首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feline calicivirus (FCV) is characterised by a high degree of antigenic variation potentially compromising vaccine efficacy. Inclusion of several FCV strains or antigens in current vaccines could be a means to improve protection against antigenically distinct isolates. This study evaluated the synergy between two FCV strains (FCVG1 and FCV431) by comparing immunity induced by either strain with that provided by a combination of the two strains against an heterologous challenge with antigenically distant FCV strains (FCV393 and FCV220). Thirty-two SPF kittens were randomly allocated to four groups of eight cats in each group. Groups B, C and D cats were vaccinated once subcutaneously with strains FCVG1, FCV431, and FCVG1 + FCV431, respectively. Each kitten received a total dose of 10(3.4) CCID50 of FCV. Control group A was not immunised. On day 31, four cats from each group were challenged oronasally with FCV220 and four cats with FCV393. Following challenge, the cats were monitored for clinical signs, viral shedding and antibody responses. FCV220 and FCV393 induced severe clinical signs in control cats typical of FCV infection. Immunisation with both strains mixed together induced higher neutralizing antibody titres against FCV220 and FCV393 strains on average. Protection was observed in all groups, however combination of the two strains resulted in a better clinical protection and reduction of virus shedding after heterologous challenge. A moderate correlation was observed between neutralizing antibody titres at the time of challenge and protection against clinical signs. These results indicated that vaccines combining antigens from different FCV strains may induce a broader heterologous protection.  相似文献   

2.
3.
OBJECTIVE: To evaluate duration of immunity in cats vaccinated with an inactivated vaccine of feline panleukopenia virus (FPV), feline herpesvirus (FHV), and feline calicivirus (FCV). ANIMALS: 17 cats. PROCEDURE: Immunity of 9 vaccinated and 8 unvaccinated cats (of an original 15 vaccinated and 17 unvaccinated cats) was challenged 7.5 years after vaccination. Specific-pathogen-free (SPF) cats were vaccinated at 8 and 12 weeks old and housed in isolation facilities. Offspring of vaccinated cats served as unvaccinated contact control cats. Virus neutralization tests were used to determine antibody titers yearly. Clinical responses were recorded, and titers were determined weekly after viral challenge. RESULTS: Control cats remained free of antibodies against FPV, FHV, and FCV and did not have infection before viral challenge. Vaccinated cats had high FPV titers throughout the study and solid protection against virulent FPV 7.5 years after vaccination. Vaccinated cats were seropositive against FHV and FCV for 3 to 4 years after vaccination, with gradually declining titers. Vaccinated cats were protected partially against viral challenge with virulent FHV. Relative efficacy of the vaccine, on the basis of reduction of clinical signs of disease, was 52%. Results were similar after FCV challenge, with relative efficacy of 63%. Vaccination did not prevent local mild infection or shedding of FHV or FCV. CONCLUSIONS: Duration of immunity after vaccination with an inactivated, adjuvanted vaccine was > 7 years. Protection against FPV was better than for FHV and FCV. CLINICAL IMPLICATIONS: Persistence of antibody titers against all 3 viruses for > 3 years supports recommendations that cats may be revaccinated against FPV-FHV-FCV at 3-year intervals.  相似文献   

4.
Caliciviridae are small, nonenveloped, positive-stranded RNA viruses. Much of our understanding of the molecular biology of the caliciviruses has come from the study of the naturally occurring animal caliciviruses. In particular, many studies have focused on the molecular virology of feline calicivirus (FCV), which reflects its importance as a natural pathogen of cats. FCVs demonstrate a remarkable capacity for high genetic, antigenic, and clinical diversity; "outbreak" vaccine resistant strains occur frequently. This article updates the reader on the current status of clinical behavior and pathogenesis of FCV.  相似文献   

5.
Although prevention of feline calcivirus (FCV) infection by vaccination has been attempted, and isolation of FCV, development of the disease, and a few fatal cases in vaccinated cats have been reported. Fifteen FCV strains isolated from cats that had been vaccinated with commercially available FCV vaccines (F9, FCV-255, and FC-7) were genogrouped. Molecular analysis of viral genomes involved the construction of a phylogenetic tree of capsid genes using the NJ method. Cat anti-F9 serum and rabbit anti-FCV-255 serum were used for virus neutralization tests. Molecular phylogenetic analysis of the amino acid sequences of 15 virus isolates and those of the previously published and GenBank-deposited 9 global and 14 Japanese strains showed that 8 (53%) of the 15 virus isolates as well as the vaccine strains F9 and FCV-255 belonged to genogroup I (GAI), and 7 (47%) belonged to genogroup II (GAII). Of the 8 GAI strains, 2 were isolated from cats that had been vaccinated with an F9 strain live vaccine, 5 from cats vaccinated with an FCV-255-derived vaccine, and 1 from a cat vaccinated with an FC-7-derived vaccine. Of the 7 GAII strains, 5 were isolated from cats that had been vaccinated with the F9 strain live vaccine, 1 from a cat vaccinated with the FCV-255-derived vaccine, and 1 from a cat vaccinated with the FC-7-derived vaccine. These results indicate that more vaccine breakdown strains isolated from the cats vaccinated with the F9 strain-derived vaccine belong to GAII than to GAI, whereas more vaccine breakdown strains isolated from the cats vaccinated with the FCV-255 strain-derived vaccine belong to GAI than to GAII, and that when the FC-7 strain-derived vaccine is used, the vaccine breakdown strains belong almost equally to GAI and GAII. Thus, the genogroups of virus isolates varied with the vaccine strain used (p < 0.05). On the other hand, the neutralizing titres of feline anti-F9 serum and rabbit anti-FCV-255 serum against the 15 isolates were very low, showing no relationships between neutralizing antibody titres and genogroups. The DNA sequence identities between the virus isolates and the vaccine strains were low, at 70.6–82.9%, and no strains were found to have sequences derived from the vaccine strains. Alignment of amino acid sequences showed that the GAI or GAII virus isolates from the F9-vaccinated cats differed at position 428 of the 5’ hypervariable region (HVR) of capsid region of the F9 strain, whereas those from the FCV-255-vaccinated cats differed at positions 438, 453, and 460 of the 5’HVR of capsid region E of the F9 strain. We speculate that these differences influence genogrouping. The amino acid changes within the F9 linear epitopes common to G A I and G A II were noted at positions 450, 451, 457 of 5’HVR of the capsid region E in the isolates from F9-derived vaccine-treated cats, and 449, 450, and 451 of 5’HVR of capsid region E in the isolates from FCV-255-derived vaccine-treated cats, suggesting that these amino acid changes are involved in escapes. These results suggest that alternate vaccination with the F9 and FCV-255 strains or the use of a polyvalent vaccine containing GAII strains serves to inhibit development.  相似文献   

6.
7.
Feline calicivirus (FCV) is a highly infectious respiratory pathogen of domestic cats. The prevalence of FCV in the general cat population is high, particularly in multi-cat households, largely because many clinically recovered cats remain persistently infected carriers. In order to assess how FCV circulates in such groups and to assess the contribution that each individual animal makes to the epidemiology of the disease, we have carried out the first detailed analysis of long-term shedding patterns of FCV in individual cats within naturally infected colonies. The prevalence of FCV in each of the groups on individual sampling occasions ranged from 0% to 91%, with averages for the individual colonies ranging from 6% to 75%. Within each of the colonies, one to three distinct strains of FCV were identified. Individual cats showed a spectrum of FCV shedding patterns over the sampling period which broadly grouped into three categories: those that shed virus relatively consistently, those that shed virus intermittently, and those that appeared never to shed virus. This is the first report identifying non-shedder cats that appear resistant to FCV infection over long periods of time, despite being continually exposed to virus. Such resistance appeared to be age related, which may have been immune-mediated, although by analogy with other caliciviruses, factors such as host genetic resistance may play a role. Given that a proportion of the population appears to be resistant to infection, clearly the cohort of cats that consistently shed virus are likely to provide an important mechanism whereby infection can be maintained in small populations.  相似文献   

8.
The efficacy of an inactivated vaccine derived from feline calicivirus (FCV) strain FS2 was assessed against challenge with three UK field strains of FCV. The mean clinical score, calculated on the number of signs recorded per day over 21 days after challenge, was lower for vaccinated cats when compared to unvaccinated animals though the difference was not statistically significant. All cats excreted FCV throughout the three weeks following challenge and there was no difference in the number of days of virus shedding during this period between vaccinated and unvaccinated animals. The development of FCV serum neutralising antibody titres following vaccination and challenge was recorded. In the second part of the study the ability of vaccinated and challenged cats to become FCV carriers and then infect susceptible in-contact animals was demonstrated.  相似文献   

9.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

10.
OBJECTIVE: To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers. DESIGN: Prospective study. ANIMALS: 61 feral cats included in a trap-neuter-return program in Florida. PROCEDURES: Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later. RESULTS: Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.  相似文献   

11.
Feline calicivirus (FCV) comprises a large number of strains which are related antigenically to varying degrees. The antigenic variability creates problems for choosing antigens to include in vaccines. Historically, these have been selected for use based on their cross-reactivity with a high proportion of field strains. However, it is important to determine the current level of cross-reactivity of vaccines and whether or not this may be decreasing owing to widespread vaccine use. In this in vitro study, we have compared the ability of antisera to two vaccine viruses (FCV strain F9 and FCV strain 255) to neutralise a panel of 40 recent UK field isolates. These 40 isolates were obtained by randomised, cross-sectional sampling of veterinary practices in different geographical regions of the UK so as to ensure they were representative of viruses circulating in the veterinary-visiting population of cats in the UK. Virus neutralisation assays showed that both vaccine strains are still broadly cross-reactive, with F9 antiserum neutralising 87.5% and 255 antiserum 75% of isolates tested with antiserum dilutions of 1 in 2 or greater. However, when antibody units were used, in order to take account of differences in homologous titres between antisera, fewer isolates were neutralised, with F9 antiserum showing a slightly higher proportion of isolates neutralised than 255. Multivariable analysis of the sample population of 1206 cats from which the 40 isolates were derived found that vaccinated cats were at a decreased risk of being positive for FCV, whereas cats from households with more than one cat, and cats with mouth ulcers were at increased risk. In addition as cats became older their risk of shedding FCV decreased.  相似文献   

12.
To determine if antigenic variation occurred during persistent infection of cats with feline caliciviruses (FCV), nine persistent (progeny) isolates from nine different carrier cats were compared antigenically to the original infecting parent strain, FCV 255, by two-way cross-neutralization tests with rabbit antisera. Five of the nine progeny viruses isolated 35 to 169 days after initial infection were antigenically different from the parent strain. These five isolates represented four distinct antigenic phenotypes. The emergence of four distinctly different antigenic variants from a single parent strain indicates that FCV, like many other RNA viruses, exhibits considerable antigenic heterogeneity during replication in its natural host, and supports the hypothesis that antigenic variation contributes to chronic FCV infection.  相似文献   

13.
Objective To investigate the prevalence of feline calicivirus (FCV) infection in relation to ocular surface lesions in cats with upper respiratory tract diseases (URTD). Animals studied Ninety‐nine cats with ocular surface infection and symptoms or recent history of URTD were examined at various rescue shelters and hospitals. Procedure A complete general and ophthalmic examination was performed including Schirmer tear test, slit‐lamp biomicroscopy, fluorescein and lissamine green staining. Clinical and ocular symptoms were scored and recorded. Conjunctival samples were collected using a cytobrush, and nucleic acid extraction using RT‐PCR was carried out to analyze for the presence of various infectious agents. Results RT‐PCR detected either FCV, feline herpes virus type 1 (FHV‐1), Chlamydophila felis or Mycoplasma spp. in 63/99 samples. 30/63 samples were positive for FCV, 23/63 for C. felis, 21/63 for Mycoplasma spp., and 16/63 for FHV‐1. Out of the 30 FCV‐positive samples, 11 were positive only for FCV and in 19 samples FCV was seen in combination with other agents. FCV infection was highest in animals examined at the rescue centers and in the age group of 0–2 months. Erosive conjunctivitis was an important ocular finding. Oral ulcers were detected in all FCV‐infected cats. Conclusion Results indicate that FCV is highly prevalent in cats with URTD either as a sole infectious agent or in combination with other pathogens and therefore is a potential cause for ocular surface lesions during the URTD.  相似文献   

14.
Infection with feline calicivirus (FCV) is a common cause of upper respiratory and oral disease in cats. FCV infection is rarely fatal, however, virulent, systemic strains of FCV (VS-FCV) that cause alopecia, cutaneous ulcers, subcutaneous edema, and high mortality in affected cats have recently been described. Seven cats with natural VS-FCV infection all had subcutaneous edema and ulceration of the oral cavity, with variable ulceration of the pinnae, pawpads, nares, and skin. Other lesions that were present in some affected cats included bronchointerstitial pneumonia, and pancreatic, hepatic, and splenic necrosis. Viral antigen was present within endothelial and epithelial cells in affected tissues as determined by immunohistochemical staining with a monoclonal antibody to FCV. Mature intranuclear and intracytoplasmic virions in necrotic epithelial cells were identified by transmission electron microscopy. VS-FCV infection causes epithelial cell cytolysis and systemic vascular compromise in susceptible cats, leading to cutaneous ulceration, severe edema, and high mortality.  相似文献   

15.
16.
17.
BackgroundThe feline viral rhinotracheitis, calicivirus, and panleukopenia (FVRCP) vaccine, prepared from viruses grown in the Crandell-Rees feline kidney cell line, can induce antibodies to cross-react with feline kidney tissues.ObjectivesThis study surveyed the prevalence of autoantibodies to feline kidney tissues and their association with the frequency of FVRCP vaccination.MethodsSerum samples and kidneys were collected from 156 live and 26 cadaveric cats. Antibodies that bind to kidney tissues and antibodies to the FVRCP antigen were determined by enzyme-linked immunosorbent assay (ELISA), and kidney-bound antibody patterns were investigated by examining immunofluorescence. Proteins recognized by antibodies were identified by Western blot analysis.ResultsThe prevalences of autoantibodies that bind to kidney tissues in cats were 41% and 13% by ELISA and immunofluorescence, respectively. Kidney-bound antibodies were observed at interstitial cells, apical border, and cytoplasm of proximal and distal tubules; the antibodies were bound to proteins with molecular weights of 40, 47, 38, and 20 kDa. There was no direct link between vaccination and anti-kidney antibodies, but positive antibodies to kidney tissues were significantly associated with the anti-FVRCP antibody. The odds ratio or association in finding the autoantibody in cats with the antibody to FVRCP was 2.8 times higher than that in cats without the antibody to FVRCP.ConclusionsThese preliminary results demonstrate an association between anti-FVRCP and anti-cat kidney tissues. However, an increase in the risk of inducing kidney-bound antibodies by repeat vaccinations could not be shown directly. It will be interesting to expand the sample size and follow-up on whether these autoantibodies can lead to kidney function impairment.  相似文献   

18.
OBJECTIVE: To determine whether detection of virus-specific serum antibodies correlates with resistance to challenge with virulent feline herpesvirus 1 (FHV-1), feline calicivirus (FCV), and feline parvovirus (FPV) in cats and to determine percentages of client-owned cats with serum antibodies to FHV-1, FCV, and FPV. DESIGN: Prospective experimental study. ANIMALS: 72 laboratory-reared cats and 276 client-owned cats. PROCEDURES: Laboratory-reared cats were vaccinated against FHV-1, FCV, and FPV, using 1 of 3 commercial vaccines, or maintained as unvaccinated controls. Between 9 and 36 months after vaccination, cats were challenged with virulent virus. Recombinant-antigen ELISA for detection of FHV-1-, FCV-, and FPV-specific antibodies were developed, and results were compared with results of hemagglutination inhibition (FPV) and virus neutralization (FHV-1 and FCV) assays and with resistance to viral challenge. RESULTS: For vaccinated laboratory-reared cats, predictive values of positive results were 100% for the FPV and FCV ELISA and 90% for the FHV-1 ELISA. Results of the FHV-1, FCV, and FPV ELISA were positive for 195 (70.7%), 255 (92.4%), and 189 (68.5%), respectively, of the 276 client-owned cats. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that for cats that have been vaccinated, detection of FHV-1-, FCV-, and FPV-specific antibodies is predictive of whether cats are susceptible to disease, regardless of vaccine type or vaccination interval. Because most client-owned cats had detectable serum antibodies suggestive of resistance to infection, use of arbitrary booster vaccination intervals is likely to lead to unnecessary vaccination of some cats.  相似文献   

19.
Feline calicivirus (FCV) is 1 of the most common causes of upper respiratory tract disease in cats. Other disease syndromes associated with FCV infection have been reported. Recently, calicivirus infection associated with a hemorrhagic-like disease leading to significant mortality in cats has been reported. The clinical signs are similar to those observed with the calicivirus of rabbit hemorrhagic disease. This study characterized 2 FCV isolates associated with hemorrhagic-like disease. Nucleotide sequencing of the complete genome has been done for these 2 isolates as well as for 4 additional isolates representing other disease syndromes. Previously reported sequence data for the entire genome of classical FCV (6 isolates) and a portion of the capsid gene for hemorrhagic-like FCV (3 isolates), isolated in different regions of United States were used in the genetic analysis. Sequence data were used to determine relationships among the isolates and any correlation with phenotype. Nucleotide sequence comparisons of the entire genome and individual open reading frames revealed high homology among all isolates. Data suggest that the virulence may have genetic determinants on the basis of phylogenetic clustering of the isolates associated with hemorrhagic-like disease.  相似文献   

20.
In order to confirm the in vivo effectiveness of anti- feline herpesvirus type 1 (FHV-1) mouse-cat chimeric antibody (FJH2), and anti-feline calicivirus (FCV) mouse-cat chimeric antibody (F1D7), cats that had been experimentally infected with FHV-1 or FCV were administered intravenously with the chimeric antibodies, and observed for clinical manifestations. The symptoms due to FHV-1 or FCV infection in the cats administered FJH2 or F1D7 were obviously decreased when compared with those of the non-administered control cats. From these results, it was confirmed that both FJH2 and F1D7 were effective at reducing the appearance of symptoms due to FHV-1 and FCV infection, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号