首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Oceanographic processes and ecological interactions can strongly influence recruitment success in marine fishes. Here, we develop an environmental index of sablefish recruitment with the goal of elucidating recruitment‐environment relationships and informing stock assessment. We start with a conceptual life‐history model for sablefish Anoplopoma fimbria on the US west coast to generate stage‐ and spatio‐temporally‐specific hypotheses regarding the oceanographic and biological variables likely influencing sablefish recruitment. Our model includes seven stages from pre‐spawn female condition through benthic recruitment (age‐0 fish) for the northern portion of the west coast U.S. sablefish stock (40°N–50°N). We then fit linear models and use model comparison to select predictors. We use residuals from the stock‐recruitment relationship in the 2015 sablefish assessment as the dependent variable (thus removing the effect of spawning stock biomass). Predictor variables were drawn primarily from ROMS model outputs for the California Current Ecosystem. We also include indices of prey and predator abundance and freshwater input. Five variables explained 57% of the variation in recruitment not accounted for by the stock‐recruitment relationship in the sablefish assessment. Recruitment deviations were positively correlated with (i) colder conditions during the spawner preconditioning period, (ii) warmer water temperatures during the egg stage, (iii) stronger cross‐shelf transport to near‐shore nursery habitats during the egg stage, (iv) stronger long‐shore transport to the north during the yolk‐sac stage, and (v) cold surface water temperatures during the larval stage. This result suggests that multiple mechanisms likely affect sablefish recruitment at different points in their life history.  相似文献   

2.
I explored the biological basis of variation in recruitment (age 3 abundance), growth and age‐specific adult survival rate for the major populations [West Coast Vancouver Island (WCVI), Strait of Georgia, Central Coast, North Coast and Haida Gwaii] of Pacific herring (Clupea pallasi) that inhabit British Columbian waters. The analyses were based on a synthesis of time series of empirical observations of herring population characteristics (egg deposition, age‐specific abundance and size) and prey, competitor and predator biomass/abundance. Recruitment was not correlated among populations. Recruitment variability was explained for WCVI herring only, as a consequence of prey (the euphausiid Thysanoessa spinifera) biomass during August in each of the first 3 years of life, and the biomass of piscivorous Pacific hake (Merluccius productus) during the first year of life. Recruit mass and adult mass‐at‐age were correlated among populations and over ages within populations. Recruit mass was affected by T. spinifera biomass in August of the first and third years of life. Adult mass‐at‐age variability was determined mainly by size at the beginning of the growth season, but also by T. spinifera biomass in August. Age‐specific adult survival rates were not correlated among the five populations. Survival rates decreased with age; there were additional population‐specific effects of somatic mass and T. spinifera biomass in August. The analyses were repeated using physical oceanographic explanatory variables. Only recruit mass variation was explained significantly by physical oceanographic variables, and the biological‐based explanation of recruit mass variability accounted for more of the variation.  相似文献   

3.
Pacific saury (Cololabis saira) has a short life span of 2 years and tends to exhibit marked population fluctuations. To examine the importance of sea surface temperature (SST) and mixed layer depth (MLD) as oceanographic factors for interannual variability of saury recruitment in early life history, we analyzed the relationship between abundance index (survey CPUE (catch per unit of effort)) of age‐1 fish and the oceanographic factors in the spawning and nursery grounds of the previous year when they were born, for the period of 1979–2006, in the central and western North Pacific. Applying the mixture of two linear regression models, the variability in the survey CPUE was positively correlated with previous year's winter SST in the Kuroshio Recirculation region (KR) throughout the survey period except 1994–2002. In contrast, the survey CPUE was positively correlated with the previous year's spring MLD (a proxy of spring chlorophyll a (Chl‐a) concentration) in the Kuroshio‐Oyashio Transition and Kuroshio Extension (TKE) during 1994–2002. This period is characterized by unusually deep spring MLD during 1994–1997 and anomalous climate conditions during 1998–2002. We suggest that saury recruitment variability was generally driven by the winter SST in the KR (winter spawning/nursery ground), or by the spring Chl‐a concentration (a proxy of prey for saury larvae) in the TKE (spring spawning/nursery ground). These oceanographic factors could be potentially useful to predict abundance trends of age‐1 saury in the future if the conditions leading to the switch between SST and MLD as the key input variable are elucidated further.  相似文献   

4.
Northern rock sole recruitment in the eastern Bering Sea has been hypothesized to (a) depend on wind‐driven surface currents linking spawning and nursery areas, (b) be density‐dependent, and (c) be negatively impacted by cold bottom temperatures over a large nursery area during the first summer of life. A suite of models was developed to test these hypotheses. Data included 32 years of recruitment and spawning biomass estimates derived from a stock assessment model and wind and temperature indices customized to the environmental exposure of age‐0 northern rock sole in the eastern Bering Sea. The predictive ability of the models was evaluated, and the models were used to forecast recruitment to age‐4 for recent year classes which are poorly retained by the standard multi‐species bottom trawl survey gear. Models which included wind and temperature indices performed better than a naïve forecast based on the running mean. The best‐performing model was a categorical model with wind and temperature thresholds, which explained 49% of the variation in recruitment. Ricker models performed more poorly than models without a spawning biomass term, providing no evidence that recruitment is related to stock size. The models forecast higher recruitment for the most recent year classes (2015–2018) than for prior year classes with observed poor recruitment (2006–2013). These environment‐based recruitment forecasts may improve recruitment estimates for the most recent year classes and facilitate study of the effects of future climate change on northern rock sole population dynamics.  相似文献   

5.
The daily mortality rates of North Sea herring early‐stage larvae are found to vary over decades. Larval abundance data were used with a spatio‐temporal oceanographic model to reconstruct temperature histories of the observed larvae. The histories were used in conjunction with a temperature‐based growth model to estimate larval age. Mean daily mortality rates were then estimated for the four spawning components (Downs, Banks, Buchan and Orkney/Shetland) using the vertical life table approach, which considers instantaneous abundances across all ages rather than following distinct cohorts. All spawning components, but especially Downs (in the south), exhibited a steady rise in mortality associated with increasing population size. In addition, the three northern components shared a distinct trend in mortality that was significantly correlated with ambient water temperatures experienced by the larvae during the respective time periods after hatching. This trend was also significantly negatively correlated with the residuals of the whole stock‐recruitment relationship. These findings were generally robust to assumptions about growth and hatch length of larvae. The compensatory increase in productivity in the late 1980s and poor recruitment since 2000 coincide with changes in the mortality of larvae younger than 30 days post hatch and covary with larval density and temperature. Thus we suggest that the mortality of early‐stage larvae does impact on the population dynamics in North Sea herring in its current productivity regime, implying a critical period in the determination of year class strength.  相似文献   

6.
For many marine fish species, recruitment is strongly related to larval survival and dispersal to nursery areas. Simulating larval drift should help assessing the sensitivity of recruitment variability to early life history. An individual‐based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the population scale in the eastern Channel on a 14‐yr time series, from 1991 to 2004. The IBM allowed each particle released to be transported by currents from the hydrodynamic model, to grow with temperature, to migrate vertically giving stage development, and possibly to die according to drift duration, representing the life history from spawning to metamorphosis. Despite sensitivity to the larval mortality rate, the model provided realistic simulations of cohort decline and spatio‐temporal variability of larval supply. The model outputs were analysed to explore the effects of hydrodynamics and life history on the interannual variability of settled sole larvae in coastal nurseries. Different hypotheses of the spawning spatial distribution were also tested, comparing homogeneous egg distribution to observation and potential larval survival (PLS) maps. The sensitivity analyses demonstrated that larval supply is more sensitive to the life history along larval drift than to the phenology and volume of spawning, providing explanations for the lack of significant stock–recruitment relationship. Nevertheless, larval supply is sensitive to spawning distribution. Results also suggested a very low connectivity between supposed different sub‐populations in the eastern Channel.  相似文献   

7.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

8.
We investigated the hypothesis that synchronous recruitment is due to a shared susceptibility to environmental processes using stock–recruitment residuals for 52 marine fish stocks within three Northeast Pacific large marine ecosystems: the Eastern Bering Sea and Aleutian Islands, Gulf of Alaska, and California Current. There was moderate coherence in exceptionally strong and weak year‐classes and correlations across stocks. Based on evidence of synchrony from these analyses, we used Bayesian hierarchical models to relate recruitment to environmental covariates for groups of stocks that may be similarly influenced by environmental processes based on their life histories. There were consistent relationships among stocks to the covariates, especially within the Gulf of Alaska and California Current. The best Gulf of Alaska model included Northeast Pacific sea surface height as a predictor of recruitment, and was particularly strong for stocks dependent on cross‐shelf transport during the larval phase for recruitment. In the California Current the best‐fit model included San Francisco coastal sea level height as a predictor, with higher recruitment for many stocks corresponding to anomalously high sea level the year before spawning and low sea level the year of spawning. The best Eastern Bering Sea and Aleutian Islands model included several environmental variables as covariates and there was some consistent response across stocks to these variables. Future research may be able to utilize these across‐stock environmental influences, in conjunction with an understanding of ecological processes important across early life history stages, to improve identification of environmental drivers of recruitment.  相似文献   

9.
Larval transport in the slope region off north‐eastern North America influences recruitment to juvenile habitats for a variety of fishes that inhabit the continental shelf. In this study, collections of larval fishes were made during springtime over the continental slope to provide insights into larval distributions and transport. Ichthyoplankton composition and distribution mirrored the physical complexity of the region. Three larval fish assemblages were defined, each with different water mass distributions. A Gulf Stream assemblage was found predominantly in the Gulf Stream and associated with filaments of discharged Gulf Stream water in the Slope Sea. Larvae of this assemblage originated from oceanic and shelf regions south of Cape Hatteras. Several members of this assemblage utilize habitats in the Middle Atlantic Bight (MAB) as juveniles (Pomatomus saltatrix, Peprilus triacanthus) and other members of the assemblage may share this life cycle (Mugil curema, Sphyraena borealis, Urophycis regia). A Slope Sea assemblage was found in all water masses, and was composed of epi‐ and mesopelagic fish larvae, as well as larvae of benthic shelf/slope residents. Larvae of one member of this assemblage (U. tenuis) are spawned in the Slope Sea but cross the shelf‐slope front and use nearshore habitats for juvenile nurseries. A MAB shelf assemblage was found in MAB shelf water and was composed of larvae that were spawned on the shelf. Some of these species may cross into the Slope Sea before returning to MAB shelf habitats (e.g. Enchelyopus cimbrius, Glyptocephalus cynoglossus). Previous studies have examined the effect of warm‐core rings on larval distributions, but this study identifies the importance of smaller‐scale features of the MAB shelf/slope front and of filaments associated with Gulf Stream meanders. In combination with these advective processes, the dynamic nature of larval distributions in the Slope Sea appears to be influenced, to varying degrees, by both vertical and horizontal behaviour of larvae and pelagic juveniles themselves.  相似文献   

10.
The survival of fish eggs and larvae, and therefore recruitment success, can be critically affected by transport in ocean currents. Combining a model of early‐life stage dispersal with statistical stock–recruitment models, we investigated the role of larval transport for recruitment variability across spatial scales for the population complex of North Sea cod (Gadus morhua). By using a coupled physical–biological model, we estimated the egg and larval transport over a 44‐year period. The oceanographic component of the model, capable of capturing the interannual variability of temperature and ocean current patterns, was coupled to the biological component, an individual‐based model (IBM) that simulated the cod eggs and larvae development and mortality. This study proposes a novel method to account for larval transport and success in stock–recruitment models: weighting the spawning stock biomass by retention rate and, in the case of multiple populations, their connectivity. Our method provides an estimate of the stock biomass contributing to recruitment and the effect of larval transport on recruitment variability. Our results indicate an effect, albeit small, in some populations at the local level. Including transport anomaly as an environmental covariate in traditional stock–recruitment models in turn captures recruitment variability at larger scales. Our study aims to quantify the role of larval transport for recruitment across spatial scales, and disentangle the roles of temperature and larval transport on effective connectivity between populations, thus informing about the potential impacts of climate change on the cod population structure in the North Sea.  相似文献   

11.
We used retrospective scale growth chronologies and return size and age of female Chinook salmon (Oncorhynchus tshawytscha) from a northern California, USA, population collected over 22 run years and encompassing 18 complete cohorts to model the effects of oceanographic conditions on growth during ocean residence. Using path analyses and partial least squares regressive approaches, we related growth rate and maturation to seven environmental variables (sea level height, sea surface temperature, upwelling, curl, scalar wind, northerly pseudo‐wind stress and easterly pseudo‐wind stress). During the first year of life, growth was negatively related to summer sea surface temperature, curl and scalar winds, and was positively related to summer upwelling. During the second, third and fourth growth years growth rate was negatively related to sea level height and sea surface temperature, and was positively related to upwelling and curl. The age at maturation and the fork length at which three ocean‐winter fish returned were related to the environment experienced during the spring before the third winter at sea (the year prior return). Faster growth during the year before return led to earlier maturation and larger return size.  相似文献   

12.
Spiny lobsters are highly valuable seafood species that are captured and marketed in more than 90 countries. After more than 30 years of stable catches, spiny lobster fisheries in many parts of the world are declining due to decreased recruitment. The planktonic larvae spend up to 2 years in offshore waters, accumulating energy stores to fuel the non‐feeding post‐larva, or puerulus, to actively migrate onshore and settle. The total energy required by spiny lobster pueruli for cross‐shelf migration has not been accurately determined. Recent advances in larval culture have provided the opportunity for the first detailed examination of the swimming performance, respiratory metabolism and nitrogen excretion of spiny lobster (Sagmariasus verreauxi) throughout the puerulus stage. The routine and active metabolic rates of pueruli were lower than for most other decapod larvae, probably to provide greater energy efficiency. However, pueruli were found to have limited time, swimming ability and fuel for active cross‐shelf migration. It is estimated that S. verreauxi pueruli require at least 13.8 mg of stored lipid to provide sufficient energy (18.4% DW) to complete the puerulus stage and recruit to coastal habitats. The ability of the preceding phyllosoma larvae to accumulate these reserves, and the presence of favourable oceanographic conditions during the limited time available to the migrating puerulus, are both crucial to subsequent successful recruitment. Spiny lobster recruitment processes appear to be particularly vulnerable to changes in oceanic climate which is likely to contribute to the recent large‐scale declines in recruitment to valuable fished populations.  相似文献   

13.
The northern shrimp Pandalus borealis is at its southern limit in the Gulf of Maine (GOM), and recruitment success is higher in years with relatively cool water temperature. However, the mechanisms for the temperature effect are not clear. We used rolling window analysis of daily satellite data to identify critical periods for early life survival of the 1998–2012 northern shrimp year‐classes and to investigate the importance of the phenology of the hatch and bloom. Survival was negatively correlated with sea surface temperature (SST) during a 6‐week period around the time of larval emergence (late winter) and during a 4‐week period in late summer when SST and stratification reached annual maxima. Survival was negatively correlated with chlorophyll‐a concentration (chl‐a) during two 5‐week periods centered approximately a month before the hatch midpoint and around the time of settlement to the benthos. A small‐magnitude winter bloom occurred around the time of the hatch in many years, but our results did not reveal a link between survival and bloom‐hatch phenology. The timing of winter and spring blooms were correlated with SST during the preceding 10 months. A survival model including SST and chl‐a during the critical periods explained 73% of the variance in survival. Summer SST increased significantly during the study period; the other critical variables showed no trend. The rolling windows approach revealed sensitive periods in early life history that may not have otherwise been hypothesized, providing a foundation for research towards a greater understanding of processes affecting recruitment.  相似文献   

14.
Changes in fish year‐class strength have been attributed to year‐to‐year variability in environmental conditions and spawning stock biomass (SSB). In particular, sea temperature has been shown to be linked to fish recruitment. In the present study, I examined the relationship between sea surface temperature (SST), SSB and recruitment for two stocks of walleye pollock (Theragra chalcogramma) around northern Japan [Japanese Pacific stock (JPS) and northern Japan Sea stock (JSS)] using a temperature‐dependent stock‐recruitment model (TDSRM). The recruitment fluctuation of JPS was successfully reproduced by the TDSRM with February and April SSTs, and February SST was a better environmental predictor than April SST. In addition, the JPS recruitment was positively related to February SST and negatively to April SST. The JSS recruitment modeled by the TDSRM incorporating February SST was also consistent with the observation, whereas the relationship between recruitment and February SST was negative, that is the opposite trend to JPS. These findings suggest that SST in February is important as a predictor of recruitment for both stocks, and that higher and lower SSTs in February act favorably on the recruitment of JPS and JSS respectively. Furthermore, Ricker‐type TDSRM was not selected for either of the stocks, suggesting that the strong density‐dependent effect as in the Ricker model does not exist for JPS and JSS. I formulate hypotheses to explain the links between SST and recruitment, and note that these relationships should be considered in any future attempts to understand the recruitment dynamics of JPS and JSS.  相似文献   

15.
Quantifying the mortality of marine fishes is important for understanding spawner–recruit relationships, predicting year‐class strength, and improving fishery stock assessment models. There is increasing evidence that pelagic predators can exert a top‐down influence on prey, especially during critical early life‐history stages. The objective of this study was to quantify predation by North Pacific albacore on Northern anchovy in the California current system (CCS). I estimated the abundance of juvenile albacore in the CCS from 1966–2005 using stock assessment models and spatially explicit catch‐per‐unit‐effort time series. Anchovy abundance (1966–93), both recruitment and total biomass, was obtained from a stock assessment model. Annual rates of anchovy consumption by albacore were calculated using diet studies of albacore in the CCS, an age‐structured bioenergetics model, and regional estimates of albacore abundance. The range of estimates was large: albacore may remove from less than 1% to over 17% of anchovy pre‐recruitment biomass annually. Relationships between predation and recruitment biomass were consistent with expectations from top‐down effects, but further study is required. This is the first attempt to quantify a specific source of mortality on anchovy recruits and to demonstrate potential top‐down effects of predation on anchovy.  相似文献   

16.
The southern Brazilian shelf supports the largest fish stocks in the country, and studies on physical–biological processes in the ecology of ichthyoplankton have been recommended to provide a better understanding of the variability of the recruitment of fishing resources. This study is the first to examine the influence of mesoscale physical processes on the distribution of early life stages of fish in this shelf‐break region. Collections of fish eggs and larvae and measurements of temperature and salinity were made at 13 stations along cross‐shelf transects in December 1997. Myctophidae, Bregmacerotidae, Clupeidae, Synodontidae and Engraulidae were the most abundant larvae in the northern region, while Engraulidae and Bregmacerotidae prevailed further south. In situ hydrographic data, NOAA/AVHRR images and merged TOPEX/POSEIDON + ERS‐1/2 satellite altimetry taken during the cruise revealed an anticyclonic eddy dominating the shelf around 31°S. Larval fish abundance was lower at the centre of this feature, suggesting that the eddy advected poorer offshore waters of tropical origin towards the inner shelf‐concentrating the larvae around the eddy.  相似文献   

17.
Larval fish assemblages were sampled using replicated oblique bongo net tows along a five‐station transect extending from inshore (18 m depth) to offshore waters (1000 m depth) off temperate south‐western Australia. A total of 148 taxa from 93 teleost families were identified. Larvae of Gobiidae and Blenniidae were abundant inshore, while larvae of pelagic and reef‐dwelling families, such as Clupeidae, Engraulidae, Carangidae and Labridae were common in continental shelf waters. Larvae of oceanic families, particularly Myctophidae, Phosichthyidae and Gonostomatidae, dominated offshore assemblages. Multivariate statistical analyses revealed larval fish assemblages to have a strong temporal and spatial structure. Assemblages were distinct among seasons, and among inshore, continental shelf and offshore sampling stations. Inshore larval fish assemblages were the most seasonal, in terms of species composition and abundance, with offshore assemblages the least seasonal. However, larval fish assemblages were most closely correlated to water mass, with species distributions reflecting both cross‐shelf and along‐shore oceanographic processes and events. Similarity profile (SIMPROF) analysis suggested the presence of twelve distinct larval fish assemblages, largely delineated by water depth and season. The strength and position of the warm, southward flowing Leeuwin Current, and of the cool, seasonal, northward flowing Capes Current, were shown to drive much of the variability in the marine environment, and thus larval fish assemblages.  相似文献   

18.
Explaining recruitment variation in fish is essential for successful fishery management and is consequently under constant review, with an increasing focus on how maternal factors, relative to environmental influences, operate at the level of individual female spawners and extend from the spawning stock through to recruitment. We estimate total egg production (E) in Icelandic summer‐spawning herring (Clupea harengus) from 1963 through 1999 by using sequential population analyses (SPA) and their estimates of stock biomass and recruitment, various size and maturity metrics, and individual fecundity estimates that rely on total length and the condition of the spawners. Generalized linear models indicate that maternal effects are of significance in explaining SPA‐based recruitment‐at‐age‐3 (R). The best model explained 64% of the variation in R and incorporates E constrained to the repeat spawners (40%), the NAO winter index (18%) and ocean temperature (6%). The latter two represent the winter and spring periods subsequent to year‐class formation. Recruit spawner contributions to E were of no significance in explaining variation in R despite the fact that they could contribute as much as 55% of E when their contribution to E was consistently underestimated by a factor of ~ 2, based only on their contribution to spawning stock biomass. We conclude that the spawning potential of the repeat spawners should replace total spawning stock biomass for determining recruitment potential in stock assessment. In addition to the incorporation of oceanographic factors, this would provided a more cautious and risk‐adverse approach.  相似文献   

19.
Atlantic cod, Gadus morhua, harvested in US waters are currently managed as a Gulf of Maine stock and as a stock comprising Georges Bank and southern New England populations. Over the past two and a half decades, success of age‐1 recruitment to the Gulf of Maine stock has varied by more than an order of magnitude. To investigate the hypothesis that this variation is related to variation in the transport of larval cod to nursery areas, we carried out model simulations of the movement of planktonic eggs and larvae spawned within the western Gulf of Maine during spring spawning events of 1995–2005. Results indicate that the retention of spring‐spawned cod, and their transport to areas suitable for early stage juvenile development, is strongly dependent on local wind conditions. Larval cod retention is favored during times of downwelling‐favorable winds and is least likely during times of upwelling‐favorable winds, during which buoyant eggs and early stage larvae tend to be advected offshore to the Western Maine Coastal Current and subsequently carried out of the Gulf of Maine. Model results also indicate that diel vertical migration of later stage larvae enhances the likelihood of retention within the western Gulf of Maine. Consistent with model results is a strong correlation between age‐1 recruitment success to the Gulf of Maine cod stock and the mean northward wind velocity measured in Massachusetts Bay during May. Based on these findings, we propose a wind index for strong recruitment success of age‐1 cod to the Gulf of Maine stock.  相似文献   

20.
Environment–recruitment relationships can be difficult to delineate with parametric statistical models and can be prone to misidentification. We use non‐parametric time‐series modeling which makes no assumptions about functional relationships between variables, to reveal environmental influences on early life stages of bluefin tuna and demonstrate improvement in prediction of subsequent recruitment. The influence of sea surface temperature, which has been previously associated with larval growth and survival, was consistently detected in recruitment time series of bluefin tuna stocks that spawn in the Mediterranean Sea, the North Pacific, and the Southern Ocean. Short time series for the Gulf of Mexico stock may have precluded a clear determination of environmental influences on recruitment fluctuations. Because the non‐parametric approach does not require specification of equations to represent system dynamics, predictive models can likely be developed that appropriately reflect the complexity of the ecological system under investigation. This flexibility can potentially overcome methodological challenges of specifying structural relationships between environmental conditions and fish recruitment. Consequently, there is potential for non‐parametric time series modeling to supplement traditional stock recruitment models for fisheries management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号