首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A short audible distance for the rustling sound of combat uniform fabric helps to reduce soldiers’ exposure to the enemy forces. The objectives of this study were to evaluate mechanical properties and sound characteristics of combat uniform fabrics, to investigate their influence on audible distance at which fabric’s rustling sound can be reached to human ear, and to establish prediction models for audible distance using mechanical and psychoacoustic parameters. Six types of combat uniform fabrics were used as test specimen. Mechanical properties of the specimens were measured according to the KES-FB system and the acoustic characteristics of the fabrics were analyzed by the Sound Quality System. Audible distances of the fabric sounds were assessed by 30 male soldiers. The audible distances were determined by the distance of which the participants walked away from a starting point in a straight line until they could not hear the sound. Water repellent finished fabric (W-WR), which showed the highest values of bending rigidity, shear stiffness, sound pressure level, loudness(Z) and sharpness(Z) among all fabrics, had the longist audible distance. Fabric for summer season (W-S) had the shortest audible distance in all frictional speed levels, which indicates the best auditory camouflage performance. Coefficient of friction was chosen as the variable affecting loudness(Z) of fabric sounds. Loudness(Z) was finally chosen as the prediction parameter for the audible distance by path analysis.  相似文献   

2.
Fabric touch was evaluated psychophysically in order to determine the relationship between mechanical properties and subjective sensation. For subjective touch sensation, eight aspects such as hardness, smoothness, coarseness, coolness, pliability, crispness, heaviness and thickness were evaluated using free modulus magnitude estimation (FMME) technique. KES-FB was used to measure the mechanical properties of fabrics. Woolen fabric with the highest values of WC and weight was evaluated as the coarsest, heaviest and thickest. While silk crepe de chine with the lowest LT, G, 2HG, thickness and weight was rated as smoother and more pliable than any other fabrics. And flax with the highest values of LT and SMD was evaluated as hard, cool and crisp. Fabric touch and satisfaction were predicted well from the mechanical properties, especially from SMD, by regression analysis. Satisfaction for touch increased as smoothness increased.  相似文献   

3.
The effect of scouring, bleaching and dyeing on the low stress mechanical and surface properties of wool woven fabrics was studied. Fabric properties were measured by the KES-FB system. In general, mechanical properties of the treated fabrics are greatly affected by scouring, moderately by dyeing and least by bleaching.  相似文献   

4.
This paper explains a study conducted to evaluate mechanical properties of woven structures of basalt. The mechanical properties like shear strength and tensile strength were studied. Tensile properties of basalt hybrid and non-hybrid fabrics are predicted by computational tool and verified with experimental data. The shear strength was investigated by using picture frame fixture. The tests were recorded by a CCD monochrome camera during displacement of specimen at various positions. The images were used for image analysis program developed in MATLAB. The results of image analysis were compared with the actual experimental results. The results illustrate that the mechanical properties of fabrics experience a marked improvement when hybridization of basalt with polyester and polypropylene in different sets of weaves takes place. These findings are important requirements for using such fabrics for high-tech applications and composite forming.  相似文献   

5.
This work aims to predict the mechanical properties of woven jute/banana hybrid composite. Woven fabrics are arranged in three layers of different sequence. Resin used in this work is Epoxy LY556 with hardener HY951. Composite specimen are prepared by hand-layup techniques. The effect of layering sequence on the mechanical properties namely tensile, flexural and impact was analysed. It is found that the tensile and flexural strength of hybrid composite (Banana/Jute/Banana) is higher than that of individual composites. Similarly, the impact strength of Jute/Banana/Jute hybrid composite is better than other types of composite. It is found that the moisture absorption of woven banana fiber composite is lesser than the hybrid composite. Fractography study of the fractured specimen is carried out using scanning electron microscope to analyse the fracture behaviour of the hybrid composite.  相似文献   

6.
This study analyzes how the silhouette of virtual garments applied to virtual avatars is altered according to various virtual fabric properties. This study measures the properties of real fabrics that include a charmeuse (#F1) and gabardine (#F2) using the Fabric Analysis by Simple Testing system; in addition, the material properties of different real fabrics were applied to that of the virtual fabric. It then evaluates the drape stiffness and silhouette of the virtual garments according to the different fabrics. This study also compared the virtual garment silhouette of sample fabric #F1-S that changed only the stretch property of the sample fabric #F1 with the virtual garment silhouette of sample fabric #F1. The results show that the fabric properties including bend, thickness, weight, stretch, shear values affect the drape stiffness, silhouette, and fit of the virtual garment simulated on virtual avatars and may be used for the realistic virtual garment technology.  相似文献   

7.
Cellulase is useful for bio-polishing cotton fabrics which enhances their aesthetic performance instead of stonewashing process. Torque-free ring spun process is a widely used technique to produce newly low-twist and balanced torque yarns with soft hand. In this paper, denim fabrics woven with torque-free ring spun yarn and conventional ring spun yarn respectively were treated with cellulase under the same condition and their fabric handle, expressed as low stress mechanical properties, such as tensile strength, bending, shearing, compression and surface performance were investigated by Kawabata Evaluation System for Fabric (KES-F). After cellulase treatment, both denim fabrics revealed better flexibility, elasticity recovery, raised shearing stiffness, fluffier and improved smoothness. While torque-free ring spun yarn made denim fabric showed a better fabric handle than conventional ring spun yarn made denim fabric.  相似文献   

8.
Suits produced now are high class with good quality due to advanced manufacturing techniques. Woollen fabrics and interlinings are the major materials for suit manufacture. Using woollen fabric and interlining to produce quality fabric has become an important production process. However traditional fusible interlinings are costly and involve a tedious production process, and they have some drawbacks such as strike through and bubbles. In this study, a printable interlining is proposed which can be used in place of fusible interlining. Screen-printing technique directly prints on the shell fabric and it is named printable interlining which enhances quality and reduces operational cost for garment manufacturers. Fabric quality is generally perceived through fabric hand value. Based on a series of laboratory experiments carried out to investigate total hand value and low-stress mechanical properties, this paper compares the impact of fusible interlining and printable interlining on woollen fabric using the Kawabata Evaluation System. Total hand value and five low-stress mechanical properties, tensile, bending, shearing, surface and compression were obtained. The results prove that printable interlinings can replace fusible interlinings on woollen fabrics and improve the fabric total hand value and bending, shearing and tensile properties. Printable interlining can be widely used in mass suit production with simple control process and it is cost-efficient.  相似文献   

9.
The effects of liquid ammonia (L/A) treatment on the mechanical properties and hand of 100 % hemp woven fabrics were investigated by the KES-FB (Kawabata Evaluation System for Fabric). Tensile energy and tensile resilience were increased by the L/A treatment. Bending and shearing values such as bending rigidity, bending moment, shear stiffness, shear hysteresis of the L/A treated fabrics were lower than those of the untreated ones. Compressional linearity and compressional energy were decreased while the compressional resilience was increased by the L/A treatment. From the hand evaluation, the primary hand values as well as total hand value of the hemp fabric were markedly increased by the L/A treatment, especially when yarn number was fine. Therefore, L/A treatment was found to be an effective method of improving the flexibility and softness of hemp woven fabrics.  相似文献   

10.
The purpose of this study was to investigate the effects of bending properties and drapability on the hand and appearance of wool-blended fabrics for comparison of real clothing with online and 3D virtual garments. Objective evaluations were performed by measuring mechanical properties of fabrics, while subjective evaluations were performed by subjects evaluating sensory images of fabrics; real clothing evaluations were performed offline and online, and 3D virtual garments were evaluated. Bending properties and drape coefficients of fabrics were affected by wool blending ratio, and fabrics with high wool blending ratio showed low stiffness, warm-cool, weight, and high smoothness, drapability image. In the real clothing evaluation, stiffness image showed many differences with online evaluation with respect to wool blending ratio. Objective bending properties and drape coefficients showed no correlation with subjective sensory images offline. For the online results, objective mechanical properties had good correlations with all sensory images except smoothness. Stiffness and warm-cool online scores were higher than the offline ones and the offline drapability was higher than the online one for 100 % wool fabrics. Thus, clothing was generally evaluated online as more hard and moist than real clothing. For the virtual garment evaluation, sensory images had no difference according to wool blending ratio compared with real clothing. Many differences in subjective sensory images between real clothing and virtual garments were observed, except for smoothness and weight images. The results showed that it is difficult to exactly predict the hand and appearance of clothing according to fabric properties using 3D virtual garment system.  相似文献   

11.
The mechanical and physical properties of spun yarns and fabrics depend not only on mechanical properties of the fibers making up the yarn, but also geometrical arrangement of fibers, known as fiber migration. The main aim of this research is to introduce a new approach to predict migratory behavior of spun yarns. Achieving the objectives of this research, general physical, mechanical and structural properties of spun yarns together with existing standards were thoroughly studied. A hybrid intelligent model was developed based on a Genetic Fuzzy System (GFS) to model the relationships between migration of fibers in spun yarns and some physical and mechanical properties of spun yarns. Results indicated that the developed fuzzy expert system can be used as an intelligent simulator to predict yarn migratory parameters.  相似文献   

12.
The aim of this study was to understand the effects of softening treatment on pull-out properties of plain, ribs and satin fabrics. Polyester woven fabrics were used to conduct the pull-out tests. Data generated from these tests included pullout force, crimp extension and fabric displacement. A developed yarn pull-out fixture was used to perform single and multiple pull-out tests on treated and untreated polyester fabrics. Yarn pull-out forces depend on fabric treatments, fabric density, fabric weave, and the number of pulled ends in the fabric. The results of regression model showed that multiple and single yarn pull-out forces of treated fabrics were lower than those of untreated fabrics. The multiple yarn pull-out force was higher than that of the single yarn pull-out force, and that dense fabric had a high pull-out force. Treated and untreated plain fabrics had high single and multiple pull-out forces compared to those of treated and untreated ribs and satin fabrics. Yarn crimp extension depends on directional crimp ratios in the fabric and the number of pulled yarn ends. High directional crimp ratio fabric showed high directional yarn crimp extension. Fabric displacement depends on the number of pulled yarn ends and also fabric treatments. Fabric displacement in multiple pull-out tests showed high fabric displacement compared to that of single pull-out tests. On the other hand, the regression model could be used in this study as a viable and reliable tool.  相似文献   

13.
利用KES型织物手感仪、YG541B型织物折痕回复性测试仪、YG811型织物悬垂仪、Y561型织物透气仪测试天丝苎麻织物的手感风格和服用性能,并与典型的天丝织物、苎麻织物、涤麻织物和棉织物进行了风格对比,为天丝苎麻类产品的开发提供科学依据。  相似文献   

14.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

15.
Aesthetic properties of fabrics have been considered as the most important fabric attribute for years. However, recently there has been a paradigm shift in the domain of textile material applications and consequently more emphasis is now being given on the mechanical and functional properties of fabrics rather than its aesthetic appeal. Moreover, in certain woven fabrics used for technical applications, strength is a decisive quality parameter. In this work, tensile strength of plain woven fabrics has been predicted by using two empirical modelling methods namely artificial neural network (ANN) and linear regression. Warp yarn strength, warp yarn elongation, ends per inch (EPI), picks per inch (PPI) and weft count (Ne) were used as input parameters. Both the models were able to predict the fabric strength with reasonably good precision although ANN model demonstrated higher prediction accuracy and generalization ability than the regression model. The warp yarn strength and EPI were found to be the two most significant factors influencing fabric strength in warp direction.  相似文献   

16.
In this research work, behavior of flexural stiffness of core spun cotton spandex single jersey, 1x1 rib and interlock fabrics was studied under relaxation and machine washing treatments. Results are compared with similar fabrics made from 100 % cotton. Fabric weight density increased with the progression of treatments and it is proportionate to the fabric tightness factor (stitch length?1). Even though both types of fabrics had same machine set stitch lengths, cotton/spandex fabrics have shown the higher fabric weight densities than that of 100 % cotton fabrics. Although 1x1 rib and single jersey fabrics knitted with the same machine set stitch lengths, rib fabrics have given higher fabric weight densities than single jersey fabrics. Among the three knitted structures, interlock fabrics with higher machine set stitch lengths gave the higher fabric weights. Fabric stiffness and flexural rigidity have given higher values under the progression of treatments and it was found that higher values of stiffness have given by cotton/spandex knitted fabrics compared to their cotton fabrics. Fabric stiffness and flexural rigidity in wale direction were higher than that in course direction, but it is only observed in single jersey fabrics. However, 1x1 rib and interlock fabrics have shown an opposite behavior. It was also observed a positive correlation between TF (i.e.: stitch length?1) and bending length/flexural rigidity in both fabric types. Lower flexural rigidities reported with single jersey structures and highest values gave with interlock structures of cotton/spandex and cotton fabrics.  相似文献   

17.
The present study was concerned mainly with the assessment of the modification of low stress mechanical properties of linen fabric that were induced by enzymatic treatment. In addition, the effect of dyeing with reactive dye on the enzyme treated linen fabric on the low stress mechanical properties were also investigated. Kawabata Evaluation System for Fabric (KES-F) instrument was used for assessing the low stress mechanical properties, i.e. tensile, shearing, bending, compression, and surface properties. Experimental results showed that the enzymatic treatment could alter those properties to different extent depending much on the concentration of enzyme used.  相似文献   

18.
Three different silicone polymer systems, such as aminofunctional, epoxyfunctional, and hydrophilic epoxyfunctional silicone polymers, were applied onto plasma pretreated wool fabric to improve the dimensional properties. The results showed that the plasma pretreatment modified the cuticle surface of the wool fiber and increased the reactivity of wool fabric toward silicone polymers. Felting shrinkage of plasma and silicone treated wool fabric was decreased with different level depending on the applied polymer system. Fabric tear strength and hand were adversely affected by plasma treatment, but these properties were favorably restored on polymer application. Therefore, it has been concluded that the combination of plasma and silicone treatments can achieve the improved dimensional stability, and better performance properties of wool fabric. The surface smoothness appearances of treated fabrics were measured using a new evaluation system, which showed good correspondence with the results of KES-FB4 surface tester.  相似文献   

19.
This paper proposes a new model capable of predicting frictional sounds of woven fabrics, knitted fabrics and vapor permeable water repellent fabrics by measuring the relationships between their sound parameters and mechanical properties. We conducted an experiment in which fabric frictional sounds were recorded and analyzed. A total of 217 specimens consisting of woven fabrics, knitted fabrics, and vapor permeable water repellent fabrics were sampled, and their frictional sounds recorded using a Sound Quality System. Sound parameters of fabrics including SPL (Sound Pressure Level), Loudness (Z), Sharpness (Z), and mechanical properties by Kawabata Evaluation System (KES) were obtained. The relation between sound parameters and mechanical properties were analyzed by multiple regressions. Specimens were divided into 3 clusters using mechanical properties selected by stepwise selection method, and the mechanical properties of each cluster were investigated. Specimens were classified into clusters having high level of SPL and Loudness (Z), high level of Sharpness (Z), and middle level of Loudness (Z) and Sharpness (Z), which means that sound parameters are well verified by mechanical properties of the specimens. Mechanical properties relevant to each sound parameter were mapped on two dimensional spaces by integrated graphical presentation. SPL showed high positive correlation coefficients with MMD and LT. Loudness (Z) was well predicted by 2HG5 and Sharpness (Z) by MIU.  相似文献   

20.
N-methylol dimethylphosphonopropionamide is a flame-retardant agent commonly combined with melamine resin and phosphoric acid catalyst to impart flame-retardant property to cotton fabrics. A co-catalyst titanium dioxide (TiO2) is added into the formulation in order to improve the flame-retardant performance by enhancing the crosslinking reaction and physically attaching on to cotton fabrics. The fabrics cured at temperature of 150 °C and 170 °C have a better flame-retardant ability and can withstand multiple times of home laundering compared with those cured at temperature of 110 °C and 130 °C. The flame-retardant ability is further enhanced by treating the fabrics in the presence of TiO2. In addition, the low stress mechanical properties measured by Kawabata Evaluation System for Fabric (KES-F) are altered after flame-retardant treatment. These changes are contributed by the formation of crosslinks after treatment, acid-catalyzed depolymerization in a strong acidic medium and the presence of co-catalyst TiO2. In addition, the properties of cotton fabrics depend greatly on the choice of curing temperature. High curing temperature usually caused poor hand properties of the fabrics due to the extensive crosslinks formation. Lastly, the existence of TiO2 in the treatment not only improves the reaction efficiency but also has positive enhancement with respect to compressional recovery ability and tensile properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号