首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recent studies have demonstrated the potential importance of using soil texture to modify fertilizer N recommendations. The objective of this study was to determine (i) if surface clay content can be used as an auxiliary variable for estimating spatial variability of soil NO3–N, and (ii) if this information is useful for variable rate N fertilization of non-irrigated corn [Zea mays (L.)] in south central Texas, USA across years. A 64 ha corn field with variable soil type and N fertility level was used for this study during 2004–2007. Plant and surface and sub-surface soil samples were collected at different grid points and analyzed for yield, soil N parameters and texture. A uniform rate (UR) of 120 kg N ha−1 in 2004 and variable rates (VAR) of 0, 60, 120, and 180 kg N ha−1 in 2005 through 2007 were applied to different sites in the field. Distinct yield variation was observed over this time period. Yield and soil surface clay content and soil N parameters were strongly spatially structured. Corn grain yield was positively related to residual NO3–N with depth and either negatively or positively related to clay content depending on precipitation. Residual NO3–N to 0.60 and 0.90 m depths was more related to corn yield than from shallower depths. The relationship of clay content with soil NO3–N was weak and not temporally stable. Yield response to N rate also varied temporally. Supply of available N with depth, soil texture and growing season precipitation determined proper N management for this field.  相似文献   

2.
The objectives of this study were to evaluate the performance of the cropping system model (CSM)-CERES-Rice to simulate growth and development of an aromatic rice variety under irrigated conditions in a semiarid environment of Pakistan and to determine the impact of various plant densities and nitrogen (N) application rates on grain yield and economic return. The crop simulation model was evaluated with experimental data collected in experiments that were conducted in 2000 and 2001 in Faisalabad, Punjab, Pakistan. The experimental design was a randomized complete block design with three replications and included three plant densities (one seedling hill−1, PD1; two seedlings hill−1, PD2; and three seedlings hill−1, PD3) and five N fertilizer regimes (control, N0; 50 kg ha−1, N50; 100 kg ha−1, N100; 150 kg ha−1, N150; and 200 kg ha−1, N200). To determine the most appropriate combination of plant density and N levels, four plant densities from one seedling hill−1 to four seedlings hill−1 and 13 N levels ranging from 0 to 300 kg N ha−1 (52 scenarios) were simulated for 35 years of historical daily weather data under irrigated conditions. The evaluation of CSM-CERES-Rice showed that the model was able to simulate growth and yield of irrigated rice in the semiarid conditions, with an average error of 11% between simulated and observed grain yield. The results of the stimulation analysis result showed that two seedlings hill−1 along with 200 kg N ha−1 (PD2N200) produced the highest yield as compared to all other scenarios. Furthermore, the economic analysis through the mean gini dominance also showed the dominance of this treatment (PD2N200) compared to the other treatment combinations. Thus, the management scenario that consisted of two seedlings hill−1 and 200 kg N ha−1 was the best for high yield and monitory return of irrigated rice in the semiarid environment. The mean monetary returns ranged from 291 US $ ha−1 to 1 460 US $ ha−1 to 1 460 US  ha−1 among the 52 production options that were simulated. This approaching was demonstrated as effective way to optimize the density and N management for high yield and monetary return. It will help the rice production.  相似文献   

3.
Maximum benefit of a precise nitrogen application system for wheat   总被引:1,自引:0,他引:1  
Research is ongoing to develop sensor-based systems to determine crop nitrogen needs. To be economic and to achieve wide adoption, a sensor-based site-specific application system must be sufficiently efficient to overcome both the cost disadvantage of dry and liquid sources of nitrogen relative to applications before planting of anhydrous ammonia and possible losses if weather prevents applications during the growing season. The objective of this study is to determine the expected maximum benefit of a precision N application system for winter wheat that senses and applies N to the growing crop in the spring relative to a uniform system that applies N before planting. An estimate of the maximum benefit would be useful to provide researchers with an upper bound on the cost of delivering an economically viable precision technology. Sixty five site-years of data from two dryland winter wheat nitrogen fertility experiments at experimental stations in the Southern Plains of the U.S.A. were used to estimate the expected returns from both a conventional uniform rate anhydrous ammonia (NH3) application system before planting and a precise topdressing system to determine the value of the latter. For prices of $0.55 and $0.33 kg−1 N for urea-ammonium nitrate (UAN) and NH3, respectively, the maximum net value of a system of precise sensor-based nitrogen application for winter wheat was about $22–$31 ha−1 depending upon location and assumptions regarding the existence of a plateau. However, for prices of $1.10 and $0.66 kg−1 N for UAN and NH3, respectively, the value was approximately $33 ha−1. The benefit of precise N application is sensitive to both the absolute and relative prices of UAN and NH3.This is journal paper AEJ-260 of the Oklahoma Agricultural Experiment Station, project H-2574.  相似文献   

4.
In this study growth and yield response of wheat crop to phosphobacterium inoculum was observed under sandy loam conditions. The investigations were carried out at field experiment. The experiment was laid out in Randomized Complete Block Design. The treatments were; 120-0-0 NPK kg/ha−1 (T 1), 120-50-0 kg/ha−1 (T 2), 120-100-0 NPK kg/ha−1 (T 3), T 1 + Phosphobacterium inoculum (T 4), T 2 + Phosphobacterium inoculum (T 5) and T 3 + Phosphobacterium inoculum (T 6).The results showed that bacterial strain (Pseudomonas spp.) was able to effect on yield and its attributes in wheat crop. The crop showed significant positive results. The inoculation significantly stimulates the germination count (m−2), number of tillers and spikes (m−2), 1000 grains weight (g) and grain yield (kg/ha−1). We suggest that application of 120-100-0 kg/ha−1 NPK along with coating of seed with phosphobacterium (Pseudomonas spp.) all the way through inoculation is a better practice to reduce the exploit of phosphatic fertilizers which are much costly.  相似文献   

5.
Spatial and temporal variability of soil nitrogen (N) supply together with temporal variability of plant N demand make conventional N management difficult. This study was conducted to determine the impact of residual soil nitrate-N (NO3-N) on ground-based remote sensing management of in-season N fertilizer applications for commercial center-pivot irrigated corn (Zea mays L.) in northeast Colorado. Wedge-shaped areas were established to facilitate fertigation with the center pivot in two areas of the field that had significantly different amounts of residual soil NO3-N in the soil profile. One in-season fertigation (48 kg N ha−1) was required in the Bijou loamy sand soil with high residual NO3-N versus three in-season fertigations totaling 102 kg N ha−1 in the Valentine fine sand soil with low residual NO3-N. The farmer applied five fertigations to the field between the wedges for a total in-season N application of 214 kg N ha−1. Nitrogen input was reduced by 78% and 52%, respectively, in these two areas compared to the farmer’s traditional practice without any reductions in corn yield. The ground-based remote sensing management of in-season applied N increased N use efficiency and significantly reduced residual soil NO3-N (0–1.5 m depth) in the loamy sand soil area. Applying fertilizer N as needed by the crop and where needed in a field may reduce N inputs compared to traditional farmer accepted practices and improve in-season N management.  相似文献   

6.
Using plant sensing to determine the amount of nitrogen (N) to apply has the potential to increase profits in wheat (Triticum aestivum) production by reducing N cost or by increasing grain yield. The objective of this paper was to determine if yields and profits from experimental trials that used a precision N applicator to apply N were significantly different from trials that applied pre-determined amounts of N. Across Oklahoma, USA, experiments were designed to test 10 N treatments that included two variable rate treatments (VRT), two uniform rate treatments (URT) where the level of N applied was based on optical reflectance measurements (ORM), and six conventional treatments (i.e., pre-determined uniform rates of N). Data included treatments during 2005–2009 from eight different locations. Results indicated no statistical difference in yields between the conventional treatments that apply 90 kg ha−1 of N and the VRT and URT treatments. On average, the conventional treatment that applied 90 kg ha−1 of top-dress N produced the largest yield, with a VRT treatment producing the third largest yield. Profits were calculated for each treatment using a partial budget. On average, the treatment that received 90 kg ha−1 of top-dress N was the most profitable even though the pre-plant N (anhydrous ammonia) had a cost advantage relative to top-dress N (urea and ammonium nitrate).  相似文献   

7.
Incorporation of compost in soil will not only protect the environment, but also take advantage of the nutrients and organic matter contained in the compost to enhance soil fertility and crop production. Field experiments were carried out during the 2006/2007 and 2007/2008 growing seasons at the College of Food and Agriculture Farm, United Arab Emirates University. The experiments were established in randomized complete block design (RCBD) with four replications. The plot dimension was 3.2m×2.8 m, with four rows per plot. The treatments were designed to study the effect of compost rates on the potato production and soil fertility properties. Five rates of compost were investigated (control, 40, 80, 120 ton compost per hectare; and inorganic fertilizers (250 kg N·ha−1, 250 kg P2O5·ha−1 and 300 kg K2O·ha−1)). Results of the first growing season 2006/2007 showed that marketable tuber yield, plant height and specific gravity were greater in compost amended soil than in non-amended soil even if inorganic fertilizers were added. Application of 120 ton compost per hectare gave the highest total tubers number, marketable tuber yield, height and specific gravity.  相似文献   

8.
A fuzzy inference system (FIS) was developed to generate recommendations for spatially variable applications of N fertilizer. Key soil and plant properties were identified based on experiments with rates ranging from 0 to 250 kg N ha−1 conducted over three seasons (2005, 2006 and 2007) on fields with contrasting apparent soil electrical conductivity (ECa), elevation (ELE) and slope (SLP) features. Mid-season growth was assessed from remotely sensed imagery at 1-m2 resolution. Optimization of N rate by the FIS was defined against maximum corn growth in the weeks following in-season N application. The best mid-season growth was in areas of low ECa, high ELE and low SLP. Under favourable soil conditions, maximum mid-season growth was obtained with low in-season N. Responses to N fertilizer application were better where soil conditions were naturally unfavourable to growth. The N sufficiency index (NSI) was used to judge plant N status just prior to in-season N application. Expert knowledge was formalized as a set of rules involving ECa, ELE, SLP and NSI levels to deliver economically optimal N rates (EONRs). The resulting FIS was tested on an independent set of data (2008). A simulation revealed that using the FIS would have led to an average N saving of 41 kg N ha−1 compared to the recommended uniform rate of 170 kg N ha−1, without a loss of yield. The FIS therefore appears to be useful for incorporating expert knowledge into spatially variable N recommendations.  相似文献   

9.
Precise management of nitrogen (N) using canopy color in aerial imagery of corn (Zea mays L.) has been proposed as a strategy on which to base the rate of N fertilizer. The objective of this study was to evaluate the relationship between canopy color and yield response to N at the field scale. Six N response trials were conducted in 2000 and 2001 in fields with alluvial, claypan and deep loess soil types. Aerial images were taken with a 35-mm slide film from ≥1100 m at the mid- and late-vegetative corn growth stages and processed to extract green and red digital values. Color values of the control N (0 kg N ha−1) and sufficient N (280 kg N ha−1 applied at planting) treatments were used to calculate the relative ratio of unfertilized to fertilized and relative difference color values. Other N fertilizer treatments included side-dressed applications in increments of 56 kg N ha−1. The economic optimal N rate was weakly related (R 2 ≤ 0.34) or not related to the color indices at both growth stages. For many sites, delta yield (the increase in yield between control N and sufficient N treatments) was related to the color indices (R 2 ≤ 0.67) at the late vegetative growth stage; the best relationship was with green relative difference. The results indicate the potential for color indices from aerial photographs to be used for predicting delta yield from which a site-specific N rate could be determined.  相似文献   

10.
Yield performance in cereal and legume intercropping is related to nutrient management, however, the yield response of companion crops to nitrogen (N) input is inconclusive and only limited efforts have focused on rationed phosphorous (P) fertilization. In this study, two multi-year field experiments were implemented from 2014–2019 under identical conditions. Two factors in a randomized complete block design were adopted in both experiments. In field experiment 1, the two factors included three planting patterns (mono-cropped wheat (MW), mono-cropped faba bean (MF), and wheat and faba bean intercropping (W//F)) and four N application rates (N0, 0 kg N ha–1; N1, 90 and 45 kg N ha–1 for wheat and faba beans, respectively; N2, 180 and 90 kg N ha–1 for wheat and faba beans, respectively; and N3, 270 and 135 kg N ha–1 for wheat and faba beans, respectively). In field experiment 2, the two factors included three P application rates (P0, 0 kg P2O5 ha–1; P1, 45 kg P2O5 ha–1; and P2, 90 kg P2O5 ha–1) and the same three planting patterns (MW, MF, and W//F). The yield performances of inter- and mono-cropped wheat and faba beans under different N and P application rates were analyzed and the optimal N and P rates for intercropped wheat (IW) and MW were estimated. The results revealed that intercropping favored wheat yield and was adverse to faba bean yield. Wheat yield increased by 18–26%, but faba bean yield decreased by 5–21% in W//F compared to MW and MF, respectively. The stimulated IW yield drove the yield advantage in W//F with an average land equivalent ratio (LER) of 1.12. N and P fertilization benefited IW yield, but reduced intercropped faba bean (IF) yield. Nevertheless, the partial LER of wheat (pLERwheat) decreased with increasing N application rates, and the partial LER of faba bean (pLERfaba bean) decreased with increasing P application rates. Thus, LER decreased as N input increased and tended to decline as P rates increased. IW maintained a similar yield as MW, even under reduced 40–50% N fertilizer and 30–40% P fertilizer conditions. The estimated optimum N application rates for IW and MW were 150 and 168 kg ha–1, respectively, and 63 and 62 kg ha–1 for P2O5, respectively. In conclusion, W//F exhibited yield advantages due to stimulated IW yield, but the intercropping yield benefit decreased as N and P inputs increased. Thus, it was concluded that modulated N and P rates could maximize the economic and ecological functions of intercropping. Based on the results, rates of 150 kg Nha–1 and 60 kg P2O5 ha–1 are recommended for IW production in southwestern China and places with similar conditions.  相似文献   

11.
Farmers account for yield and soil variability to optimize their production under mainly economic considerations using the technology of precision farming. Therefore, understanding of the spatial variation of crop yield and crop yield development within arable fields is important for spatially variable management. Our aim was to classify landform units based on a digital elevation model, and to identify their impact on biomass development. Yield components were measured by harvesting spring barley (Hordeum vulgare, L.) in 1999, and winter rye (Secale cereale, L.) in 2000 and 2001, respectively, at 192 sampling points in a field in Saxony, Germany. The field was stratified into four landform units, i.e., shoulder, backslope, footslope and level. At each landform unit, a characteristic yield development could be observed. Spring barley grain yields were highest at the level positions with 6.7 t ha−1 and approximately 0.15 t ha−1 below that at shoulder and footslope positions in 1999. In 2000, winter rye harvest exhibited a reduction at backslope positions of around 0.2 t ha−1 as compared to the highest yield obtained again at level positions with 11.1 t ha−1. The distribution of winter rye grain yield across the different landforms was completely different in 2001 from that observed in 2000. Winter rye showed the highest yields at shoulder positions with 11.1 t ha−1, followed by the level position with 0.5 t ha−1 less grain yield. Different developments throughout the years were assumed to be due to soil water and meteorological conditions, as well as management history. Generally, crop yield differences of up to 0.7 t ha−1 were found between landform elements with appropriate consideration of the respective seasonal weather conditions. Landform analysis proved to be helpful in explaining variation in grain yield within the field between different years.  相似文献   

12.
Several methods were developed for the redistribution of nitrogen (N) fertilizer within fields with winter wheat (Triticum aestivum L.) based on plant and soil sensors, and topographical information. The methods were based on data from nine field experiments in nine different fields for a 3-year period. Each field was divided into 80 or more subplots fertilized with 60, 120, 180 or 240 kg N ha−1. The relationships between plot yield, N application rate, sensor measurements and the interaction between N application and sensor measurements were investigated. Based on the established relations, several sensor-based methods for within-field redistribution of N were developed. It was shown that plant sensors predicted yield at harvest better than soil sensors and topographical indices. The methods based on plant sensors showed that N fertilizer should be moved from areas with low and high sensor measurements to areas with medium values. The theoretical increase in yield and N uptake, and the reduced variation in grain protein content resulting from the application of the above methods were estimated. However, the estimated increases in crop yield, N-uptake and reduced variation in grain protein content were small.  相似文献   

13.
Understanding spatial variability of indigenous nitrogen (N) supply (INS) is important to the implementation of precision N management (PNM) strategies in small scale agricultural fields of the North China Plain (NCP). This study was conducted to determine: (1) field-to-field and within-field variability in INS; (2) the potential savings in N fertilizers using PNM technologies; and (3) winter wheat (Triticum aestivum L.) N status variability at the Feekes 6 stage and the potential of using a chlorophyll meter (CM) and a GreenSeeker active crop canopy sensor for estimating in-season N requirements. Seven farmer’s fields in Quzhou County of Hebei Province were selected for this study, but no fertilizers were applied to these fields. The results indicated that INS varied significantly both within individual fields and across different fields, ranging from 33.4 to 268.4 kg ha−1, with an average of 142.6 kg ha−1 and a CV of 34%. The spatial dependence of INS, however, was not strong. Site-specific optimum N rates varied from 0 to 355 kg ha−1 across the seven fields, with an average of 173 kg ha−1 and a CV of 46%. Field-specific N management could save an average of 128 kg N ha−1 compared to typical farmer practices. Both CM and GreenSeeker sensor readings were significantly related to crop N status and demand across different farmer’s fields, showing a good potential for in-season site-specific N management in small scale farming systems. More studies are needed to further evaluate these sensing technology-based PNM strategies in additional farmer fields in the NCP.  相似文献   

14.
为探究不同施氮量下春玉米季土壤矿质态氮淋失特征及产量变化,以春玉米为研究对象,设置不同施氮量(0、90、180、270、360 kg·hm-2,分别用N0、N90、N180、N270、N360表示),采用地下淋溶原位监测的方法,测定了玉米生育期间的土壤氮素淋失动态、玉米产量及氮肥利用率.结果 表明:硝态氮(NO-3-N)是春玉米季旱地土壤矿质态氮淋失的主要形态,占总淋失量的90%~91%;施用基肥和苗期追肥后1~3周出现氮素淋失高峰,是防控氮素淋失的关键时期;随施氮量增加,矿质态氮淋失量呈指数上升趋势,表现为N360(70.46 kg·hm-2)>N270(39.65 kg·hm-2)>N180(26.33 kg·hm-2)>N90(18.55 kg·hm-2)>N0(6.54 kg·hm-2),各处理间差异达显著水平(P<0.05).氮肥表观淋失率随施氮量增加呈先降后升趋势,在N180处理下,淋失率最低,为10.99%,较N270、N360处理分别降低1.27、6.76个百分点;玉米籽粒产量先随施氮量增加而显著提高(P<0.05),施氮超过180 kg·hm-2后进入平台期,N180处理下氮肥表观利用率达到最高,较其他处理增加14.50~27.75个百分点.总体来看,该研究区域春玉米的最佳施氮量为180 kg·hm-2,既能稳产也能保肥,同时土壤的氮素淋失率最低.  相似文献   

15.
Oilseed rape is one of the most important oil crops globally. Attaining the appropriate cultivation method(planting pattern and nitrogen level) is necessary to achieve high yield, quality and resource utilization efficiency. However, the optimal method for oilseed rape varies across countries and regions. The objective of the present study was to determine an appropriate cultivation method, including planting pattern and nitrogen application, for winter oilseed rape in northwestern China. Two planting patterns: ridge film mulching and furrow planting(RFMF) and flat planting(FP), and six nitrogen(N) amounts: 0(N0), 60(N60), 120(N120), 180(N180), 240(N240), and 300(N300) kg N ha–1 were applied across three growing seasons(2014–2017). Three comprehensive decision analysis methods: principal component analysis, grey correlation degree analysis and the combined entropy weight and dynamic technique for order preference by similarity to ideal solution method were used to evaluate the growth and physiological indicators, nutrient uptake, yield, quality, evapotranspiration, and water use efficiency of winter oilseed rape. Planting pattern, nitrogen amount and their interaction significantly affected the indicators aforementioned. The RFMF pattern significantly increased all indicators over the FP pattern. Application of N also markedly increased all the indicators except for seed oil content, but the yield, oil production and water use efficiency were decreased when N fertilizer exceeded 180 kg N ha–1 under FP and 240 kg N ha–1 under RFFM. The evaluation results of the three comprehensive decision analysis methods indicated that RFMF planting pattern with 240 kg N ha–1 is an appropriate cultivation method for winter oilseed rape in northwestern China. These findings are of vital significance to maximize yield, optimize quality and improve resource use efficiencies of winter oilseed rape.  相似文献   

16.
通过田间小区试验,研究了不同氮磷水平的配合施用对玉米不同生育期的生长速度、叶面积指数(LAI)、净光合速率(Pn)、干物质积累和根/冠比(R/T)的动态变化规律以及对产量的影响.结果表明,在氮肥施用量为300~600 kg/hm2的范围内,随着施氮量的增加,玉米生长速度、叶面积指数(LAI)、净光合速率(Pn)、干物质积累量均随之增加,玉米的穗长、穗粗及穗行数没有明显变化,但穗粒数、穗粒重、百粒重增加,秃尖长度减小,产量增加;施氮量达到750 kg/hm2时,则使生长速度及生理指标下降.增施氮磷肥均能促进根/冠比的增大,但磷肥的促进作用大于氮肥.以处理N3P2(N 600 kg/hm2,P2O5 120 kg/hm2)为玉米施肥的最优氮磷配比.  相似文献   

17.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

18.
Germination conditions are determined by hydraulic, thermal and mechanical properties of the soils. In heterogeneous fields, the most favourable seeding depth varies spatially. To investigate the influence of seeding depth on emergence and grain yield of corn, corn was planted in depths of 40, 50, 60, 70, 80 and 90 mm in three experimental years (2006–2008). The apparent soil electrical conductivity was measured with an EM38. The apparent electrical conductivity was used as a proxy for soil texture, top-soil thickness, effective root zone thickness, soil water content and soil structure. The spatial dependencies among emergence, yield and apparent electrical conductivity were considered by including spatial models into the statistical analysis. The results showed significant correlations of the apparent soil electrical conductivity, of the experimental year, and of the seeding depth with the emergence of corn. Deeper planted corn (80 or 90 mm) resulted in more emergence than shallow planted corn (+4.4% in 2006, +1.2% in 2007 and +1.5% in 2008). The emergence decreased with increasing apparent soil electrical conductivity values. The corn grain yield was significantly affected by the soil electrical conductivity, by emergence and by the experimental year. Increasing apparent soil electrical conductivity values were correlated with decreasing yield (from 7.5 to 3.4 Mg ha−1 in 2006, from 10.8 to 5.3 Mg ha−1 in 2007 and from 8.4 to 2.9 Mg ha−1 in 2008). Increasing emergence resulted in increasing yield.  相似文献   

19.
Application of nitrogen (N) fertilizer is one of the most important measures that increases grain yield and improves grain quality in winter wheat (Triticum aestivum L.) production. Presently, there is a large number of investigations (experiments) in the field on different nitrogen fertilizer application regimes. However, there still exists a serious problem of low nitrogen use efficiency, especially in winter wheat high yield conditions: unsuitable nitrogen fertilizer, which often leads to lower yield and large accumulation of nitrate in the soil, bringing a potential risk to the environment. In order to explore the optimal regime of nitrogen fertilizer application suitable for environment and economy, a field experiment on the different rate and ratio of base and topdressing of nitrogen fertilizer at the different growth periods of winter wheat was conducted. The field experiment was undertaken from the fall of 2003 to the summer of 2004 in the village of Zhongcun in Longkou city, in the Shandong Province of China. The field experiment with three repeats for each treatment was designed in a split-plot. The major plot was applied with urea at a nitrogen fertilizer rate of three levels, namely, 0 kg·hm−2 (CK), 168 kg·hm−2 (A), and 240 kg·hm−2 (B). In the sub-plot, the ratios of base and topdressing nitrogen fertilizer at the different development periods of wheat were 1/2:1/2 (A1 and B1), 1/3:2/3 (A2 and B2) and 0:1 (A3 and B3). Treatment B1 was under a regime used now in the local region. It was found that the amount of N accumulation in plants had no significant difference between treatments applied with nitrogen fertilizer. The grain yield and grain protein content were all elevated remarkably by applying nitrogen fertilizer compared with those of treatment CK. There was no significant difference in the grain yield and grain protein content between A2 and B2 and B3. However, when compared with those of B2 and B3, in A2 there was an increase in nitrogen use efficiency and residual soil NO3 -N and N losses were reduced. Under the condition of the same rate of nitrogen fertilizer, increasing topdressing nitrogen rate clearly elevated the grain yield, grain protein content and nitrogen use efficiency. The results indicated that the residual soil NO3 -N in A1 and B1 accumulated higher than that of CK in 80–160 cm soil layers at the jointing stage, but that of A2 had no significant difference compared with that of CK in 0–200 cm soil layers. At the maturity stage, more residual soil NO3 -N was detected in B2, B3 and A3 than that in CK in 120–180 cm soil layers, which could not be absorbed by the roots of wheat, but led to be eluviated easily. The amount of soil NO3 -N accumulation in treatment A2 had no significant difference compared with that of treatment CK in the 100–200 cm soil layer. In conclusion, A2, whose nitrogen fertilizer rate was 168 kg·hm−2 and the ratio of base and topdressing was 1/3:2/3, had a higher grain yield and grain protein content, and heightened N use efficiency and minimized the risk of NO3 -N leaching. This should be one of the most appropriate nitrogen fertilizer application regimes in wheat production in local regions in China. __________ Translated from Acta Ecologica Sinica, 2006, 26(11): 3661–3669 [译自: 生态学报]  相似文献   

20.
Nutrient data obtained from soil chemical tests were analyzed in an activity analysis model to identify limiting factors in peanut production on the Texas High Plains. A production function was estimated for the study field, and limiting factors were identified at individual sites where the production function indicated that yield did not respond. The estimated production function also enabled us to conduct a cost-return analysis of variable- and blanket-rate fertilizer applications. The results showed that peanut yields did not respond to most of the nutrients included in the study, which confirmed conclusions from previous studies in the study region. Calcium and nitrogen were the only two limiting factors identified in this study. Significant economic returns could be obtained by site-specific fertilizer application. The average economic return from variable-rate calcium fertilizer application was $27.84 ha−1 and from blanket-rate it was $10.73 ha−1. The return from variable-rate nitrogen fertilizer application was about $20 ha−1 and from a blanket-rate it was about $14 ha−1. There seems to be quite a strong economic incentive to adopt variable-rate application for calcium and nitrogen fertilizer application.
Jeff JohnsonEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号