首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This column study evaluated the effects of irrigation with two water qualities (WW and FW) to produce bioenergy sorghum on SOC balance, nutrients availability and salt constituents in two soils (TX and NM) amended with gypsum & elemental sulfur (S) and un-amended. Study results indicated that SOC concentration was higher in freshwater irrigated columns (7.41 g kg?1) than wastewater irrigated soils (7.32 g kg?1) across growth year-soil type-amendments-depth. Soils amended with gypsum and sulfur registered significantly higher value of 7.52 and 7.41 g kg?1 compared to 7.30 and 7.23 g kg?1 in non-amended soils under fresh and wastewater irrigation, respectively. Lower SOC in WW irrigated columns could be due to the combined effects of increased salinity and priming effects. Although SOC content initially increased in gypsum and S amended soils to about 10g kg?1, at the end of the study SOC in all treatments decreased to levels significantly below the pre-study. WW irrigation added 2.00, 1.10 and 4.40 times the N, P and K added by fertilizers and was able to meet 65%, 87%, and 210% of bioenergy sorghum uptake of respective nutrients. Sulfates and chlorides of sodium and calcium were dominant salts, which significantly affected SOC and nutrients.

Abbreviations: FW: freshwater; WW: treated wastewater; G + S: gypsum and elemental sulfur; NA: no amendment, TX: Texas soil and NM: New Mexico soil  相似文献   


2.
Abstract

Soil organic carbon (SOC) and nutrient stocks in the soil profile (0–80 cm) in four dominant land uses [forest, upland maize and millet (Bari), irrigated rice (Khet), and grazed systems)] and 0–15 cm depth along elevation gradient 1000 to 3000 m, and aspects in the Mardi watershed were measured. Soil properties at 0–15 cm depth were also measured in undisturbed forest, forest with free grazed system, managed forest, and grassland to compare the soil quality index (SQI) of topsoils. The SOC and nutrient concentration decreased with increasing profile depth. The SOC and N contents in the 0–15 cm depth of forest soils were significantly greater than the corresponding depth in upland maize and millet, irrigated rice, and grazed systems. On the other hand, available P and K concentrations at the same depth were significantly greater in upland maize and millet compared to irrigated rice, grazed system, and forest land uses. The SOC and N stocks (0–15 cm) increased from agricultural land at the valley bottom at about 1000 m above mean sea level (a.s.l.) (24 and 3 Mg ha?1) compared to undisturbed forest (74 and 5.9 Mg ha?1) at 2600 m a.s.l, demonstrating the effects of cover and elevation. Both SOC and N stocks decreased sharply in grassland (54 and 4.5 Mg ha?1) at elevations of 2600 to 2800 m a.s.l. compared with undisturbed forest. Above 2800 m a.s.l. the cover type changed from grass to coniferous forest, and the SOC and N stocks steadily increased at the summit level (3200 m a.s.l.) to 65 and 6.9 Mg ha?1, respectively. Slope and aspect significantly affected SOC with the northwest aspect having significantly higher concentrations (46 g kg?1) than other aspects. Similarly, SOC concentration at the lowest slope position (39 g kg?1) was significantly higher than the middle or upper positions (25 and 13 g kg?1). Integrated soil quality index (SQI) values varied from 0.17 to 0.69 for different land uses, being highest for undisturbed forest and lowest for irrigated rice. The SQI demonstrated the degradation status of land uses in the following ascending order: irrigated rice?>?grazed system?>?forest with free grazing?>?upland maize and millet?>?managed forest?>?grass land?>?undisturbed forest. The irrigated rice, grazed system, upland maize and millet, and freely grazed forestlands need immediate attention to minimize further deterioration of soil quality in these land uses.  相似文献   

3.
Improving manure management to benefit both agricultural production and the environment requires a thorough understanding of the long‐term effects of applied manure on soil properties. This paper examines the effect of 25 annual solid cattle manure applications on soil organic carbon (OC), total N (TN), and KCl‐extractable NO3‐N and NH4‐N under both non‐irrigated and irrigated conditions. After 25 annual manure applications, OC and TN contents increased significantly with the rate of manure application at the top two sampling depths (0–15 cm and 15–30 cm), and the increases were not affected by the irrigation treatment. The NO3 content increased at all sampling depths with greater increases observed under non‐irrigated conditions, while NH4 content was not affected by manure application rates or the irrigation treatment. The changes in OC and TN at the surface (0–15 cm) and 15–30 cm depth were dependent on the cumulative weight of manure added over the years. The relationships between cumulative manure OC added and soil OC content and between cumulative manure TN added and soil TN content were linear and not affected by the irrigation treatment. For every ton of manure OC added, soil OC increased by 0.181 g kg–1 in the topsoil (0–15 cm). Similarly, for every ton of manure TN added, surface soil TN increased by 0.192 g kg–1. The linear relationship between manure C added and soil C content suggests that the soil had a high capacity for short‐term C sequestration. However, the total amount of NO3‐N in the soil profile (0–150 cm) was affected by both the manure application rates and the irrigation treatment. A large amount of NO3 accumulated in the soil, especially under non‐irrigated conditions. The extremely high level of NO3 in the soil increases the potential risk of surface and groundwater pollution and losses to atmosphere as N2O.  相似文献   

4.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

5.
One of the main environmental impacts of concentrated animal feeding operations is soil degradation in the vicinity of the livestock breeding facilities due to substances such as ammonia emitted from the various stages of the process. In this research, the soil degradation effects of an intensive hog farming operation (IHFO) located at a Mediterranean limestone soil coastal area have been investigated. Soil samples of the upper mineral soil were taken in various distances and directions from the IHFO boundaries. Thirteen experimental cycles were carried out in the duration of 1.5?years starting in March 2009 until October 2010. The soil samples were analysed on total, exchangeable and water-soluble Ca, Mg and K as well as water-soluble ammonium concentrations. Significantly lower concentrations of the exchangeable and water-soluble base cations were observed on soil samples at increasing proximity downwind from the farm (south). Southern soil average concentrations of exchangeable base cations ranged between 78.6 and 128.52?mmol Ca2+?kg?1 soil, 8.42?C21.39?mmol?Mg2+?kg?1 soil and 4.25?C8.1?mmol?K+?kg?1 soil, respectively. Southern soil average concentrations of water-soluble base cations ranged between 0.57 and 2.17?mmol Ca2+?kg?1 soil, 0.16?C0.89?mmol?Mg2+?kg?1 soil and 0.48?C0.95?mmol?K+?kg?1 soil, respectively.  相似文献   

6.
Biochar has the potential to decrease salinity and nutrient loss of saline soil. We investigated the effects of biochar amendment (0–10 g kg−1) on salinity of saline soil (2.8‰ salt) in NaCl leaching and nutrient retention by conducting column leaching experiments. The biochar was produced in situ from Salix fragilis L. via a fire-water coupled process. The soil columns irrigated with 15 cm of water showed that biochar amendment (4 g kg−1) decreased the concentration Na+ by 25.55% in the first irrigation and to 60.30% for the second irrigation in sandy loam layer over the corresponding control (CK). Meanwhile, the sodium adsorption ratio (SAR) of soil after the first and second irrigation was 1.62 and 0.54, respectively, which were 15.2% and 49.5% lower than CK. The marked increase in saturated hydraulic conductivity (Ks) from 0.15 × 10–5 cm s−1 for CK to 0.39 × 10–5 cm s−1, following 4 g kg−1 of biochar addition, was conducive to salt leaching. Besides, biochar use (4 g kg−1) increased NH4+-N and Olsen-P by 63.63% and 62.50% over the CK, but accelerated NO3-N leaching. Since 15 cm hydrostatic pressure would result in salt accumulation of root zone, we would recommend using 4 g kg−1 of biochar, 30 cm of water to ease the problem of salt leaching from the surface horizon to the subsoil. This study would provide a guidance to remediate the saline soil in the Yellow River Delta by judicious application of biochar and irrigation.  相似文献   

7.
Potential for carbon dioxide (CO2) biosequestration was determined during the reclamation of highly saline–sodic soils (Aridisols) after rice (2003) and wheat (2003–2004) crops at two sites in District Faisalabad, Pakistan. Two treatments were assessed: T1, tube-well brackish water only; and T2, soil-applied gypsum at 25% soil gypsum requirement?+?tube-well brackish water. The irrigation water used at both sites had different levels of salinity (EC 3.9–4.5 dS m?1), sodicity (SAR 21.7–28.8), and residual sodium carbonate (14.9 mmolc L?1). Composite soil samples were collected from soil depths of 0–15 and 15–30 cm at presowing and postharvest stages and analyzed for pH, ECe, and sodium adsorption ratio (SAR). After rice harvest, there was no significant effect of gypsum application on ECe, pH, and SAR at both sites, except pH at 0–15 cm depth decreased significantly with gypsum at site 1. After wheat harvest, ECe, pH, and SAR decreased significantly with gypsum at site 1, whereas the effect of gypsum on these parameters was not significant at site 2. Compared to initial soil, ECe and SAR in soil decreased considerably after rice or wheat cultivation, particularly at site 1, whereas pH increased slightly due to cultivation of these crops. For rice, the total CO2 sequestration was significantly increased with gypsum application at both sites and ranged from 1499 to 2801 kg ha?1. The total sequestration of CO2 was also significantly increased with gypsum application in wheat at both sites and ranged from 2230 to 3646 kg ha?1. The amounts of CO2 sequestered by crops due to gypsum application were related to seed and straw yield responses of rice and wheat to gypsum, which were greater at site 1 than site 2. Also, the yield response to applied gypsum was greater for rice than wheat at site 1, whereas the opposite was true at site 2. Overall, the combined application of gypsum with brackish water reduced soil ECe and SAR compared to brackish water alone, particularly at site 1. Our findings also suggest that the reclamation strategies should be site specific, depending on soil type and quality of brackish water used for irrigation of crops. In conclusion, the use of gypsum is recommended on brackish water–irrigated salt-prone soils to improve their quality, and for enhancing C biosequestration and crop production for efficient resource management.  相似文献   

8.
Among factors controlling decomposition and retention of residue C in soil, effect of initial soil organic C (SOC) concentration remains unclear. We evaluated, under controlled conditions, short-term retention of corn residue C and total soil CO2 production in C-rich topsoil and C-poor subsoil samples of heavy clay. Topsoil (0–20 cm deep, 31.3 g SOC kg?1 soil) and subsoil (30–70 cm deep, 4.5 g SOC kg?1 soil) were mixed separately with 13C–15N-labeled corn (Zea mays L.) residue at rates of 0 to 40 g residue C kg?1 soil and incubated for 51 days. We measured soil CO2–C production and the retention of residue C in the whole soil and the fine particle-size fraction (<50 μm). Cumulative C mineralization was always greater in topsoil than subsoil. Whole-soil residue C retention was similar in topsoil and subsoil at rates up to 20 g residue C kg?1. There was more residue C retained in the fine fraction of topsoil than subsoil at low residue input levels (2.5 and 5 g residue C kg?1), but the trend was reversed with high residue inputs (20 and 40 g residue C kg?1). Initial SOC concentration affected residue C retention in the fine fraction but not in the whole soil. At low residue input levels, greater microbial activity in topsoil resulted in greater residue fragmentation and more residue C retained in the fine fraction, compared to the subsoil. At high residue input levels, less residue C accumulated in the fine fraction of topsoil than subsoil likely due to greater C saturation in the topsoil. We conclude that SOC-poor soils receiving high C inputs have greater potential to accumulate C in stable forms than SOC-rich soils.  相似文献   

9.
Water quality of Lake Okeechobee has been a major environmental concern for many years. Transport of dissolved organic matter (DOM) in runoff water from watershed is critical to the increased inputs of nutrients (N and P) and metals (Cu and Zn). In this study, 124 soil samples were collected with varying soil types, land uses, and soil depths in Lake Okeechobee watershed and analyzed for water-extractable C, N, P, and metals to examine the relationship between dissolved organic carbon (DOC) and water soluble nutrients (N and P) and metals in the soils. DOC in the soils was in 27.64?C400 mg kg?1 (69.30 mg kg?1 in average) and varied with soil types, land uses, and soil depth. The highest water-extractable DOC was found in soils collected in sugar cane and field crops (277 and 244 mg kg?1 in average, respectively). Water soluble concentrations of N and P were in the range of 6.46?C129 and 0.02?C60.79 mg kg?1, respectively. The ratios of water-extractable C/N and C/P in soils were in 0.68?C12.52 (3.23 in average) and 3.19?C2,329 (216 in average), and varied with land uses. The lowest water-extractable C/N was observed in the soils from dairy (1.66), resident (1.79), and coniferous forest (4.49), whereas the lowest water-extractable C/P was with the land uses of dairy (13.1) and citrus (33.7). Therefore, N and P in the soils under these land uses may have high availability and leaching potential. The concentrations of water soluble Co, Cr, Cu, Ni, and Zn were in the ranges of?<?method detection limit (MDL)?C0.33, <MDL?C0.53, 0.04?C2.42, <MDL?C0.71, and 0.09?C1.13 mg kg?1, with corresponding mean values of 0.02, 0.01, 0.50, 0.07, and 0.37 mg kg?1, respectively. The highest water soluble Co (0.10 mg kg?1), Cr (0.26 mg kg?1), Ni (0.31 mg kg?1), and Zn (0.80 mg kg?1) were observed in soils under the land use of sugar cane, whereas the highest Cu (1.50 mg kg?1) was with field crop. The concentration of DOC was positively correlated with total organic carbon (TOC) (P <0.01), water soluble N (P <0.01), electrical conductivity (EC, P <0.01), and water soluble Co, Cr, Ni, and Zn (P <0.01), and Cu (P <0.05), whereas water soluble N was positively correlated with water soluble P, Cu, and Zn (P <0.01) in soils. These results indicate that the transport of DOC from land to water bodies may correlate with the loss of macro-nutrients (N, P), micro-nutrients (Cu, Zn, and Ni), and contaminants (Cr and Co) as well.  相似文献   

10.
The vertical distribution of mercury along a weathering profile derived from a diabase was compared to the main geochemical and mineralogical characteristics of the soil and its parental rock. The sampling site was in a metropolitan area, nearby to an active quarry and relatively close to an industrial park. The samples of a 6-m-deep fresh exposure of the soil profile and also of fresh rock were collected during the dry season. Kaolinite, goethite, hematite, and residual primary minerals were identified in the soil samples. Typically, the concentrations of Hg in the soil are low. Whole samples contained between 1 (rock) and 37 ??g kg?1 Hg, while the?<?63-??m soil fraction had up to 52 ??g kg?1 Hg. The higher values of Hg corresponded to the upper layers of A (0?C10 cm) and B (200?C220 cm) soil horizons. Elemental gains and losses calculated against Zr resulted in the following order: Hg>>Pb?>?Zr?>?LREE?>?Nb?>?HREE?>?Al?>?Ti?>?Fe?>?Cr. Total organic carbon in soil samples varied between 0.2 and 5.1 g dm?3, and correlation with Hg concentrations was moderate. The acid pH (4.2?C5.5) of the soil samples favors the sorption Hg species by predominant secondary phases like goethite and kaolinite. The Hg concentration of the rock is insufficient to explain the large enrichment of Hg along the soil profile, indicating that exogenic Hg, via atmospheric deposition, contributed to the measured Hg concentrations of the soil.  相似文献   

11.
To evaluate the effect of groundwater irrigation on the polycyclic aromatic hydrocarbons(PAHs) pollution abatement and soil microbial characteristics,a case study was performed in the Shenfu irrigation area of Shenyang,Northeast China,where the irrigation with petroleum wastewater had lasted for more than fifty years,and then groundwater irrigation instead of wastewater irrigation was applied due to the gradually serious PAHs pollution in soil.Soil chemical properties,including PAHs and nutrients contents,and soil microbial characteristics,including microbial biomass carbon,substrateinduced respiration,microbial quotient(qM),metabolic quotient(qCO2),dehydrogenase(DH),polyphenol oxidase(PO),urease(UR) and cellulase(CE) in surface and subsurface were determined.Total organic C,total N,total P,and available K were significantly different between the sites studied.The PAHs concentrations ranged from 610.9 to 6362.8 μg kg-1 in the surface layers(0-20 cm) and from 404.6 to 4318.5 μg kg-1 in the subsurface layers(20-40 cm).From the principal component analysis,the first principal component was primarily weighed by total PAHs,total organic C,total N,total P and available K,and it was the main factor that influencing the soil microbial characteristics.Among the tested microbial characteristics,DH,PO,UR,CE,qM and qCO2 were more sensitive to the PAHs stress than the others,thus they could serve as useful ecological assessment indicators for soil PAHs pollution.  相似文献   

12.
采用田间大区试验,连续3年在河套重盐碱区开展了冬季咸水结冰灌溉试验研究,设置冬季咸水结冰灌溉(FSWI)和无灌溉对照(CK)两个处理,其中FSWI处理的灌水量为180 mm,矿化度为6.79~7.97 g·L~(–1),种植作物为青贮玉米,以分析不同处理下土壤水盐和钠吸附比(SAR)的周年动态以及对作物生长的影响,探究冬季咸水结冰灌溉对河套重盐碱地的改良效果。结果表明:与CK相比,FSWI处理显著改变了春季土壤水盐和SAR动态。0~20 cm土层,春季FSWI处理的土壤含水量显著高于CK处理,玉米苗期, FSWI处理的土壤含水量平均为24.3%,显著高于CK的21.6%; FSWI处理的春季土壤含盐量和SAR显著低于CK处理,其中, FSWI处理的土壤含盐量由灌溉前的33.86 g·kg~(–1)降低至玉米苗期的5 g·kg~(–1)以下,而CK处理土壤含盐量逐渐升高至玉米苗期的34.2 g·kg~(–1); FSWI处理土壤SAR由灌溉前的21.9降低至玉米苗期的9.86, CK土壤SAR则逐渐升高至玉米苗期的25.00。后续地膜覆盖和夏季降雨使FSWI处理的土壤含水量维持在23.0%以上,土壤含盐量保持在5 g·kg~(–1)以下,土壤SAR保持在9左右。20~40 cm土层与0~20 cm土层的土壤水盐和SAR变化趋势与表层一致,但没有表层变化剧烈。此外,随着灌溉年限的延长,同时期土壤含盐量和SAR呈逐年降低的趋势。FSWI处理玉米出苗率在70%以上,干物质产量为9~12t·hm~(–2),而CK处理由于土壤含水量较低(21.0%),并且土壤含盐量和SAR均较高,造成玉米出苗率极低,进而导致绝收。因此冬季咸水结冰灌溉改变了土壤水盐动态过程,变春季积盐为脱盐,显著降低了土壤SAR,并补充了土壤水分,保证了饲用玉米的正常种植和生长,这为该地区盐碱地改良和饲料作物种植提供了技术支持。  相似文献   

13.
Current non-invasive biomonitoring techniques to measure heavy metal exposure in free ranging birds using eggs, feathers and guano are problematic because essential metals copper (Cu) and zinc (Zn) deposited in eggs and feathers are under physiological control, feathers accumulate metals from surface contamination and guano may contain faecal metals of mixed bioavailability. This paper reports a new technique of measuring lead (Pb), Cu and Zn in avian urate spheres (AUS), the solid component of avian urine. These metal levels in AUS (theoretically representing the level of metal taken into the bloodstream, i.e. bioavailable to birds) were compared with levels in eggs (yolk and shell), feathers and whole guano from chickens (Gallus gallus domesticus) exposed to a heavy metal-contaminated soil (an allotment soil containing Pb 555?mg?kg?1 dry mass (dm), Cu 273?mg?kg?1?dm and Zn 827?mg?kg?1?dm). The median metal levels (n?=?2) in AUS from chickens exposed to this contaminated soil were Pb 208???g?g?1 uric acid, Cu 66???g?g?1 uric acid and Zn: 526???g?g?1 uric acid. Lead concentrations in egg yolk and shell samples (n?=?3) were below the limit of detection (<2?mg?kg?1), while Cu and Zn were only consistently detected in the yolk, with median values of 3 and 70?mg?kg?1 (dm), respectively, restricting the usefulness of eggs as a biomonitor. Feathers (n?=?4) had median Pb, Cu and Zn levels respectively of 15, 10 and 140?mg?kg?1 (dm), while whole guano samples (n?=?6) were 140, 70 and 230?mg?kg?1 (dm). Control samples were collected from another chicken flock; however, because they had no access to soil and their diet was significantly higher in Cu and Zn, no meaningful comparison was possible. Six months after site remediation, by top soil replacement, the exposed chickens had median Pb, Cu and Zn levels respectively in whole guano (n?=?6) of 30, 20 and 103?mg?kg?1 (dm) and in AUS (n?=?4) of 147, 16 and 85???g?g?1 uric acid. We suggest the persistent high Pb level in AUS was a consequence of bone mobilised for egg production, releasing chronically sequestered Pb deposits into the bloodstream. In contrast, AUS levels of Cu and Zn (metals under homeostatic control and sparingly stored) had declined, reflecting the lower current exposure. However because pre- and post-remediation samples were measured using different methods carried out at different laboratories, such comparisons should be guarded. The present study showed that metals can be measured in AUS, but no assessment could be made of availability or uptake to the birds because tissue and blood samples were not concomitantly analysed. A major short coming of the study was the inappropriate control group, having no access to uncontaminated soil and being fed a different diet to the exposed birds. Furthermore guano and urine analysis should have been carried out on samples from individual birds, so biological (rather than just technical) variation of metal levels could have been determined. Future studies into using AUS for biomonitoring environmental heavy metals must resolve such experimental design issues.  相似文献   

14.
Abstract

To determine the rates of increase in C and N stocks in the soil and organic layers following afforestation in Andisols, we measured C and N densities in the organic and soil layers at depths of 0–5, 5–15 and 15–30?cm, together with a chronosequence analysis of 4-year-old, 14-year-old and 23-year-old Japanese cedar (Cryptomeria japonica) and 4-year-old, 12-year-old and 25-year-old Hinoki cypress (Chamaecyparis obtusa) plantations. The short-term changes in C and N were confirmed by repeated sampling 5?years after the first sampling. Tree growth, biomass accumulation and organic layers were much greater in Japanese cedar than in Hinoki cypress plantations. Soil C density (kg?m?3) increased and bulk density decreased with stand age in the surface layer (0–5?cm). The average soil C accumulation rate was 22.9?g?C?m?2?year?1 for Japanese cedar and 21.1?g?C?m?2?year?1 for Hinoki cypress. Repeated sampling showed that the rate of increase in C in the surface soil was relatively slow in young stands and that soil C density (kg?m?3) in the subsurface soil did not change over a 5-year period. Although N accumulated in the tree biomass and organic layers, the soil N density (kg?m?3) did not change after afforestation. Although the andic properties of the soil and differences in the planted species did not influence the rate of increase in soil C, soil C density was expected to increase to a concentration greater than 80?g?kg?1, possibly because of the large C accumulation capacity of Andisols.  相似文献   

15.
Since the development of effective N2O mitigation options is a key challenge for future agricultural practice, we studied the interactive effect of tillage systems on fertilizer-derived N2O emissions and the abundance of microbial communities involved in N2O production and reduction. Soil samples from 0–10 cm and 10–20 cm depth of reduced tillage and ploughed plots were incubated with dairy slurry (SL) and manure compost (MC) in comparison with calcium ammonium nitrate (CAN) and an unfertilized control (ZERO) for 42 days. N2O and CO2 fluxes, ammonium, nitrate, dissolved organic C, and functional gene abundances (16S rRNA gene, nirK, nirS, nosZ, bacterial and archaeal amoA) were regularly monitored. Averaged across all soil samples, N2O emissions decreased in the order CAN and SL (CAN?=?748.8?±?206.3, SL?=?489.4?±?107.2 μg kg?1) followed by MC (284.2?±?67.3 μg kg?1) and ZERO (29.1?±?5.9 μg kg?1). Highest cumulative N2O emissions were found in 10–20 cm of the reduced tilled soil in CAN and SL. N2O fluxes were assigned to ammonium as source in CAN and SL and correlated positively to bacterial amoA abundances. Additionally, nosZ abundances correlated negatively to N2O fluxes in the organic fertilizer treatments. Soils showed a gradient in soil organic C, 16S rRNA, nirK, and nosZ with greater amounts in the 0–10 than 10–20 cm layer. Abundances of bacterial and archaeal amoA were higher in reduced tilled soil compared to ploughed soils. The study highlights that tillage system induced biophysicochemical stratification impacts net N2O emissions within the soil profile according to N and C species added during fertilization.  相似文献   

16.
咸水冻融灌溉对重度盐渍土壤水盐分布的影响   总被引:6,自引:2,他引:6  
张越  杨劲松  姚荣江 《土壤学报》2016,53(2):388-400
室内咸水冰融化试验设置2个处理:7.5 g L-1咸水冰(SIW(7.5))、15 g L-1咸水冰(SIW(15)),探究了咸水冰融化过程中的水量、水质以及离子组成的变化;土柱模拟试验设置同一灌水量(150mm),4个处理:淡水直接灌溉(FW)、7.5 g L-1咸水直接灌溉(SW)、7.5 g L-1咸水冻融灌溉(SIW(7.5))、15 g L-1咸水冻融灌溉(SIW(15)),对比分析两种灌溉水质(淡水、咸水)和两种灌水方式(直接灌溉、结冰灌溉)对土壤(粉砂壤土)水盐动态的影响。结果表明:咸水冰融化过程中,初期融出水量较大,但含盐量和钠吸附比(SAR)较高,后期融出水量较小,含盐量和SAR很低;融出水的离子含量变化与电导率(EC)变化表现相同的趋势;小于3 g L-1的水的融出率分别是SIW(7.5)=25.46%和SIW(15)=32.78%。FW处理下,土壤中水盐运动持续时间较其他3个处理长,土壤导水率降低最快,灌溉水入渗完成时表层土壤含水量达到33.88%,显著高于其他处理。四种处理下,0~15 cm土层土壤的含盐量平均值分别为FW=2.32 g kg-1、SIW(7.5)=2.80 g kg-1、SIW(15)=3.87 g kg-1、SW=4.31 g kg-1。同等灌水量下,SIW(15)处理下土壤脱盐深度最浅。离子分析表明:FW和SIW(7.5)处理下,0~25 cm土壤的钠吸附比(SAR)下降明显,显著小于SW、SIW(15);然而FW处理下,土壤碱化特征最为明显。综合而言,在淡水资源缺乏而咸水资源相对丰富的地区,中度矿化度咸水结冰融水灌溉可以有效降低根层土壤盐分,满足农业生产的要求。  相似文献   

17.
We evaluated the effect of boron (B) application on shoot growth and shoot B concentration and uptake by two maize cultivars (‘FHY-396’ and ‘Sonari’) on a loam soil irrigated with water of different sodium absorption ratio (SAR) values [control, 5 and 15 (mmolc L?1)1/2]. Plants were harvested after forty days of growth. Shoot dry matter decreased significantly (P < 0.05) with B application due to toxicity marked by leaf injury. Toxic effect of B was further aggravated by increasing SAR of irrigation water. In both cultivars concentration and uptake of B was significantly (P < 0.05) increased over control with B application and SAR of irrigation water. Shoot Ca concentration decreased with increasing SAR and B application. The phenomena of B toxicity and low Ca marked by reduction in shoot dry matter of plants irrigated with high SAR water could be important in management of brackish water used for irrigating crops on arid and semiarid region soils.  相似文献   

18.
Abstract

Florida sandy soils, particularly, Entisols are low in boron (B) and occasionally have B deficiency for citrus. A study was set-up at Citrus Research and Education Center, Lake Alfred, Florida, on a Candler fine sand to determine the availability and uptake of B in a high-density citrus planting of Huanglongbing (HLB)-affected trees. Boron was applied at 1.12?kg ha?1 in three splits, at University of Florida Institute of Food and Agricultural Sciences (UF/IFAS) recommended rate (1×), and at 2× the recommended rate using foliar and soil application methods. Soil samples were taken from soil surface to 60?cm depth in 15-cm increments within the irrigated and non-irrigated zones. Soil and leaf samples were analyzed for B using Mehlich III extraction method and acid digestion, respectively. Results showed the leaf B concentration for soil applied rate 1× was significantly higher (P?<?0.001) than that of foliar applied either at single or double rate but both were in the optimum range recommended by UF/IFAS. The sorption study revealed that there was no sorption (KD < 0.2?L kg?1) but KD at 0–15-cm depth was 3× greater than that at 15–60?cm depths. The concentration of B in the leaf tissue remained in the recommended optimum critical range. Sorption coefficients showed negligible B sorption which means most applied B would be prone to leaching under heavy rains or saturated soil conditions on Florida sandy soils thus requiring judicious management for optimizing tree performance and sustaining environmental quality.  相似文献   

19.
ABSTRACT

Soil fertility in many parts of the north?western Himalayan region (NWHR) has declined owing to accelerated nutrient mining under existing crop regime. Therefore, this study aimed to assess effect of the predominant horticulture?based land uses on soil fertility and health in mid and high hills of NWHR. Soil samples (0?20 cm) were collected, analyzed for different soil chemical attributes (pH, electrical conductivity, organic C, available primary-, secondary-, and micro-nutrients), and compared across five key land uses: perennial grass (PG), peach orchard (PO), apple orchard (AO), field vegetable farming (VF), and protected vegetable farming (PV). Soils of the investigated land uses were neutral to near neutral in soil reaction (6.3?6.8) except field vegetable and protected vegetable farming. Amount of soil organic C and labile organic C was significantly higher (p ≤ 0.05) in soils of apple orchards (18.6 g kg?1 and 687.3 mg kg?1, respectively) and peach orchards (20.4 g kg?1 and 731.3 mg kg?1, respectively) over others. An abrupt and significant increase in Olsen-P was recorded in soils of field vegetable farming (17.1 mg kg?1) and protected vegetable farming (13.0 mg kg?1), which shifted their nutrient index (NI) of P in to high category (≥ 2.33). The concentration of mineralizable-N in soil was statistically at par in soils under perennial grass and fruit orchards, while protected vegetable farming showed maximum soil mineralizable-N content (115.5 mg kg?1) and NI of nitrogen (1.83). The NI was in high category (≥ 2.33) for copper, iron, and manganese in majority of the land uses. In view of the results, temperate fruit?tree based land uses are benign in up?keeping soil fertility and soil health, and needs promotion on large scale. Additionally, policies to create incentives for the build-up of soil organic matter and replenishment of the depleted soil macro and micro nutrients in vegetable-farmed lands are warranted.  相似文献   

20.
Extensive use of synthetic pyrethroids has resulted in concerns regarding their potential effects on human health and ecosystems. In the present study, we evaluated the influence of coexisting Cu2+, Zn2+, soil water contents (15%, 25%, 40% by weight and waterlogged) and temperature levels (15°C, 25°C, 35°C, and 45°C) on the dissipation of cypermethrin, fenvalerate and deltamethrin in red soil. To further clarify the influence of Cu2+ and Zn2+ on biological and chemical dissipation processes, serial concentrations of the synthetic pyrethroids containing Cu2+ (21.3, 50, 100, and 400 mg kg?1) and Zn2+ (35.8, 100, 250, and 500 mg kg?1) were used to spike the soil and then incubated at 25°C in the dark at 25% moisture. The results revealed a very severe inhibitory effect on the dissipation rates with increasing Cu2+ and Zn2+ levels. Conversely, there were no significant decreases in dissipation rates in response to exposure to 50 mg kg?1 Cu2+ or 100 mg kg?1 Zn2+, and the dissipation rates decreased significantly (p?<?0.05) when the Cu2+ and Zn2+ concentration increased to 100 and 250 mg kg?1, respectively, which were the respective maximum field recommended rates. When compared with unsterilized batch treatments, the t 1/2 in sterilized (chemical dissipation) batch treatments increased by 1.0–4.8-fold. Additionally, there was a highly significant difference in the dissipation of pyrethroids in the 15% water content treatments and waterlogged treatments (p?<?0.05). Finally, the difference in the dissipation rates at 15°C and 25°C was significant (p?<?0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号