首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulked segregant analysis was employed to identify random amplified polymorphic DNA (RAPD) markers linked to a gene that confers rhizomania resistance to a sugar beet line created from a Holly Sugar Company breeding population (USA). Polymorphism revealed with 160 arbitrary 10-mer oligonucleotide primers was screened in two bulks produced by separately pooling the individual DNAs from the six most resistant and the six most susceptible plants of an F2 population segregating for rhizomania resistance. A study of the F2 individuals showed that 19 primers generated 44 polymorphic markers which were then grouped into nine linkage groups. By analysis of variance, 12 were shown to have a significant effect upon the level of resistance and were mapped on a segment 22.3 cM long. A quantitative trait locus (QTL) of resistance was identified and located in a 4.6cM interval between two markers. It accounted for 67.4% of the observed variation and almost all the genetic variation. These results suggest that the identified QTL corresponds to a unique major gene conditioning the Holly resistance studied, which we have named Rz-l.  相似文献   

2.
C. Halldén    T. Säll    K. Olsson    N.-O. Nilsson  A. Hjerdin 《Plant Breeding》1997,116(1):18-22
Bulked segregant analysis (BSA) was used to accumulate RAPD markers near the beet cyst nematode resistance locus Hslpro-1 of sugar beet (Beta vulgaris L.). Graphical genotypes constructed from RFLP data were utilized to select F2 individuals in (1) the construction of pools of plants used in the initial screening for polymorphisms, and (2) the selection of individual plants used to confirm the potential linkage. The pooled DNA samples were screened for polymorphisms using 668 RAPD primers. Forty-four candidate markers potentially linked to the region were analysed further using 14 segregating individuals. Close linkage was confirmed for 17 of the markers. Four of the RAPD markers were assigned map coordinates within the RFLP map. Three of these markers extended the RFLP map by 3cM. Altogether, the 8cM target interval contains 10 RFLP and 17 RAPD markers, corresponding to an average marker density of 0.3cM in the Hslpro-1 region.  相似文献   

3.
Summary A linkage map for watermelon (Citrullus lanatus) was constructed on the basis of RADP, ribosomal DNA restriction fragment length polymorphism (RFLP), isozyme, and morphological markers using F1BC1. A segregating population of 78 individuals was the result of a backcross of a cultivated inbred line (H-7; Citrullus lanatus; 2n=22) and a wild form (SA-1; C. lanatus; 2n=22), in which the latter was the recurrent (male) parent. A total of 69 RAPD, one RFLP, one isozyme, and three morphological markers was found to segregate in the BC1 population. Linkage analysis revealed that 62 loci could be mapped to 11 linkage groups that extended more than 524 centimorgans (cM), while 12 loci segregated independently of all other markers. The locus for exocarp color was linked to two RAPD markers within a region of 5 cM on linkage group 4. The locus for flesh color was linked to a RAPD marker within a region of 30 cM on linkage group 6. The isozyme marker GOT was located on the linkage group 1. Linkage group 2 contained a locus for ribosomal DNA within 5 cM of a RAPD marker. Half of the RAPD markers on the linkage group 7 displayed severely distorted segregation. The construction of linkage map using molecular markers is necessary for the breeding of watermelon to introduce useful gene of wild watermelon efficiently. However the linkage map that was constructed for the most part on the basis of RAPD markers could not cover significant parts of the genome, the linkage map provides breeders of watermelons the possibility of tagging useful agronomic traits, as well as the gene for exocarp color.Abbreviations RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - GOT glutamate oxaloacetate transaminase - MDH malate dehydrogenase - ACP acid phosphatase - 6PGH 6-phosphogluconate dehydrogenase  相似文献   

4.
Black rot is the most devastating disease of cauliflower worldwide causing severe damage to crop. The identification of markers linked to loci that control resistance can facilitate selection of plants for breeding programmes. In the present investigation, F2 population derived from a cross between ‘Pusa Himjyoti’, a susceptible genotype, and ‘BR‐161’, a resistant genotype, was phenotyped by artificial inoculation using Xcc race 1. Segregation analysis of F2 progeny indicated that a single dominant locus governed resistance to Xcc race 1 in ‘BR‐161’. Bulk segregant analysis in resistant and susceptible bulks of F2 progeny revealed seven differentiating polymorphic markers (three RAPD, two ISSR and two SSR) of 102 markers screened. Subsequently, these markers were used to genotype the entire F2 population, and a genetic linkage map covering 74.7 cM distance was developed. The major locus Xca1bo was mapped in 1.6‐cM interval flanked by the markers RAPD 04833 and ISSR 11635. The Xca1bo locus was located on chromosome 3. The linked markers will be useful for marker‐assisted resistance breeding in cauliflower.  相似文献   

5.
Sequence-related amplified polymorphism (SRAP), simple sequence repeats (SSR), inter-simple sequence repeat (ISSR), peroxidase gene polymorphism (POGP), resistant gene analog (RGA), randomly amplified polymorphic DNA (RAPD), and a morphological marker, Alternaria brown spot resistance gene of citrus named as Cabsr caused by (Alternaria alternata f. sp. Citri) were used to establish genetic linkage map of citrus using a population of 164 F1 individuals derived between ‘Clementine’ mandarin (Citrus reticulata Blanco ‘Clementine) and ‘Orlando’ tangelo’ (C. paradisi Macf. ‘Duncan’ × C. reticulata Blanco ‘Dancy’). A total of 609 markers, including 385 SRAP, 97 RAPD, 95 SSR, 18 ISSR, 12 POGP, and 2 RGA markers were used in linkage analysis. The ‘Clementine’ linkage map has 215 markers, comprising 144 testcross and 71 intercross markers placed in nine linkage groups. The ‘Clementine’ linkage map covered 858 cM with and average map distance of 3.5 cM between adjacent markers. The ‘Orlando’ linkage map has 189 markers, comprising 126 testcross and 61 intercross markers placed in nine linkage groups. The ‘Orlando’ linkage map covered 886 cM with an average map distance of 3.9 cM between adjacent markers. Segregation ratios for Cabsr were not significantly different from 1:1, suggesting that this trait is controlled by a single locus. This locus was placed in ‘Orlando’ linkage group 1. The new map has an improved distribution of markers along the linkage groups with fewer gaps. Combining different marker systems in linkage mapping studies may give better genome coverage due to their chromosomal target site differences, therefore fewer gaps in linkage groups.  相似文献   

6.
C. He  G. R. Hughes 《Plant Breeding》2003,122(4):375-377
Common bunt caused by Tilletia tritici and T. laevis has occurred worldwide and reduces yield and quality in common and durum wheats. The development of DNA markers linked to bunt resistance to race T1 in the cross, ‘Laura’(S) בRL5407’ (R), was carried out in this study based on the single head derived F4:5 and single seed derived F4:6 populations. Bulked segregant analysis was used to identify two random amplified polymorphic DNA (RAPD) markers linked to the gene for resistance to race T1 in the spelt wheat ‘RL5407′. The two markers identified, UBC548590 and UBC274988, flanked the resistance gene with a map distance of 9.1 and 18.2 cM, respectively. The former was linked in repulsion phase to bunt resistance while the later was in coupling phase. The two RAPD markers and the common bunt‐resistance gene all segregated in Mendelian fashion. Use of these two RAPD markers together could assist in incorporating the bunt‐resistance gene from spelt wheat into common wheat cultivars by means of marker‐assisted selection.  相似文献   

7.
Male and female genetic linkage map of hops, Humulus lupulus   总被引:2,自引:0,他引:2  
A male and female linkage map of hop has been constructed using 224 DNA polymorphisms (106 amplified fragment length polymorphisms (AFLPs), three random amplified polymorphic DNAs (RAPDs), one RAPD‐sequence‐tagged‐site (STS), and three microsatellite (STSs) segregating in an F1 population of the English cultivar ‘Wye Target’‐the German male breeding line ‘85/54/15’. Linkage between these loci was estimated using JOINMAP Version 2.0. The final map for the female parent consisted of 110 loci assigned to eight linkage groups covering a distance of 346.7 cM. For the male map, 57 loci could be mapped on nine linkage groups spanning over 227.4 cM. One of these male linkage groups (Gr09‐M) presumably represents the Y chromosome, since all markers assigned (10 AFLPs, three RAPDs and one STS) were closely linked to the male sex (M). Because of their sex‐specific segregation, 10 doubly heterozygous AFLPs spanning a distance of 18.7 cM could be identified as markers describing the X chromosome, which is part of the male and female map. Three STMSs, which had already proved useful in hop genotyping, could be integrated as codominant locus‐specific markers and thus allowed to produce reliable allelic bridges between the female and male counterparts.  相似文献   

8.
T. Markussen    J. Krüger    H. Schmidt  F. Dunemann 《Plant Breeding》1995,114(6):530-534
The availability of molecular markers linked to mildew resistance genes would enhance the efficiency of apple-breeding programmes. This investigation focuses on the identification of random amplified polymorphic DNA (RAPD) markers linked to the Pl1 gene for mildew resistance, which has introgressed from Malus robusta into cultivated apples. The RAPD marker technique was combined with a modified ‘bulked seg-regant analysis’ mapping strategy. About 850 random decamer primers used as single primers or in combinations were tested by PCR analysis on the basis of resistant and susceptible DNA pools. Selected primers producing RAPD fragments were applied in an additional selection step to M. robusta and genotypes representing intermediate breeding stages of the breeding population 93/9, for which a 1:1 segregation could be observed for the resistance trait. Seven RAPD markers, all representing introgressed DNA sequences from M. robusta, were identified and arranged with the Pl1 locus in a common linkage group. The two most tightly-linked RAPD markers, OPAT20450 and OPD21000 were mapped with a genetic distance of 4.5 and 5 cM, respectively, from the Pl1 gene. Both markers are suitable for marker-assisted selection in apple breeding. The polymorphic DNA fragment OPAT20450 was cloned and sequenced, and longer primers for the generation of a sequence-characterized amplified region (SCAR) marker have been constructed; this marker was easier to score than the original RAPD marker.  相似文献   

9.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

10.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

11.
White jute (Corchorus capsularis) and dark jute (Corchorus olitorius) are two important cultivated crops that are used for natural fibre production. Some genetic maps have been developed for dark jute, but the genetic map information for white jute (C. capsularis) is limited. In this study, a linkage map comprising 44 sequence‐related amplified polymorphisms (SRAPs), 57 intersimple sequence repeats (ISSRs) and 18 randomly amplified polymorphic DNA (RAPD) covering 2185.7 cM with a mean density of 18.7 cM per locus was constructed in an F2 population consisting of 185 individuals derived from a cross between two diverse genotypes of ‘Xinxuan No. 1’ and ‘Qiongyueqing’ in white jute. These markers were evenly distributed in the linkage groups without any clustering. This genetic linkage map construction will facilitate the mapping of agronomic traits and marker‐assisted selection breeding in white jute.  相似文献   

12.
Apple Glomerella leaf spot (GLS) is a severe fungal disease that damages apple leaves during the summer in China. Breeding new apple varieties that are resistant to the disease is considered the best way of controlling GLS. Fine mapping and tightly linked marker are critically essential for the preselection of resistant seedlings. In this study, a population of 207 F1 individuals derived from a cross between ‘Golden Delicious’ and ‘Fuji’ was used to construct a fine simple sequence repeat (SSR)‐based genetic linkage map. The position of Rgls, a locus responsible for resistance to GLS, was identified on apple linkage group (LG) 15 using SSR markers CH05g05 and CH01d08, which was adapted from a published set of 300 SSR markers that were developed using the bulked segregant analysis (BSA) method. These two SSR markers flanked the gene, and its recombination rate was 8.7% and 23.2%, respectively. A total of 276 newly developed SSR markers around the target region and designed from the genome apple assembly contig of LG15 were screened. Only nine of these were determined to be linked to the Rgls locus. Thus, a total of 11 SSR markers were in linkage with Rgls, and mapped at distances ranging from 0.5 to 33.8 cM. The closest marker to the Rgls locus was S0405127, which showed a genetic distance of approximately 0.5 cM. The first mapping of the gene Rgls was constructed, and the locations of the 11 effective primers in the ‘Golden Delicious’ apple genome sequence were anchored. This result facilitates better understanding of the molecular mechanisms underlying the trait of resistance to GLS and could be used in improving the breeding efficiency of GLS‐resistant apple varieties.  相似文献   

13.
An extended genetic map of sugar beet (Beta vulgaris L.) is presented encompassing 177 segregating markers (2 morphological traits, 7 isozymes, and 168 RFLP markers) on 9 linkage groups. The linkage map comprises 1057.3 cM equivalent to an average genetic spacing of 6.0 cM/marker. The length of individual linkage groups varies between 80.7 (group VIII) and 167.4 cM (group VIII). The number of markers per linkage group ranges between 13 and 24. No indication of duplicate regions was found, confirming the true diploid nature of B. vulgaris. Twenty-six markers (15 %) deviated significantly (a = 0.01) from the expected segregation ratio. This distorted segregation was probably caused by linkage with lethal genes. Four such genes (designated Let Ib, Let 5b, Let 6b, Let 8) could be located at discrete positions due to their absolute linkage to skewed RFLP markers. The restorer gene X has been located terminally on linkage group ÜI, 9.6 cM distant from RFLP marker pKP1238.  相似文献   

14.
A genetic linkage map based on an intraspecific cross between two inbred lines of witloof‐chicory (Cichorium intybus L. var. foliosum Hegi) has been constructed. In total, 129 RAPD markers were scored in 565 F2 plants. Grouping of these markers at a LOD of threshold 4.0 resulted in nine linkage groups, which is equal to the chicory haploid genome. The nine linkage groups covered 609.6 cM. All 129 RAPD markers were linked to one of the nine groups. Three RAPD markers could not be mapped. Out of the 126 remaining RAPD markers, 18 showed segregation distortion with significance value of P < 0.01.  相似文献   

15.
Bulked segregant analysis was utilized to identify random amplified polymorphic DNA (RAPD) markers linked to genes for specific resistance to a rust pathotype and indeterminate growth habit in an F2 population from the common bean cross PC-50 (resistant to rust and determinate growth habit) × Chichara 83-109 (susceptible to rust and indeterminate growth habit). Six RAPD markers were mapped in a coupling phase linkage with the gene ( Ur-9) for specific rust resistance. The linkage group spanned a distance of 41 cM. A RAPD marker OA4.1050 was the most closely linked to the Ur-9 gene at a distance of 8.6 cM. Twenty-eight RAPD markers were mapped in a coupling phase linkage with the gene ( Fin) for indeterminate growth habit. The linkage group spanned a distance of 77 cM. RAPD markers OQ3.450 and OA17.600 were linked to the Fin allele as flanking markers at a distance of 1.2 cM and 3.8 cM, respectively. The RAPD markers linked to the gene for specific rust resistance of Andean origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid the different genes into a bean cultivar for durable rust resistance.  相似文献   

16.
Sugar beet (Beta vulgaris L.) is one of the two major products supplying sugar (sucroses) in the world. Rhizomania is one of the most destructive diseases of sugar beet world-wide. Holly is the major source of resistance to rhizomania. The objectives of this study were to identify the dominant homozygous genotypes resistant to rhizomania using ZN1 molecular marker, to field evaluate S1 progenies of plants already proved to be containing the marker and also to determine the relationship of this and other SCAR (sequence characterized amplified region) markers with SNP1 (single nucleotide polymorphism) marker associated with the Rz 1 gene. Molecular analysis was carried out on 27 O-type populations (consisting of 13 susceptible and 6 resistant genotypes). Field evaluation and scoring of the phenotypic traits including greenness, growth, uniformity and disease score of 12 O-type populations were carried out on a rhizomania-infested field. The percent agreement of coupling marker ZN1 and repulsion marker ZN8 with disease score was 0.91 and 0.93, respectively. Although all O-types had the Rz 1 resistance gene but the phenotypic differences were observed due to the effect of different genetic backgrounds and modifier genes. Overall, the results showed that the selected markers can be used for marker-assisted selection (MAS) to reduce the time and cost of breeding programs and increase the efficiency of selection.  相似文献   

17.
S. Murakami    K. Matsui    T. Komatsuda  Y. Furuta 《Plant Breeding》2005,124(2):133-136
The Rfm1 gene restores the fertility of the msm1 and msm2 male‐sterile cytoplasms in barley. Rfm1 is located on the short arm of chromosome 6H. To develop molecular markers tightly linked to Rfm1 for use in sophisticated marker‐assisted selection and map‐based cloning, an amplified fragment‐length polymorphism (AFLP) marker system with isogenic lines and a segregating BC1F1 population was used. Nine hundred primer combinations were screened and a linkage map was constructed around the Rfm1 locus by using 25 recombinant plants selected from 214 BC1F1 plants. Three AFLP markers were identified, e34m2, e46m19 and e48m17, linked to the locus. The most closely linked markers were e34m2, at 1.0 cM distally and e46m19, at 1.1 cM proximally. The two AFLP markers were converted to dominant STS markers. These markers should accelerate programmes for breeding restorer lines and will be useful for map‐based cloning.  相似文献   

18.
A. K. Mukherjee    T. Mohapatra    A. Varshney    R. Sharma  R. P. Sharma   《Plant Breeding》2001,120(6):483-497
Brassica juncea (L.) Czern & Coss is widely grown as an oilseed crop in the Indian subcontinent. White rust disease caused by Albugo candida (Pers.) Kuntze is a serious disease of this crop causing considerable yield loss every year. The present study was undertaken to identify molecular markers for the locus controlling white rust resistance in a mustard accession, BEC‐144, using a set of 94 recombinant inbred lines (RILs). The screening of individual RILs using an isolate highly virulent on the popular Indian cultivar ‘Varuna’ revealed the presence of a major locus for rust resistance in BEC‐144. Based on screening of 186 decamer primers employing bulked segregant analysis (BSA), 11 random amplified polymorphic DNA markers were identified, which distinguished the parental lines and the bulks. Five of these markers showed linkage with the rust resistance locus. Two markers, OPN0l000 and OPB061000, were linked in coupling and repulsion phases at 9.9 cM and 5.5 cM, respectively, on either side of the locus. The presence of only two double recombinants in a population of 94 RILs suggested that the simultaneous use of both markers would ensure efficient transfer of the target gene in mustard breeding programmes.  相似文献   

19.
M. L. Irigoyen    Y. Loarce    E. Friero    A. Fominaya    E. Ferrer 《Plant Breeding》2006,125(4):347-351
Genomic sequences with features of the major class of disease resistance genes and which bear nucleotide‐binding leucine‐rich repeat sequences (resistance gene analogs; RGA) were tested as potential markers of crown rust resistance loci in hexaploid oats. Two collections of paired near‐isogenic lines carrying resistance to different isolates of crown rust, Puccinia coronata were screened. Two out of the four RGAs assayed showed restriction fragment length polymorphism (RFLP) between one line of each collection and its recurrent parent. The paired lines X466 and D494 were polymorphic for RGA III2.2 and the pair of lines X470 and D504 were polymorphic for RGA III2.18. The III2.18 polymorphism was located in the hexaploid map Avena byzantina cv. ‘Kanota’ × A. sativa cv. ‘Ogle’ in linkage group KO17 in a region previously associated with crown rust resistance. In addition, 220 random primers were used for random amplified polymorphic DNA (RAPD) analysis to screen the two sets of NILs. Only one polymorphic band was obtained that differentiated the paired lines X470 and D504 from their parents. The RAPD band was used as a probe and the relevant RFLP that differentiated the NILs X470 and D504 was found at 1.7 cM from the III2.18 marker in KO17. RFLP analysis using probes previously mapped in KO17 confirmed differences for X470 and D504 in the region around the III2.18 marker. These results suggest that the resistance locus shared by this pair of NILs is probably linked to the markers revealed by RGA III2.18. The use of RGAs as RFLP probes in the screening of NILs with differences in crown rust resistance has proved to be more effective than RAPDs for finding polymorphic markers possibly linked to resistance loci.  相似文献   

20.
We have constructed a linkage map of the rice brown planthopper (BPH)resistance gene, Bph1. RFLP and AFLP markers were selected by thebulked segregant analysis and used in the mapping study of 262 F2sthat were derived from a cross of `Tsukushibare', a susceptible japonica cultivar, and `Norin-PL3', an authentic japonicaBph1-introgression line. Twenty markers were mapped within a 28.9-cMregion containing the Bph1 locus on the long arm of rice chromosome12. Combining the result of segregation analysis of BPH resistance by themass seedling test and that of the markers, the Bph1 locus wasmapped within a 5.8-cM region between two flanking markers. The closestAFLP markers, em5814N and em2802N, was at 2.7 cM proximal to theBph1 locus. Together with the previously constructed high-resolutionmap of bph2 locating the locus at ca. 10 cM proximal to the Bph1 locus, this improved version of the linkage map would facilitatepyramiding these two important BPH resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号