首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An air-injection press (AIP) was developed to prevent accidental blowouts of boards during production. In this study, the effects of the AIP on preventing blowouts were investigated by artificially creating a blowout-prone condition, and the press was shown to be effective in preventing blowouts. The modulus of rupture of the boards was almost constant irrespective of pressing time. Longer pressing time resulted in higher internal bond strength when pressed at 170 °C. The thickness swelling of the boards pressed at 170 or 190 °C was almost uniform irrespective of pressing time, and the manufactured boards showed performance similar to those manufactured with an ordinary press. The AIP prevented blowouts sufficiently even when the pressure of the injected air was reduced, and this reduction did not adversely decrease the performance of the boards. Air injection reduced formaldehyde emissions from the board.  相似文献   

2.
An air-injection press was developed to prevent particleboard from blowing out during the manufacturing process. The air-injection press, which has holes punched in the heating plates, injects high-pressure air into the board through the holes of one plate and releases the air through the holes of the other plate. The high-pressure air forces out vapor trapped within the board, thus preventing blowout. The newly developed press reduced the pressing time required for manufacturing board from high-moisture-content particles. However, the manufactured boards exhibited mechanical properties and dimensional stability inferior to conventionally manufactured boards.  相似文献   

3.
Particleboards of different densities (0.6, 0.7 and 0.8 g/cm3) and thicknesses (10 and 20 mm) were manufactured from low-moisture particles using an air-injection press. The effects of the air injection on preventing blowout of the boards of different densities and thicknesses were investigated by artificially creating blowout-prone conditions using metal frames. The effects of the air-injection pressure on the board performance were also investigated. 10-mm-thick boards of 0.8 g/cm3 pressed at 170 °C blew out when air was not injected, but were successfully manufactured by injecting air. 10-mm-thick boards at 150 °C showed constant internal bond (IB), regardless of density, but at 170 °C, IB was higher in boards of higher densities. This was likely due to accelerated hardening of the urea–formaldehyde resin at 170 than 150 °C. At both pressing temperatures, low air-injection pressure did not cause blowout and a reduction in board performance. Air injection also prevented the blowout of thick boards of 20 mm and enabled successful manufacture, showing its effectiveness. The IB of the 20-mm-thick board manufactured using the air-injection press exceeded that of 20-mm-thick board manufactured using an ordinary hot press.  相似文献   

4.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into particleboard and discharges the air through the other plate during press heating. The press can manufacture particleboard from high-moisture particles by controlling blowout of the boards. In this study, the optimum diameter and spacing of the air-injection holes and the effects of pre- and post-pressing were investigated. An optimum hole diameter was not found for the modulus of rupture and thickness swelling for a spacing of either 25 or 50 mm. In terms of internal bond strength, the optimum diameter of the holes arranged at a spacing of 25 mm was 1 mm, but the internal bond strength was not changed by the diameter of holes spaced 50 mm apart. Air injection under all hole conditions reduced the formaldehyde emission from the board. Pre-pressing was tested for further increase in the modulus of rupture and internal bond strength, but was found to have no effect. More efficient use of the air-injection press was achieved by injecting air from the early stages of pressing.  相似文献   

5.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into particleboards and discharges the air and vapor through the other plate during press heating. The press can manufacture particleboards from high-moisture particles by preventing blowouts of the boards. In this study, the effects of pressing temperature were investigated by pressing boards at 190, 210, and 230°C. The internal bond strength increased from 0.43 to 0.60?MPa by raising the temperature from 190 to 210°C, but did not increase further when the temperature was raised to 230°C. Raising the temperature from 190 to 210°C also helped improve the thickness swelling. No relationship was found between the modulus of rupture and pressing temperature.  相似文献   

6.
Blowouts of particleboards were artificially induced by increasing the vapor pressure inside the boards. Isocyanate resin bonded boards were manufactured from high-moisture particles, and the blowouts and board properties were analyzed. Boards with a high resin content of 5 % showed high bonding strength and did not blow out when pressed at 190 °C, but blew out at a raised temperature of 210 °C to increase vapor pressure inside the boards, thereby showing that blowout occurred when vapor pressure inside the boards exceeded the bonding strength of isocyanate resin. Boards with a low resin content of 2.5 % had low bonding strength and blew out when manufactured without air injection, but were successfully manufactured with air injection that prevents blowouts. However, the injection of high-pressure air reduced the strength properties of the board and increased the coefficient of variation, likely due to the discharge of isocyanate resin from the boards. Therefore, very small local blowouts occurred inside the boards, which lowered the strength properties of some specimens and led to a large coefficient of variation. When the pressure of injected air was lowered, the strength properties increased and the coefficient of variation decreased. This was possibly because the low-pressure air allowed isocyanate resin to remain in the boards, resulting in virtually no parts showing very low-strength properties.  相似文献   

7.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into boards during press heating. The air-injection press can manufacture boards from high-moisture-content particles by controlling blowouts of the boards. In this study, boards were manufactured from particles that had a moisture content of 25% by using the air-injection press, which reduced the required pressing time. Boards manufactured by injecting air through holes of 5 mm in diameter were of poor quality with a low internal bond strength of only 0.31 MPa. When the hole diameter was reduced to 1 mm, the internal bond strength increased to 0.44 MPa. A high air-injection pressure of 0.55 MPa also resulted in improved board properties over those for boards manufactured at lower pressures. This was probably because a large amount of binder was released from boards through the 5-mm holes, together with water vapor, during air injection; the small-diameter holes reduced the release of binder, resulting in better board properties.  相似文献   

8.
A hot press was used to manufacture particleboards (H boards). A radio-frequency hot press (for RH boards) and an air-injection radio-frequency hot press (for ARH board) were also used, and the effects of air injection on preventing blowout and board properties were analyzed. The thicknesses and densities of manufactured boards were 10 and 30 mm, and 0.6, 0.7, and 0.8 g/cm3, respectively. The investigation ascertained the effects of air injection in preventing blowout when a radio-frequency hot press is used. The increasing order of temperature was ARH board > RH board > H board during the final pressing stage. For the 30-mm-thick boards, the temperature of H board increased to 100 °C and remained constant at 100 °C even when the pressing time was extended. The temperature of the RH board increased to 100 °C more quickly than in the case of the H board and remained constant at 110–118 °C. The temperature of the ARH board increased linearly to 130–142 °C. For both the 10- and 30-mm-thick boards, the internal bond strength of the RH board was almost the same as that of the ARH board at densities of 0.6 and 0.7 g/cm3. In contrast, the internal bond strength of the RH board was lower than that of the ARH board at a density of 0.8 g/cm3. For the 10-mm-thick boards, the thickness swelling in the RH board was almost the same as that in the ARH board irrespective of the density. However, for the 30-mm-thick boards, the thickness swelling in the RH board was higher than that in the ARH board. The low plasticization of particles due to air injection presumably results in a high degree of thickness swelling.  相似文献   

9.
We investigated the bending properties of composite boards produced by reinforcing both sides of corrugated particleboard with medium-density fiberboard (MDF). Thickness swelling and linear expansion (LE) were measured to assess the dimensional stabilities of the composite board. Although the apparent density of the composite board was 0.48g/cm3, its strength was found to be equivalent to that of 18-type particleboard as described in JIS A 5908. The boards parallel/perpendicular anisotropy in strength was 0.9. The modulus of rupture (MOR) of the composite board increased with board density only up to a certain density, beyond which the MOR was constant. On the other hand, the thickness swelling of both corrugated particleboard and the composite board was smaller than that of flat-type particleboard, satisfying the JIS A 5908 standard of 12%. Linear expansion (soaking in water of ordinary temperature for 24h) of corrugated particleboard was 0.7%–0.9% in the parallel direction and 2.1%–3.1% in the perpendicular direction; hence, anisotropy in linear expansion existed in the corrugated particleboard. The linear expansion of the composite board was 0.6%–0.9% in the parallel direction and 1.8%–2.5% in the perpendicular direction. Although the LE of the composite board was lower than that of corrugated particleboard, it is necessary to improve the LE of composite board for practical use.  相似文献   

10.
11.
Isocyanate resin-bonded 0.5 and 0.7 g/cm3 lauan (Shorea sp.) particleboards were produced from mats with uniform and distributed moisture content (MC) distributions, using three hot press closing speeds. The effects of these processing variables on the formation of density profile in particleboard and board properties were analyzed statistically. A definition of the density profile was introduced, and the correlations among the various defining factors were established. The results are summarized as follows. (1) The peak density (PD) of particleboard could be increased, with a slight reduction in the core density (CD), using mats with different MC distributions. (2) In a conventional density profile, CD and PD are highly dependent on the board mean density (MD); and the gradient factor (GF), peak distance from the faces (Pdi), and peak base (Pb) are significantly correlated to each other, at the 99% significance level. (3) Greater press closing speed reduces Pdi and Pb, with an increase in GF. (4) Greater press closing speed could increase the PD in board of low MD, with minimal effect on CD. (5) The modulus of elasticity (MOE) of particleboards from mats with high MC near the faces were consistently higher than those from mats with uniform MC, irrespective of the press closing speed, whereas their modulus of rupture (MOR) became indifferent at higher MD under slow and fast closing speeds. (6) Sanding does not improve the MOR and MOE of particleboard significantly.  相似文献   

12.
Summary Two types of particleboards bonded with an isocyanate resin, one with uniform vertical density profile (homo-profile), and the other with conventional U-shaped profile, were fabricated to various density levels using lauan (Shorea spp.) particles. The fundamental relationships between the density profile and the board properties were determined, and the results are summarized as follows: 1. In homo-profile boards, the moduli of rupture (MOR) and elasticity (MOE), internal bond (IB) strength, and screw withdrawal resistance (SWR), are highly correlated to the board mean density. 2. The bottom limit of the board density is estimated to be ca. 0.25 g/cm3, based on the correlation regressions between mechanical properties and mean density. 3. At equal mean density level, the MOR and MOE of the conventional particleboards are higher than the homo-profile boards, due to the higher density near the faces. However, the reverse is true for IB, owing to the presence of the low density core in the former. 4. The net impact of peak density on MOR and MOE is greater at higher mean density level while raising the core density results in more pronounced improvement in IB at lower density. 5. In addition to the compaction ratio, the dimensional stability of the board is also affected by the peak area and mat moisture content. Received 9 January 1997  相似文献   

13.
The silk industry in China produces a large amount of mulberry branches as by-product every year. Mulberry branches have high longitudinal toughness and good overall mechanical properties. However, these branches are incinerated because their utility in other industries is limited by their small size. This study determines the feasibility of manufacturing scrimber from mulberry branches by using cold pressing method, followed by thermo-curing with different densities and resin contents. Results show that density [ranging from (0.81–1.24) g/cm3] exerts a greater effect on the shear strength, modulus of rupture (MOR), and modulus of elasticity (MOE) than resin content (changing from 8 to 20 %). The increase rate slows down when the density exceeds 1.1 g/cm3 and the resin content reaches more than 12 %. The strength-to-weight ratio analysis shows that the MOR/density and MOE/density maximum at 1.02–1.10 g/cm3. The density and resin contents of mulberry scrimber with cold compress and heat setting can be set to 1.0–1.1 g/cm3 and at approximately 12 %, respectively. The mechanical properties of the product meet the maximum requirement indicated in the Chinese national standard for construction. Mulberry scrimber can be a very promising supplement for wood because of its good performance, abundant supply, and renewability.  相似文献   

14.
Development of environmentally friendly particleboard made from sweet sorghum bagasse and citric acid has recently attracted attention. In this study, we investigated the effects of pressing temperature and time on physical properties, such as dry bending (DB), internal bond strength (IB), and thickness swelling (TS) of particleboard. Wet bending (WB), screw-holding power (SH), biological durability, and formaldehyde emission of particleboard manufactured under effective pressing temperature and time were also evaluated. Particleboards bonded with phenol formaldehyde (PF) resin and polymeric 4,4′-methylenediphenyl isocyanate (pMDI) were manufactured as references. Effective pressing temperature and time were 200?°C and 10 min, respectively. It was clarified that DB, IB, and TS satisfied the type 18 requirements of the JIS A 5908 (2003), and were comparable to those of particleboard bonded with PF and pMDI. The WB and SH of particleboard did not satisfy type 18 of JIS. Particleboard manufactured under effective pressing conditions had good biological durability and low formaldehyde emission. Based on the results of infrared spectra measurement, the degree of ester linkages increased with increased pressing temperature and time.  相似文献   

15.
Binderless particleboards were manufactured from sugarcane (Saccharum officinarum L.) bagasse by steam-injection pressing and by using hot pressing as a reference method. The inner layer (core/pith) and the outer hard fibrous layer (face/rind) of bagasse were used as raw materials. The effects of bagasse type, manufacturing process, and storage method on the mechanical properties of binderless particleboards were investigated. The results showed that the bagasse pith particles provided better board properties than bagasse rind particles. It seemed that bagasse pith particles were more easily deformed than bagasse rind particles, enlarging the bonding contact area. The severe conditions of steam-injection pressing caused delamination on the bagasse pith binderless boards with densities of 0.6 g/cm3 or higher, and gave poor bonding quality. However, steam-pressed boards showed relatively higher board properties than hot-pressed boards. The storage method of sugarcane bagasse affected the chemical composition and the board properties. It was shown that the extent of self-bonding formation depends on the chemical and morphological properties of lignocellulosic materials, as well as on the manufacturing conditions. Part of this paper was presented at the 5th International Wood Science Symposium, Kyoto, Japan, September 2004  相似文献   

16.
Optimizing the manufacturing conditions of veneer strand-flanged I-beams was continued in this study and focused on the strand density and preparation method. Three levels of strand density were used, while the strands were prepared by either saw or roll-press splitter. The main results indicated that: within the compaction ratios (1.4–2.3) investigated in this study, the strand with lower density showed slight improvement in the dimensional stability and the bond strength between web and flange, but not in bending properties of the I-beams. The strand preparation method was concluded to be dependent on species for akamatsu, sugi, and bamboo strands; roll-press splitter-prepared strands tended to negatively affect dimensional stability and mechanical properties of the I-beams. When using akamatsu or sugi strands, low density allowed the possibility of using lower resin application rates between strands. Part of this paper was presented at the 54th Annual Meeting of the Japan Wood Research Society in Sapporo, August 2004  相似文献   

17.
18.
The balance of strength between the flange and web parts of veneer strand flanged I-beam was investigated by the following methods: (1) use of different web material types, such as plywood, oriented strand board (OSB), particleboard (PB), and medium density fiberboard (MDF), that have different strength properties; and (2) fabrication of I-beams with low-density flanges using low-density strands with PB web material. Replacing PB or MDF with plywood showed slight significant improvement in the modulus of rupture but not in the modulus of elasticity of the entire I-beam. However, PB and MDF showed competent performance in comparison with OSB, thus strengthening the promising future of the use of PB or MDF as web material to fabricate I-beams. Hot-pressing conditions used for I-beam production exerted slightly adverse effects on the bending properties of PB, but not on MDF, OSB, and plywood web materials. The flange density of 0.60 g/cm3 was considered to be the lower limit that provides I-beams with balanced mechanical properties and dimensional stability.  相似文献   

19.
三种除草剂杂草防除效果试验报告   总被引:1,自引:0,他引:1  
秀百官、草坪宁1#、42#对暖季型马尼拉草坪在杂草的不同生长期防除作用有较明显的差异,除草剂进行混用时可防除的杂草的类型和种数都提高。  相似文献   

20.
Zephyr strand board (ZSB) and zephyr strand lumber (ZSL) were produced using zephyr made from poplar veneer to investigate the greater utilization of low-density poplar as a structural material. These materials were then compared to ordinary plywood, laminated veneer lumber (LVL) from poplar veneer, lauan plywood, and particleboard. The bending properties (moduli of rupture and elasticity) of ZSB proved superior to those of poplar plywood: and ZSL produced from poplar veneer zephyr had bending properties greater than ordinary LVL from poplar veneer. Apparently, the conversion of the poplar veneer into zephyr material had a positive effect on bending properties. Additionally, poplar ZSB had bending properties superior to those of lauan particleboard and equal to those of lauan plywood. The internal bond strength of poplar veneer ZSB was nearly two times greater than that of lauan particleboard.Parts of this report were presented at the international symposium on the utilization of fast-growing trees, Nanjing, China, October 1994. Report IV appeared inMokuzai Kogyo 49:599, 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号