因混合遗传分离分析法,α-生育酚受4对主基因控制,遗传基因分布在双亲中。4对主基因间加性效应值中3对为正值,表明这些基因来源于母本晋豆23;1对为负值,表明该对基因来源于父本灰布支黑豆;4对主基因之间相互作用的上位性效应表现为正值和负值的各有3对,说明不同基因间上位性效应对α-TOC的影响方向并不完全一致。环境因素引起的变异为0.13%—4.05%。表明α-TOC主要受4对主基因影响,受环境因素影响较小。采用WinQTLCart 2.5复合区间作图(CIM)共检测到17个影响α-生育酚的QTL,分布于第1、2、5、6、8、14、16、17共8条染色体中,单个QTL的贡献率8.35%—35.78%,QTL主要表现为加性效应。qα-D1a-1同时在2011年原阳、2012年原阳和三亚、2015年原阳4个环境下检测到,且均定位在第1染色体Satt320—Satt254标记区间19.79 cM处,解释的表型变异分别为12.55%、12.01%和11.89%、12.61%,加性效应值0.119-0.132,增加α-TOC含量的等位基因来自母本晋豆23;qα-A2-1同时在2011年原阳和三亚、2015年原阳3个环境下检测到,且均定位在第8染色体Sat_129—Satt377标记区间44.53 cM处,解释的表型变异分别为23.18%和22.56%、23.01%,加性效应值-0.195—-0.180,增加α-TOC含量的等位基因来自父本灰布支黑豆。qα-D1a-1和qα-A2-1 2个QTL能够稳定遗传。【结果】 α-生育酚最适遗传模型符合4MG-AI,即4对具有加性上位性效应的主基因遗传模型。其遗传主要受4对主基因影响,受环境因素影响较小。检测到α-生育酚的2个稳定主效QTL,Satt320—Satt254和Sat_129—Satt377是共位标记区间。  相似文献   

3.
大豆开花盛期快速叶绿素荧光参数的QTL分析   总被引:1,自引:0,他引:1  
 【目的】定位大豆R2时期(开花盛期)快速叶绿素荧光参数(JIP参数)QTL,分析不同参数间的遗传关系,比较参数在R2和R6时期(鼓粒盛期)遗传基础的异同。【方法】以大豆品种科丰1号和南农1138-2及其杂交衍生的184份重组自交系为材料,在盆栽条件下测定R2时期JIP参数,检测其QTL。【结果】检测到16个JIP参数QTL,分布在连锁群A1、C2、D2、I、M、N和O上,单个QTL的LOD值为2.40—5.65,贡献率为4.40%—20.06%;检测到3个同时控制多个参数的染色体区间,分别是连锁群C2上标记区间Satt286—Satt316、连锁群I上标记区间Sat_418—Satt650和连锁群O上标记区间Sat_231—Sat_196。【结论】不同JIP参数间既有共同的控制基因(QTL),也有各自独特的控制基因;JIP参数多数QTL不能在R2和R6时期重复检测到,控制其表达的遗传机制较为复杂;连锁群O上标记区间Sat_231—Sat_196在大豆R2和R6时期均检测到,该区间可能存在稳定表达的控制光合器官内禀结构和功能的基因,具有一定的育种价值。  相似文献   

4.
大豆农艺性状的QTL分析   总被引:2,自引:0,他引:2  
[目的]分析大豆农艺性状的QTL,为探讨大豆的遗传机制及进行遗传育种提供参考。[方法]应用复合区间作图法对蛋白质含量、脂肪含量、产量、百粒重、生育期等5个数量性状进行QTL定位和遗传效应分析。[结果]控制蛋白质含量、脂肪含量、产量、百粒重、生育期性状的4、4、1、2、5个共16个QTL位点,遗传贡献率在7.4%~33.7%。其中,遗传贡献率较大的主效QTL有分别位于I连锁群上Satt562-Sat_219、Sat_219-Satt496、Sat_219-Satt496区间的3个控制蛋白质含量的QTL位点,其遗传贡献率分别为29.15%、33.70%和31.67%,且均为来自母本合丰25的加效基因,还有位于O连锁群上Satt477-Satt331、Satt331-Satt153区间的2个控制生育期QTL位点,其遗传贡献率分别为24.69%和24.96%,也是来自母本合丰25的加效基因。另外,6个分别距M连锁群Satt175(蛋白质)、A1连锁群Satt684(油分)、F连锁群Satt348(油分)、J连锁群Sat_412(油分)、C1连锁群Sat_416(百粒重)、C1连锁群Sat_416(生育期)标记仅有0.01 cm的QTL位点。[结论]定位了影响蛋白质含量、油分含量、产量、百粒重和生育期等5个重要农艺性状的QTL位点。  相似文献   

5.
大豆高油酸、低亚麻酸性状的分子标记   总被引:1,自引:1,他引:1  
文章利用高油酸大豆N98-9445A与低亚麻酸大豆哈91016杂交获得的F2代群体,用500对SSR引物对油酸和亚麻酸进行基因定位,其中多态性标记有124个。QTL分析结果表明,控制大豆油酸含量的QTL位于连锁群MLG G、MLG D1b上的Satt394和Satt172上,其LOD值分别为3.2436和4.0158,Satt394与Satt012的距离是12.01cM,Satt172与Satt274的距离是14.01cM;其对油酸含量的贡献率分别为9.02%和14.86%。控制大豆亚麻酸含量的QTL位点位于连锁群MLG K、MLG A2上的Satt381和Satt424上,LOD值分别为2.65和3.01,Satt381与Satt394的距离是18.06cM,Satt424与Satt097的距离是5.13cM;其对亚麻酸的贡献率分别为11.03%和7.89%。  相似文献   

6.
《中国农业科学》2009,42(4):1152-1157
 【目的】大豆分枝数与大豆株型及产量关系密切,检测世代间可稳定遗传的大豆分枝数QTL,为大豆株型和产量育种的分子标记辅助选择奠定基础。【方法】根据科新3号×中黄20杂交组合F2群体构建的分子遗传图谱,对F2:4群体进行QTL定位,并利用定位QTL两侧的标记选择残余杂合个体,构建残余杂合系,对分枝数相关的QTL进行验证。【结果】在F2:4群体将分枝数QTL(qBN-c1-1)定位在C1连锁群区间Satt294-Satt399,贡献率为12.01%,来自于科新3号亲本的加性效应为-0.51;用F2:5选出残余杂合系,将控制大豆分枝数QTL定位在C1连锁群Satt399-Satt361区间,贡献率为11.16%,来自于科新3号的加性效应为-1.74,研究结果与F2:4群体一致。【结论】位于C1连锁群的与分枝数相关的QTL在该遗传背景下可稳定遗传。  相似文献   

7.
基于元分析的大豆成熟期单片段代换系鉴定与QTL定位   总被引:2,自引:0,他引:2  
【目的】大豆成熟期是由多基因控制的数量性状,是影响大豆产量和适应性的重要性状。研究大豆成熟期单片段代换系遗传规律,鉴定分析大豆成熟期的主效QTL。【方法】以大豆红丰11为受体和回交亲本,以15个国内外大豆核心种质为供体亲本,构建回交导入系群体,基于元分析的大豆成熟期(R8)“真实QTL”SSR标记进行单片段代换系鉴定,利用“图示基因型法”计算导入片段和代换作图法鉴定大豆成熟期QTL,用单标记法鉴定成熟期重要QTL。【结果】在C2、L连锁群上检测到16种导入片段,C2连锁群检测到7种导入片段,导入片段总长度为9.8 cM。L连锁群检测到9种导入片段,导入片段总长度为37.212 cM;在C2和L连锁群上共检测出8个成熟期QTL,根据前人的研究,在L连锁群上有2个QTL即Sat_010、Satt156是E4/e4的特异SSR标记;在8个成熟期QTL中用单标记法鉴定了5个有关大豆成熟期重要SSR标记Sat_238、Satt460、Sct_010、Satt166、Sat_113;确定了单片段Satt460缩短大豆生育期,单片段Sat_238、Sct_010、Sat_113延迟大豆生育期。【结论】基于元分析的成熟期2个导入位点C2、L连锁群上检测到16种单片段,用代换作图法共检测出8个成熟期QTL,用单标记法鉴定了5个有关大豆成熟期重要SSR标记Sat_238、Satt460、Sct_010、Satt166、Sat_113。确定单片段Satt460与缩短大豆生育期有关,单片段Sat_238、Sct_010、Sat_113与延迟大豆生育期有关。  相似文献   

8.
大豆百粒重QTL定位及多样性评价   总被引:1,自引:1,他引:0  
【目的】百粒重是大豆重要的育种目标性状,它不仅是产量构成因子之一,也是重要的品质性状,不同用途对百粒重有着不同要求。通过连锁分析定位大豆百粒重QTL,获得连锁标记,阐明QTL连锁标记在种质资源中的多样性特征,为百粒重定向改良提供依据。【方法】以冀豆12×黑豆(ZDD03651)杂交衍生的188个重组自交系的F6:8和F6:9群体为材料,采用WinQTL Cartographer V. 2.5的复合区间作图法(CIM),经300次Permutation 计算,以P=0.05显著性水平确定QTL存在的阈值,定位百粒重QTL。连续3年在石家庄对来自国内外的205份大豆育成和地方品种的百粒重进行表型鉴定,利用定位到的百粒重QTL连锁SSR标记对种质资源材料进行基因型分型,在每个标记处确定发生频率大于5%(对应资源材料个数大于10个)的等位变异为有效等位变异,计算等位基因多样性指数,明确百粒重QTL在种质资源里的多样性特征,通过多重比较确定不同等位变异与百粒重的关系。【结果】在冀豆12×黑豆后代群体中,百粒重呈正态连续分布,遗传力为88.72%。共检测到5个百粒重QTL,分别位于Chr.02(D1b)、Chr.06(C2)、Chr.08(A2)和Chr.17(D2)染色体,遗传贡献率(R2)7.68%-12.83%,加性效应-0.65--0.84 g,增效基因均来自冀豆12。年份间稳定的QTL有2个,其中,qSW-6-1位于第6染色体Satt457-Sat_062,紧密连锁的标记为Satt281,贡献率最大值为12.02%,加性效应最大值为-0.81g;qSW-17-1位于第17染色体Satt301-Satt310,贡献率最大值为12.83%,加性效应最大值为-0.84g。在205份资源材料中,百粒重遗传力为96.88%。百粒重连锁SSR标记有效等位变异数为2-8个,多样性指数为0.34-0.82。发掘出大粒相关等位变异6个,分别为Satt281-227 bp、Barcsoyssr_2_304-245 bp、Satt301-199 bp、Sat_406-214 bp、Satt119-136 bp和Satt341-218 bp。其中Satt281-227 bp在RIL和资源材料中均为百粒重增效效应,主要分布在国内大粒育成品种中。筛选到含有4个及以上大粒相关等位变异的资源材料3份,分别为绿75、中品大黑豆和中野2号。【结论】在大豆育成品种冀豆12×地方品种黑豆的杂交后代群体中,检测到5个百粒重QTL,冀豆12含有1个在RIL和种质资源中均为大粒相关的优异等位变异。明确了上述5个QTL在205份育成品种和地方品种间的多样性分布特征,可应用于百粒重定向改良过程中的亲本选配及后代选择。  相似文献   

9.
【背景】开花期是大豆重要的生育期性状,不仅决定了大豆品种的适种范围,而且对大豆的产量和品质有重要影响。江淮地区是中国重要的大豆产区,目前对该地区夏大豆开花期性状遗传基础研究相对较少。【目的】利用2个夏大豆材料杂交衍生的重组自交系群体对开花期进行QTL定位,为分子标记辅助选择育种和基因克隆提供依据。【方法】以科丰35(KF35)和南农1138-2(NN1138-2)为亲本,构建了含91个家系(F2:8)的重组自交系群体(NJK3N-RIL),在6个环境下调查开花期性状数据。利用限制位点相关DNA测序(restriction-site associated DNA sequencing,RAD-seq)技术对群体亲本及家系材料进行SNP标记分型,并利用窗口滑动法进行bin标记划分。利用bin标记构建该群体的遗传图谱,结合多年多点的表型数据,使用QTL Network 2.2软件中的基于混合线性模型的复合区间作图法(mixed-model based composite interval mapping,MCIM)和Windows QTL Cartographer V2.5_011软件中的复合区间作图法(composite interval mapping,CIM)对开花期性状进行QTL分析。【结果】在大豆全基因组范围内共获得36 778个高质量SNP标记,被划分为1 733个bin标记。利用1 733个bin标记构建了一张覆盖大豆20条染色体遗传图谱,图谱长度为2 362.4 cM,标记间平均遗传距离为1.4 cM。利用MCIM法共检测到9个控制开花期的加性QTL、2对上位性QTL和1个环境互作QTL,3种效应累积贡献率分别为63.9%、4.6%和2.1%。利用CIM法共检测到10个控制开花期的QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1能在3个及以上环境检测到。综合2种分析方法,共检测到12个开花期QTL,其中qFT-8-1qFT-11-1qFT-15-1qFT-16-1qFT-16-2qFT-20-1qFT-20-2等能够被2种方法检测到。同时qFT-5-1qFT-8-1qFT-8-2qFT-13-1qFT-15-1qFT-20-2等是本研究新检测到的开花期QTL。【结论】夏大豆开花期遗传构成复杂,但加性QTL效应占绝对优势,上位性互作及环境互作效应对开花期影响较小。qFT-8-1qFT-11-1qFT-15-1qFT-16-1能够被2种方法在多个环境中检测到,是NJK3N-RIL群体中控制开花期的重要位点。  相似文献   

10.
利用BSA法发掘野生大豆种子硬实性相关QTL   总被引:1,自引:0,他引:1  
【目的】野生大豆的硬实性是大豆遗传改良利用中的重要限制因素。利用BSA法发掘与大豆种子硬实性相关的QTL,为野生大豆在大豆遗传改良中的合理利用奠定基础。【方法】利用栽培大豆中黄39与野生大豆NY27-38杂交构建F2和F7分离群体,从每个单株选取整齐一致的种子,取30粒种子置于铺有一层滤纸的培养皿中,加入30 mL蒸馏水,25℃培养箱中暗处理4 h,设3次重复,分别统计每个培养皿中正常吸胀和硬实种子数。在F2群体中,选取22个正常吸胀单株(吸胀率>90%)和16个硬实单株(吸胀率<10%);在F7群体中,选取20个完全吸胀单株(吸胀率=100%)和20个完全硬实单株(吸胀率=0%),单株DNA等量混合,分别构建2个吸胀和2个硬实DNA池。利用259对在亲本间有多态性的SSR标记对吸胀和硬实DNA池进行检测,筛选在吸胀和硬实DNA池间表现多态性的SSR标记;用192个SSR标记检测F7分离群体,构建遗传图谱,利用复合区间作图法定位大豆硬实相关QTL。【结果】利用F2个体构建的吸胀和硬实DNA池,在第2染色体16.3 Mb区间和第6染色体23.4 Mb区间分别检测到10个和8个在两池间有差异的SSR标记。利用这些标记检测F2群体,将第2染色体的QTL定位于Satt274与Sat_198间的276.0 kb区间,该区间包括已克隆的大豆硬实基因GmHs1-1,解释17.2%的表型变异。第6染色体的QTL位于标记BARCSOYSSR_06_0993与BARCSOYSSR_06_1068间,可解释17.8%的表型变异。利用F7株系构建的吸胀和硬实DNA池,在第2(27.4 Mb区间)、6(27.8 Mb 区间)和3染色体(18.2 Mb区间)分别检测到11个、9个和4个在两池间有多态性的SSR标记。利用F7群体构建包括192个SSR标记、覆盖2 390.2 cM的遗传图谱,共检测到3个硬实相关QTL,其中第2染色体定位到的QTL位于标记Satt274与Sat_198间,可解释23.3%的遗传变异。第6染色体定位到的QTL位于标记Sat_402与Satt557之间,可解释20.4%的表型变异。在第3染色体标记Sat_266与Sat_236间发现一个可以解释4.9%表型变异的QTL,与BSA法检测的结果相符。【结论】利用BSA法可以检测到传统遗传作图定位的所有与硬实性相关的QTL,证明BSA法发掘大豆种子硬实性主要QTL的高效性。  相似文献   

11.
【目的】异黄酮是大豆等豆类植物中富含的一类次生代谢产物,对食品和保健产业有重要作用。大豆籽粒可分离出12种异黄酮组分,可归为三大类:大豆苷类异黄酮、染料木苷类异黄酮和黄豆苷类异黄酮。通过鉴定大豆籽粒异黄酮总含量及3个组分含量性状的加性及上位性QTL,进而全面解析其复杂的遗传构成。【方法】利用先进2号和赶泰2-2双亲衍生的大豆重组自交系群体NJRSXG,在5个环境下测定4个异黄酮含量性状:异黄酮总含量(total isoflavone content,SIFC)、大豆苷类异黄酮总含量(total daidzin group content,TDC)、染料木苷类异黄酮总含量(total genistin group content,TGC)和黄豆苷类异黄酮总含量(total glycitin group content,TGLC)。选用混合模型复合区间作图法(mixed-model-based composite interval mapping,MCIM)和限制性两阶段多位点全基因组关联分析方法(restricted two-stage multi-locus genome-wide association analysis,RTM-GWAS)进行异黄酮含量QTL检测。【结果】2个亲本在4个异黄酮含量性状上均存在较大差异,重组自交系群体异黄酮含量在高值、低值2个方向上均出现超亲分离,低值方向分离趋势强于高值方向。利用连锁定位MCIM方法共检测到4个异黄酮含量性状的19个加性QTL和16对上位性QTL,分布于15条染色体上。第14染色体重要标记区间GNE186b—Sat020内检测到3个新加性QTL:qSifc-14-1qTdc-14-2qTgc-14-1,且表型变异解释率最高。利用关联定位RTM-GWAS方法分别检测到4个异黄酮含量性状的51、66、42和36个关联标记位点,表型变异解释率为39.7%—52.5%,检测到的位点中覆盖了MCIM方法检测的19个加性QTL中的11个以及11个上位性QTL。候选基因分析分别在加性QTL区域和上位性QTL区域检测到93和100个候选基因,富集分析显示在第14染色体重要标记区间GNE186b—Satt020内,Glyma14g33227Glyma14g33244Glyma14g33715的功能与异黄酮代谢有关。【结论】连锁定位和关联定位2种方法结合能相对全面地检测异黄酮含量QTL。与连锁定位方法MCIM相比,关联定位方法RTM-GWAS检测的QTL更多,总遗传贡献率更高,但尚不能检测上位性QTL,2种方法定位结果可相互验证补充,大豆籽粒异黄酮含量由大量QTL/基因控制。  相似文献   

12.
 【目的】利用不同定位方法,对不同环境条件下大豆异黄酮主要组分进行QTL定位研究,为大豆异黄酮分子标记辅助育种提供理论依据。【方法】以异黄酮含量有显著差异的鲁黑豆2号(3 697.24 μg•g-1)和南汇早黑豆(1 816.67 μg•g-1)为亲本构建的F5∶7-8重组自交系为材料,分析RIL群体的SSR标记多态性,结合HPLC法鉴定异黄酮主要组分含量。【结果】绘制了一张包含161个多态性SSR标记,全长3 546.54 cM的大豆遗传连锁图谱。利用ICIMapping 3.2软件的ICIM、IM和SMA 3种定位方法,共定位到4种环境下与异黄酮主要组分相关的14个QTL。【结论】3个标记区间在多个环境和多种定位方法下均被检测到,分别是Sat_003—Satt306、Satt070—Satt122和Satt571—Satt270。  相似文献   

13.
大豆豆腐和豆乳得率的遗传分析与QTL定位   总被引:4,自引:0,他引:4  
【目的】优质高产豆腐与豆乳专用品种的选育是现代大豆品质育种的重要方向,本研究欲通过对大豆同一重组自交系群体2004和2005两年的豆腐与豆乳得率进行相关的遗传分析与QTL定位,为豆腐与豆乳专用品种选育提供遗传学依据。【方法】以干豆腐与干豆乳得率均差异极显著的大豆品种科丰1号与南农1138-2及其构建的184个重组自交系的群体为试验材料,应用主基因+多基因混合遗传模型进行遗传分析;以该群体所构建,由488个分子标记组成,覆盖4226.40 cM,平均图距8.66 cM的遗传连锁图谱为基础,应用软件Cartographer V 2.5的复合区间作图(CIM)程序检测QTL。【结果】两个年份两个性状均存在双向超亲变异,年份间、群体各家系间、以及年份与家系互作间的差异均极显著;干豆腐得率的遗传,两个年份及两年平均值均属两对具有累加作用的连锁主基因加多基因混合遗传模型,重组率均为0.00,主基因遗传率为13.23%~26.84%,多基因遗传率为73.15%~86.77%;各年份及两年平均干豆乳得率的遗传均为两对连锁主基因加多基因混合遗传模型,重组率均为0.00,主基因遗传率为17.27%~22.29%,多基因遗传率为77.71%~82.73%。CIM检测的QTL结果显示,在C2连锁群STAS815T~A676I标记区间检测到与干豆腐得率相关的2个紧密连锁的QTL,能在不同年份稳定表达,对表型变异的贡献率累计为16.23%~23.18%;在M连锁群satt728~K24I标记区间定位到1个控制干豆乳得率的QTL,在不同年份稳定表达,距离其左侧标记0.01 cM,对表型变异的贡献率为4.73%~7.14%。【结论】豆腐与豆乳得率均属主基因加多基因遗传,主基因遗传贡献不大,多基因占主要部分(≥73.15%),遗传分析和QTL定位的结果可以相互验证,遗传改良需要更多地依靠多基因积聚。  相似文献   

14.
利用高皂甙含量大豆材料和低皂甙含量大豆材料为亲本组配F2群体,以SSR分子标记技术对F2代群体与皂甙含量相关的QTL进行定位,以便为选育高皂甙含量的特种大豆品种提供理论依据。利用皂甙含量高的哈91016与皂甙含量低的N98-9445A大豆杂交获得的F2代群体,用500对SSR引物对大豆皂甙含量进行QTL定位,其中多态性标记有106个。QTL分析结果表明,控制大豆皂甙含量的QTL分别位于连锁群MLG K、MLG D1a上的Sat_044和Satt580附近,其LOD值分别为2.09和2.87,Sat_044与Satt102的遗传距离是11.4 cM,Satt580与Sat_036的遗传距离是18.7 cM;其对皂甙含量的贡献率分别为12.6%和15.8%。  相似文献   

15.
【目的】对甜玉米果皮厚度性状进行主基因 + 多基因遗传分析及 QTL 定位,研究甜玉米果皮厚度 的遗传机理,选育优质甜玉米品种。【方法】选用果皮厚度差异显著的甜玉米自交系 T15 与 T77 配制杂交组合 T77×T15。以该组合的 F2 群体作为试验材料,采用主基因 + 多基因混合遗传方法进行遗传模型分析;结合 F2 群 体各单株的果皮厚度及 SSR 遗传连锁图谱,利用复合区间作图法对甜玉米果皮厚度进行 QTL 定位。【结果】甜 玉米果皮厚度的最适模型为 A-1,即受 1 对主基因控制的加性和部分显性的遗传模型,主基因遗传率 69.10%。 在第 5、8 染色体上分别检测出 3 个与果皮厚度相关的 QTL,其中第 5 染色体 bin5.04 区域检测到 2 个 QTL, 分别位于标记区间 bnlg150~bnlg653 和 bnlg653~bnlg1208,加性效应值分别为 -2.39 和 -3.01;位于第 8 染色体 的 QTL 在 bin8.03~bin8.04 区域,标记区间为 umc1741~bnlg2046,加性效应值为 -3.06,表型贡献率为 22.02%。 【结论】甜玉米果皮厚度以主基因效应为主,在育种实践中可在早期世代进行遗传改良选择。试验检测到的 QTL 可用于分子标记辅助选择和品质育种。  相似文献   

16.
[目的]大豆分枝数与大豆株型及产量关系密切,检测世代间可稳定遗传的大豆分枝数QTL,为大豆株型和产量育种的分子标记辅助选择奠定基础.[方法]根据科新3号x中黄20杂交组合F2群体构建的分子遗传图谱,对F2:4群体进行QTL定位,并利用定位QTL两侧的标记选择残余杂合个体,构建残余杂合系,对分枝数相关的QTL进行验证.[结果]在F2:4 群体将分枝数QTL(qBN-cl-l)定位在Cl连锁群区间Satt294-Satt399,贡献率为12.01%,来自于科新3号亲本的加性效应为-0.51;用F2:5选出残余杂合系,将控制大豆分枝数QTL定位在Cl连锁群Satt399-Satt361区间,贡献率为11.16%,来自于科新3号的加性效应为-1.74,研究结果与F2:4群体一致,[结论]位于Cl连锁群的与分枝数相关的QTL在该遗传背景下可稳定遗传.  相似文献   

17.
本研究在大豆SMV1株系抗性的遗传分析基础上,筛选与抗病基因紧密连锁的SSR标记,并探讨分子标记辅助选择在大豆花叶病毒病抗病育种中的应用价值.利用合丰25×东农93-046的F1、F2和F2:3群体进行了抗病性鉴定,结果表明:F1植株在接种后表现抗病,经χ2测验,F2群体分离比例为3(抗):1(感);对F2代衍生的F2:3家系接种鉴定,纯合抗病家系、抗感分离家系和纯合感病家系的比率符合1:2:1,表明东农93-046对SMV1株系的成株抗性受一对显性基因控制.并利用东农93-046×Conrad的正反交组合F2代进行抗性鉴定,结果正反交后代均表现为31的分离比例,无细胞质效应,进一步证明了东农93-046是受一对显性基因控制的抗性亲本材料.利用改良的BSA法,通过600对SSR引物对合丰25×东农93-046组合的225个F2单株进行筛选,获得6个与抗SMV1株系相关的SSR标记,抗病基因RSMV1定位在F连锁群上,6个SSR标记与抗病基因的连锁顺序为HSP176—Satt114—RSMV1—Satt510—Sct_033—Satt334—Satt362,连锁距离分别为6.6cM—4.3cM—RSMV1—6.6cM—5.1cM—6.3cM—17.3cM.利用6个分子标对70份种质资源进行检测,结果表明:HSP176标记对抗病毒资源筛选的准确率达82.81%,Satt114、Satt510和Satt334标记也均达到70%以上,6个标记的准确率平均值达到70.71%,可以用作抗病毒分子辅助育种的选择标记.依据6个SSR标记在70份种质资源中共检测出的28个谱带进行聚类分析,表明70份大豆种质资源可以划分为两大类群,Ⅰ类群为感病群,Ⅱ类群为抗病群.70份种质资源间的遗传相似系数变化范围为0.62~0.97,表明供试资源的遗传多样性相对较低,抗性种质资源相对匮乏.  相似文献   

18.
【目的】谷子生育期及穗部性状是影响谷子品种适应性及产量的关键因素。通过对相关性状进行QTL定位分析,为探明谷子复杂产量性状的分子遗传机制奠定基础。【方法】以优良品种豫谷18和冀谷19为亲本构建的包含400个家系的RIL群体为试验材料,于2018—2019年分别在4个不同环境下调查谷子抽穗期、抽穗-成熟天数、全生育期及穗长、穗粗和单穗重等穗相关性状的表型值。同时,利用已构建的由1 304个bin标记组成的全长为2 196 cM,标记间平均距离为1.68 cM的高密度遗传连锁图谱。采用复合区间作图法(composite interval mapping,CIM)对生育期及穗部性状进行QTL定位分析,并对所获得的QTL置信区间进行候选基因的预测。【结果】重组自交系群体生育期及穗部性状在4个环境中均表现为连续分布且存在双向超亲分离现象,符合数量性状的遗传特征,适宜进行QTL分析。相关分析表明,谷子抽穗期与全生育期呈极显著正相关,与抽穗-成熟天数呈显著负相关,穗长与穗粗呈显著正相关。共检测到88个与谷子生育期及穗部性状相关的QTL,分布在第1、3、5、6、8和9染色体上。其中45个QTL与抽穗期相关,单个QTL能够解释表型变异的1.61%—27.60%;7个QTL与抽穗-成熟天数相关,单个QTL能够解释表型变异的2.65%—12.14%;20个QTL与全生育期相关,单个QTL能够解释表型变异的1.98%—16.97%;9个QTL与穗长相关,单个QTL能够解释表型变异的3.51%—11.65%;5个QTL与穗粗相关,单个QTL能够解释表型变异的3.74%—8.34%;2个QTL与单穗重相关,单个QTL能够解释表型变异的5.16%—5.20%。本研究共检测到12个主效QTL,其中,qEHD-9-1qEHD-9-2qHMD-9-2qGRP-9-2qPL-5-1在至少2个环境和BLUP值中被重复检测到。控制生育期的主效QTL(qEHD-9-1qHMD-9-1qGRP-9-1)与控制穗长的主效QTL(qPL-9-1)在第9染色体重叠;qEHD-9-2qHMD-9-3qGRP-9-2qPL-9-3也在第9染色体重叠;控制穗长的主效QTL(qPL-5-1)和控制穗粗的QTL(qPD-5-1)在第5染色体重叠。对3个QTL簇的置信区间进行基因注释,筛选出5个与生育期及穗部性状相关的候选基因,其中,2个候选基因在谷子生育期调控和穗部性状发育中均发挥重要作用。【结论】共检测到88个与谷子生育期及穗部性状相关的QTL,12个为主效QTL,其中5个主效QTL在多个环境被重复检测到,且成簇分布。基于基因注释,共筛选了5个与谷子生育期和穗部性状相关的候选基因。  相似文献   

19.
大豆对斜纹夜蛾抗性的遗传分析及相关QTL的定位   总被引:15,自引:1,他引:15  
 以大豆组合皖82-178×通山薄皮黄豆甲衍生的重组自交系群体(RIL)为材料,以斜纹夜蛾幼虫重为抗性鉴定指标,应用主基因+多基因的混合遗传模型对大豆抗虫性进行遗传分析。结果表明,该群体对斜纹夜蛾的抗性遗传符合两对主基因+多基因的遗传模型,主基因的遗传率为89.85%。以该群体所构建的遗传连锁图谱为基础,利用软件Cartgrapher(V.2.0)采用复合区间作图法检测到2个与抗虫有关的QTL,分别位于wt-11和wt-12连锁群上,其在对应连锁群的端距离分别为5.51cM、11.51cM,加性效应估计值分别为-0.0619、-0.0419,对性状变异的解释率分别为17.22%和8.60%。  相似文献   

20.
 【目的】开发小麦抗旱相关蛋白磷酸酶结构亚基基因TaPP2Aa的功能标记并作图,为分子标记辅助选择抗逆育种提供依据。【方法】测序得到普通小麦及其野生近缘种TaPP2Aa的基因序列,分析其SNP位点差异,设计3对基因组特异引物和6对基因组内等位基因特异引物,利用中国春缺四体对TaPP2Aa进行染色体定位,利用RIL群体(Opata 85×W7984)和DH群体(旱选10号×鲁麦14)进行该基因的功能标记作图。【结果】TaPP2Aa定位于小麦第5同源染色体群上;TaPP2Aa-B位于RIL群体5B的标记区间Xwg909—Xgwm67,与2个标记的遗传距离分别为4.0 cM和3.6 cM,在DH群体5B染色体的标记区间Xgwm234—WMC363,与WMC363的遗传距离为7.5 cM;在2个遗传群体中与标记Xgwm67的距离分别为3.6 cM和11.4 cM。TaPP2Aa-D位于RIL群体染色体5D的标记区间Xcmwg770—Xbarc205,遗传距离分别为9.8 cM和10.0 cM。【结论】确定了TaPP2Aa所在的染色体位置,通过与DH和RIL 2个遗传作图群体中已有的抗逆主效QTL进行对比分析,明确了TaPP2Aa与小麦抗逆性状QTL具有遗传连锁关系,开发的功能标记可用于小麦抗逆性状的分子标记辅助选择。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号