首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modeling study on fertilizer by-products fate and transport was performed in an unconfined shallow aquifer equipped with a grid of 13 piezometers. The field site was located in a former agricultural field overlying a river paleochannel near Ferrara (Northern Italy), cultivated with cereals rotation until 2004 and then converted to park. Piezometers were installed in June 2007 and were monitored until June 2009 via pressure transducer data loggers to evaluate the temporal and spatial variation of groundwater heads, while an onsite meteorological station provided data for recharge rate calculations via unsaturated zone modeling. The groundwater composition in June 2007 exhibited elevated nitrate (NO 3 ? ) and chloride (Cl?) concentrations due to fertilizer leaching from the top soil. The spatial distribution of NO 3 ? and Cl? was heterogeneous and the concentration decreased during the monitoring period, with NO 3 ? attenuation (below 10?mg/l) after 650?days. A transient groundwater flow and contaminant transport model was calibrated versus observed heads and NO 3 ? and Cl? concentrations. Cl? was used as environmental tracer to quantify groundwater flow velocity and it was simulated as a conservative species. NO 3 ? was treated as a reactive species and denitrification was simulated with a first order degradation rate constant. Model calibration gave a low denitrification rate (2.5e?3 mg-NO 3 ? /l/d) likely because of prevailing oxic conditions and low concentration of dissolved organic carbon. Scenario modeling was implemented with steady state and variable flow time discretization to identify the mechanism of NO 3 ? attenuation. It was shown that transient piezometric conditions did not exert a strong control on NO 3 ? clean up time, while transient recharge rate did, because it is the main source of unpolluted water in the domain.  相似文献   

2.
High As groundwater normally contained high concentrations of Cl? and HCO 3 ? . This study examined the effects of Cl?, HCO 3 ? , and As species on As uptake by hyperaccumulator Pteris vittata. Plants were exposed hydroponically to 5.0?mg/L As(III) or As(V) in the presence of 0, 0.5, 1, 2, 5, 10, and 20?mM of Cl? or HCO 3 ? for 10?days. Addition of high Cl? concentrations (>10?mM) slightly inhibited P. vittata growth (biomass), while generally had no significant effect on plant As uptake. High solution pH resulted in reduced plant growth and As uptake, which attributed to the inhibitory effects in HCO 3 ? treatments with the high pH of the high HCO 3 ? concentration. It was speculated that addition of HCO 3 ? (<20?mM) would have no significant effect on plant growth and As uptake. The inhibitory effect of HCO 3 ? on As translocation was less apparent in the As(III) solutions than the As(V) solutions. For the high As groundwater with As(III) as the predominant species, high pH, instead of high concentrations HCO 3 ? and Cl?, was expected to inhibit As uptake. The results suggested that optimum plant growth and maximum As hyperaccumulation could be achieved by adjusting solution pH in the growth media (around 7.2).  相似文献   

3.

Purpose

Nitrate (NO 3 ? ) is often considered to be removed mainly through microbial respiratory denitrification coupled with carbon oxidation. Alternatively, NO 3 ? may be reduced by chemolithoautotrophic bacteria using sulfide as an electron donor. The aim of this study was to quantify the NO 3 ? reduction process with sulfide oxidation under different NO 3 ? input concentrations in river sediment.

Materials and methods

Under NO 3 ? input concentrations of 0.2 to 30?mM, flow-through reactors filled with river sediment from the Pearl River, China, were used to measure the processes of potential NO 3 ? reduction and sulfate (SO 4 2? ) production. Molecular biology analyses were conducted to study the microbial mechanisms involved.

Results and discussion

Simultaneous NO3 ? removal and SO4 2? production were observed with the different NO 3 ? concentrations in the sediment samples collected at different depths. Potentially, NO 3 ? removal reached 72 to 91?% and SO 4 2? production rates ranged from 0.196 to 0.903?mM?h?1. The potential NO 3 ? removal rates were linearly correlated to the NO 3 ? input concentrations. While the SO 4 2? production process became stable, the NO 3 ? reduction process was still a first-order reaction within the range of NO 3 ? input concentrations. With low NO 3 ? input concentrations, the NO 3 ? removal was mainly through the pathway of dissimilatory NO 3 ? reduction to NH 4 + , while with higher NO 3 ? concentrations the NO 3 ? removal was through the denitrification pathway.

Conclusions

While most of NO 3 ? in the sediment was reduced by denitrifying heterotrophs, sulfide-driven NO 3 ? reduction accounted for up to 26?% of the total NO 3 ? removal under lower NO 3 ? concentrations. The vertical distributions of NO 3 ? reduction and SO 4 2? production processes were different because of the variable bacterial communities with depth.  相似文献   

4.
A constructed wetland composed of a pond- and a marsh-type wetland was employed to remove nitrogen (N) and phosphorus (P) from effluent of a secondary wastewater treatment plant in Korea. Nutrient concentrations in inflow water and outflow water were monitored around 50 times over a 1-year period. To simulate N and P dynamics in a pond- and a marsh-type wetland, mesocosm experiments were conducted. In the field monitoring, ammonium (NH 4 + ) decreased from 4.6 to 1.7 mg L?1, nitrate (NO 3 ? ) decreased from 6.8 to 5.3 mg L?1, total N (TN) decreased from 14.6 to 10.1 mg L?1, and total P (TP) decreased from 1.6 to 1.1 mg L?1. Average removal efficiencies (loading basis) for NO 3 ? , NH 4 + , TN, and TP were over 70%. Of the environmental variables we considered, water temperature exhibited significant positive correlations with removal rates for the nutrients except for NH 4 + . Results from mesocosm experiments indicated that NH 4 + was removed similarly in both pond- and marsh-type mesocosms within 1 day, but that NO 3 ? was removed more efficiently in marsh-type mesocosms, which required a longer retention time (2?C4 days). Phosphorus was significantly removed similarly in both pond- and marsh-type mesocosms within 1 day. Based on the results, we infer that wetland system composed of a pond- and a marsh-type wetland consecutively can enhance nutrient removal efficiency compared with mono-type wetland. The reason is that removal of NH 4 + and P can be maximized in the pond while NO 3 ? requiring longer retention time can be removed through both pond and marsh. Overall results of this study suggest that a constructed wetland composed of a pond- and a marsh-type wetland is highly effective for the removal of N and P from effluents of a secondary wastewater treatment plant.  相似文献   

5.
A 2 yr field study on the influence of N fertilization and rainfall on groundwater pollution was carried out in the sandy area of Belgium. The NO inf3 sup? -N and Cl? content of the groundwater at 0.5, 1.0, 1.5, and 2.0 m depths was monitored every two weeks on a field, grown with barley in 1980 and with maize in 1981. Turnips for cattle feed were grown in between the two crops. The total annual rainfall during the period under study was about 800 mm. The NO inf3 sup? -N content at all depths was at all times above 11.3 mg NO inf3 sup? -N dm?3, the WHO safe limit. Fluctuation of the NO inf3 sup? -N content occurred mainly at 0.5 and 1.0 m. The concentration at 1.5 and 2.0 m depths was higher most of the time than at 0.5 and 1.0 m. Leaching of NO inf3 sup? -N into deeper layers occurred when there was heavy rainfall. There was no important loss of NO inf3 sup? -N through denitrification at 1.5 and 2.0 m depths.  相似文献   

6.
The Nandong Underground River System (NURS) is located in Southeast Yunnan Province, China. Groundwater in NURS plays a critical role in socio-economical development of the region. However, with the rapid increase of population in recent years, groundwater quality has degraded greatly. In this study, the analysis of 36 groundwater samples collected from springs in both rain and dry seasons shows significant spatial disparities and slight seasonal variations of major element concentrations in the groundwater. In addition, results from factor analysis indicate that NO 3 ? , Cl?, SO 4 2? , Na+, K+, and EC in the groundwater are mainly from the sources related to human activities while Ca2+, Mg2+, HCO 3 ? , and pH are primarily controlled by water–rock interactions in karst system with Ca2+ and HCO 3 ? somewhat from anthropogenic inputs. With the increased anthropogenic contaminations, the groundwater chemistry changes widely from Ca-HCO3 or Ca (Mg)-HCO3 type to Ca-Cl (+NO3) or Ca (Mg)-Cl (+NO3), and Ca-Cl (+NO3+SO4) or Ca (Mg)-Cl (+NO3+SO4) type. Concentrations of NO 3 ? , Cl?, SO 4 2? , Na+, and K+ generally show an indistinct grouping with respect to land use types, with very high concentrations observed in the groundwater from residential and agricultural areas. This suggests that those ions are mainly derived from sewage effluents and fertilizers. No specific land use control on the Mg2+ ion distribution is observed, suggesting Mg2+ is originated from natural dissolution of carbonate rocks. The distribution of Ca2+ and HCO 3 ? does not show any distinct land use control either, except for the samples from residential zones, suggesting the Ca2+ and HCO 3 - mainly come from both natural dissolution of carbonate rocks and sewage effluents.  相似文献   

7.
A new, strong base, macro-porous anion exchange resin, Amberlite IRA 996, appeared to be more nitrate selective than sulfate selective in treating high nitrate concentrations (18 mg NO inf3 sup? -N L?1) in potable water. When regeneration is carried out in a closed circuit in which a biological denitrification reactor is incorporated to remove nitrate from the regenerant, regeneration salt requirement and brine production can be minimized. In this combination of ion exchange and biological denitrification, regeneration with 30 g NaHCO3 L?1) is possible in 6 hr at a flow rate of 11 BV hr?1. Accumulation of sulfate in the closed regeneration circuit does not affect the nitrate capacity of the resin.  相似文献   

8.
Hydrochemical data have been collected for between 6 and 9 years from forest harvesting experiments in small catchments (>10 ha) at Plynlimon and Beddgelert, Wales, UK. Felling resulted in rapid increases in NO 3 ? and K+ concentrations at both sites. A maximum of 3.2 mg N L?1 was observed at Plynlimon about one year after the start of felling. Concentrations declined to control stream values (0.5 mg N L?1) after 5 years. At Beddgelert, NO 3 ? concentrations in the manipulated catchments remained above those in the unfelled control catchment for three years, before declining below control values. The NO 3 ? pulse was related to increased rates of mineralization and nitrification in the soil after felling. The initial increase in K+ concentration after felling at Plynlimon was followed by a slow decline, but concentrations were still above those in the control stream after 5 years. From 4 to 8 years after felling at Beddgelert, K+ concentrations fell below and then generally remained lower than control values. The NO 3 ? pulse after felling at Plynlimon sustained inorganic anion concentrations above those in the control stream for the first 18 months after felling. As the NO 3 ? pulse declined, inorganic anion concentrations decreased to below those in the control stream about 4 years after felling. At Beddgelert, the smaller increase in NO 3 ? concentrations had less of an effect on inorganic anion concentrations which decreased after felling relative to values in the control stream. The increase in NO 3 ? was associated with temporary streamwater acidification in the felled catchments due to the increased rates of nitrification and nitrate leaching. At Plynlimon, streamwater filterable Al concentrations declined after felling, but controls on Al behaviour are complex and not explained by simple equilibrium relationships with Al(OH)3 or by variations in inorganic anion concentrations. At Beddgelert, felling had no effect on stream water filterable Al concentrations. Felling at Plynlimon led to a large reduction in streamwater Cl?, Na+ and SO 4 2? concentrations. At Beddgelert reductions in SO 4 2? and ‘sea salt’ ion concentrations were less clear, reflecting the smaller proportions of the catchments which were harvested. Felling had no deleterious effects on water quality, apart from a temporary slight further decline in stream pH at Beddgelert. Increases in NO 3 ? concentrations were short-lived and concentrations were well below drinking water standards. Filterable Al concentrations were already higher than statutory standards, but were not increased or decreased through felling.  相似文献   

9.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

10.
A study on pH and chemical composition of precipitation was carried out in two Italian sites, one urban (site 1) and one rural (site 2), located approximately 30 km far from Bologna, during a 3-year period. No significative site variation was found. In both locations, bulk deposition pH ranged from slightly acid to slightly alkaline, despite the volume weighted mean concentration of acidic species, NO 3 ? and SO 4 2? (67.4 and 118.4 μeq l?1 in site 1 and 88.7 and 103.8 μeq l?1 in site 2), that were similar to those of typical acidic rainfall region. This might be ascribed to the neutralization reaction of the Ca2+, attributed to the calcareous soil and the frequent dusty air mass intrusion from the Sahara. The pair correlation matrix and the analysis of the main components suggested also ammonium and other crustal elements as neutralization agents. The depositional rate of SO 4 2? and NO 3 ? , chemical elements of agricultural interest, amounted to 38 and 28 and 32 and 35 kg ha?1 for site 1 and site 2, respectively. These supplies of nutrient were not negligible and had to be considered on cultivated lands. NH 4 + deposition rate on site 2 was 7 kg ha?1, 23% over site 1, probably due to nitrogen fertilization in the fields around the monitoring station. In site 1, SO 4 2? presented a seasonal trend, indicating that its principal source was the residential heating. Results emphasized that the entity of the bulk deposition acidification is linked not only to the ions local emission sources (fossil fuel combustions, heating, and fertilizers) but also to the surrounding territory and the prevalent wind that transports through kilometers air masses which may contain acidic and alkaline species.  相似文献   

11.
At Lange Bramke (Harz) soil solution and runoff concentrations of major elements were observed over 16 yr. During this period acid deposition was high but showed a marked decrease of H+ and SO 4 2? both in concentrations and fluxes over the last five years. Among others, this record reveals the following patterns: seasonality in the signals for SO 4 2? and NO 3 ? in runoff which are synchronous; an accumulation of SO 4 2? in the soil, initially up to 50% of the deposition fluxes; apparently no correlation between runoff and SO 4 2? concentration, and no long-term trend in runoff concentration of SO 4 2? . In this paper we use these patterns in the data set from Lange Bramke to test two established acidification models. The test criterion is that the algorithms employed by the SO 4 2? modules of these models must be able to reproduce these features. To that end, both models need not to be run as it can be shown that even with completely unrestricted parameter values the two algorithms are unable to match the observed SO 4 2? dynamics. The MAGIC model (Cosbyet al., 1985) is unable to reproduce, given the existence of net SO 4 2? accumulation, the constant SO 4 2? concentration in runoff during the last 16 years. The second model, BEM (Prenzel, 1986), is succesful in reconstructing the constant SC>4~ levels in runoff. However, on a monthly time scale BEM predicts a shift between the periodic maximum concentrations of SO 4 2? and NO 3 ? which is not observed in the data.  相似文献   

12.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

13.
Nitrification is a process in which ammonia is oxidized to nitrite (NO 2 ? ) that is further oxidized to nitrate (NO 3 ? ). The relations between these two steps and ambient ammonia concentrations were studied in surface water of Chinese shallow lakes with different trophic status. For the oxidations of both ammonia and NO 2 ? , more eutrophic lakes generally showed significantly higher potential and actual rates, which was linked with excessive ammonia concentrations. Additionally, both potential and actual rates for ammonia oxidation were higher than those for NO 2 ? oxidation in the more eutrophic lakes, while in the lakes with lower trophic status, both potential and actual rates for ammonia oxidation were almost equivalent to those for NO 2 ? oxidation. This can be explained by the excessive unionized ammonia (NH3) concentration that inhibits nitrite-oxidizing bacteria in the more eutrophic lakes. The laboratory experiment with different ammonia concentrations, using the surface water in a eutrophic lake, showed that ammonia oxidation rates were proportional to the ammonia concentrations, but NO 2 ? oxidation rates did not increase in parallel. Furthermore, NO 2 ? oxidation was less associated with particles in natural water of the studied lakes. Without effective protection, it would be selectively inhibited by the excessive ammonia in hypereutrophic lakes, resulting in NO 2 ? accumulation. Shortly, the increased concentrations of ammonia cause a misbalance between the NO 2 ? -producing and the NO 2 ? -consuming processes, thereby exacerbating the lake eutrophication.  相似文献   

14.
A simple method is presented and used to estimate the portions of SO inf4 sup2? and NO inf? sup3 that contribute to the strong acidity in weekly precipitation samples collected at three NADP sites in the eastern United States. The method assumes that, in general, the difference between SO inf4 sup2? and NH inf+ sup4 represents acidic sulfate and the difference between NO inf? sup3 and soil-derived materials (the sum of Ca2+, Mg2+, and K+) represents acidic nitrate. Acidic sulfate and nitrate are considered to be the predominant source of H+ (determined from laboratory pH) in the weekly precipitation samples. Most of the acidity for all three sites was attributed to acidic sulfate. The highest fraction of acidic SO inf4 sup2? to H+ wet deposition values was for the east-central Tennessee site (0.95) and the northeastern Illinois site (0.90), and the lowest fraction occurred at the central Pennsylvania site (0.75). The Tennessee site had the greatest acidic fraction of sulfate (0.84) and the Pennsylvania site had the greatest acidic fraction of nitrate (0.59).  相似文献   

15.
The present work discusses the startup and operation of different biotrickling filters during the simultaneous removal of NH3, H2S, and ethyl mercaptan (EM) for odor control, focusing on (a) the impact of pH control in the stability of the nitrification processes during reactor startup and (b) the crossed effects among selected pollutants and their by-products. Two biotrickling filters were packed with poplar wood chips (R1 and R2A), while a third reactor was packed with polyurethane foam (R2B). R2A and R2B presented a pH control system, whereas R1 did not. Loads of 2?C10?g N?CNH3 m?3?h?1, 5?C16?g S?CH2S m?3?h?1, and 1?C6?g EM m?3?h?1 were supplied to the bioreactors. The presence of a pH control loop in R2A and R2B proved to be crucial to avoid long startup periods and bioreactors malfunctioning due to biological activity inhibition. In addition, the impact of the presence of different concentrations of a series of N species (NH 4 + , NO 2 ? , and NO 3 ? ) and S species (SO 4 2? and S2?) on the performance of the two biotrickling filters was studied by increasing their load to the reactors. Sulfide oxidation proved to be the most resilient process, since it was not affected in any of the experiments, while nitrification and EM removal were severely affected. In particular, the latter was affected by SO 4 2? and NO 2 ? , while nitrification was significantly affected by NH 4 + . The biotrickling filter packed with polyurethane foam was more sensitive to crossed effects than the biotrickling filter packed with poplar wood chips.  相似文献   

16.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

17.
Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40?C70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65?×?105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49?×?103 to 3.87?×?104, while for total hydrocarbon degraders, it ranged between 5.62?×?103 and 1.14?×?105 of cells/g dw sediment. Pore water nutrient concentrations (NH 4 + , NO 3 ? , NO 2 ? , and PO 4 3? ) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4?±?52.4 and 141.9?±?57.5?mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.  相似文献   

18.
The lakes investigated ranged widely in pH (3.6–6.3), total phosphorus (3.3–33.1 μg.L-1) and calcium (0.352-6.30 mq.L-1). Several macroinvertebrate groups especially Pelecypoda, Hirudinea and Gastropoda do not occur in lakes of low pH (<5.0). The bivalve Pisidium sp. occurred in one acidic lake (pH 5.2). Apparently, this is the lowest pH occurrence for Pisidium sp. at such low calcium levels (0.35 mg.L-1). Macroinvertebrate richness was reduced with increased levels of acidity but nutrient availability apparently controlled macroinvertebrate abundance and biomass in the lakes.  相似文献   

19.

Purpose

The aim of this study was to evaluate the behaviour of P in saline Spolic Technosols flooded with eutrophic water, with and without plant rhizosphere, in order to assess the role of these soils as sinks or sources of this nutrient.

Materials and methods

Samples were taken from basic (pH?~7.8), carbonated and acidic (pH?~6.2), de-carbonated soils of salt marshes polluted by mine wastes. Three treatments were assayed: pots with Sarcocornia fruticosa, pots with Phragmites australis and pots without plants (bare soil). The pots were flooded for 15?weeks with eutrophic water (PO 4 3? ~6.92?mg?L?1) and pH, Eh and water-soluble organic carbon and PO 4 3? concentrations were monitored in the soil solution. A soil P fractionation was applied before and after the flooding period.

Results and discussion

The PO 4 3? concentration in the soil solution decreased rapidly in both soils, with and without plant, being diminished by 80?C90?% after 3?h of flooding. The Fe/Mn/Al oxides and the Ca/Mg compounds played an important role in soil P retention. In pots with S. fruticosa, the reductive conditions due to flooding induced P release from metal oxides and P retention to Ca/Mg compounds. In turn, P. australis may have favoured the release of P from carbonates, which was transferred to Fe/Mn/Al compounds.

Conclusions

The retention of P by the soil was the main mechanism involved in the removal of PO 4 3? from the eutrophic flooding water but to evaluate the capacity of these systems as long-term P sinks, the combined effect of metals, Ca/Mg compounds and specific plant species should be considered.  相似文献   

20.
This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ? ), NH 4 + to NO 3 ? ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 ? uptake was examined. Uptake rates were on average five times higher (p?<?0.05) for NH 4 + than for NO 3 ? and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ? ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号