首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
石灰性污染土壤中重金属镉、铅的活化研究   总被引:2,自引:0,他引:2  
为了探讨石灰性污染土壤中重金属的活化方法,选择四种试剂(氯化钠、盐酸、EDDS和柠檬酸)和受镉污染和镉、铅复合污染两种土壤(XX土壤,全镉6.77 mg kg?1,< 0.01 mm颗粒含量9.8%;JY土壤全镉5.72 mg kg?1、全铅312 mg kg?1,< 0.01 mm颗粒含量29.8%)进行室内培养试验。结果表明:对于XX土壤,氯化钠、盐酸、EDDS和柠檬酸对镉均有活化作用,活化效率分别达到71.87%、74.87%、43.27%和22.86%;对于JY土壤,氯化钠、盐酸和EDDS对镉的活化效率分别达到53.44%、48.44%和42.4%,柠檬酸的活化作用不明显,氯化钠、盐酸、EDDS和柠檬酸对JY土壤铅的活化效率分别达到26.49%、25.56%、55.21%和14.81%。土壤质地可能是影响两种土壤中不同试剂重金属活化效率的主要因素。  相似文献   

2.
许多污染场地都呈现重金属和有机污染物叠加的趋势,给修复带来了困难和挑战。以红壤为供试土壤,以铜和芘为代表性污染物,研究了添加表面活性剂羟丙基-β-环糊精(HPCD)和氧化剂H2O2对电动修复该复合污染土壤的影响,其目的是实现重金属和有机污染物的同时去除。结果表明,在所有的处理中,芘和铜都有向阴极迁移的趋势;当提高土柱的pH时降低了芘的氧化和降解,同时也阻碍了土壤中铜的迁移和去除;阳极加10%HPCD,阴极控制酸性条件pH3.5有助于土壤中污染物的解吸和迁移,芘和铜的去除率分别可达到51.3%和80.5%;由于H2O2的不稳定性,添加6%H2O2并未明显提高芘和铜的去除率。  相似文献   

3.

Purpose

Combined pollution by polycyclic aromatic hydrocarbons (PAHs) and heavy metals are commonly found in industrial soils. This study aims to investigate the effect of the coexistence of heavy metals on the sorption of PAHs to soils. We focused specifically on the relationship of the sorption capacity with the estimation of the binding energy between PAHs and heavy metals.

Materials and methods

The sorption of typical PAHs (naphthalene, phenanthrene, and pyrene) to soils coexisting with heavy metals (Cu(II), Pb(II), and Cr(III)) was characterized in batch sorption experiments. The binding energy between PAHs and heavy metals in aqueous solution was estimated by quantum mechanical (QM) method using density functional theory (DFT) at the M06-2x/def2svp level of theory.

Results and discussion

Sorption capacity and nonlinearity of the PAHs to the soils were enhanced by the coexisting heavy metals. The extent of increment was positively associated with the hydrophobicity of the PAHs and the electronegativity and radius of the metal cations: Cr(III)?>?Pb(II)?>?Cu(II). The cation-π interaction was revealed as an important noncovalent binding force. There was a high correlation between the binding energies of the PAHs and K f (K f adjusted after normalizing the equilibrium concentration (C e) by the aqueous solubility (C s)) (R 2?>?0.906), indicating the significant role of the cation-π interactions to the improved PAH sorption to soils.

Conclusions

In the presence of heavy metals, the sorption capacities of naphthalene, phenanthrene, and pyrene to soils were enhanced by 21.1–107 %. The improved sorption capacity was largely contributed from the potent interactions between PAHs and heavy metals.
  相似文献   

4.
The oxidation of para-nitrochlorobenzene (pNCB) by persulfate (PS) activated with zero-valent iron (Fe0) was investigated through a series of batch experiments. The pNCB reduction ratio increased with the decrease of the initial solution pH. It is found that temperature and Fe0 dosage could also influence the pNCB removal. Under the conditions of initial Fe0 dosage 0.8 mmol/g, initial pH of 6.6, and 25 °C, 66.3% of pNCB was reduced in 6 h. The pNCB was slightly degraded in the presence of PS alone. When PS was dosed after 2 h of Fe0 reduction, significantly higher pNCB removal (94.1%) and mineralization (36.4%) were obtained relative to the case of simultaneous dosing of Fe0 and PS (85.3% removal, 22.6% mineralization). This indicates that the reduction product of pNCB was more easily oxidized by PS than pNCB, suggesting that converting the nitro groups of pNCB to amino groups prior to oxidation can enhance their oxidation. These results suggest that a sequential Fe0 reduction–PS oxidation process may be an effective strategy to promote pNCB decomposition in contaminated soil.  相似文献   

5.
(pp. 33–39)

The purpose of this study is to investigate utilization of Akadama soil and evaluate its ion removal efficiency for seawater desalination. The chemical composition of the Akadama soil was Al203 0.334 kg kg?1, SiO2 0.470 kg kg?1, Fe203 0.157 kg kg?1 by weight. X-ray powder diffraction pattern, electron diffraction pattern and IR spectrum of Akadama soil showed that allophane was the main phase and low crystallinity kaolin was generated from the allophane. The column method was carried out to evaluate seawater desalination efficiency, the best mixture ratio of the Akadama soil (particle size was less than 250 m), aluminum silicate adsorbent, aluminium magnesium adsorbent, and magnesium oxide adsorbent was 3:1:1:1. Removal percentages of Na+, Mg2+, Ca2+, K+ and Cl? from artificial seawater were 87.7, 84.4, 91.1, 97.3 and 90.7%, respectively. In the batch method, where the mixed adsorbent was used for removal of heavy metals from 20 mg L?1 solution, the removal percentages of Cu2+, Ni2+, Mn2+, Zn2+, Cd2+ and Pb2+ were higher than 98%. The removal percentage of PO4 from river water was 100%.  相似文献   

6.
Removal of Heavy Metals from Calcareous Contaminated Soils by EDTA Leaching   总被引:1,自引:0,他引:1  
The performance of EDTA for the treatment of calcareous soils contaminated with heavy metals from mining and smelting activities was evaluated in this study. Soil samples containing variable levels of contamination, from 500 to 35 000 mg kg-1 Pb and 700 to 20 000 mg kg-1 Zn, were subjected to EDTA treatment and the extraction of heavy metals was found to vary, ranging between 50 and 98% for Pb and 50 to 100% for Zn. Total residual concentrations were above the limits set by regulatory authorities; leachable metals, however, were efficiently removed and treated soils were all acceptable in terms of toxicity. The effect of EDTA concentration and pulp density was studied on a soil sample containing 12 000 mg kg-1 Pb and 10 000 mg kg-1 Zn. Heavy metals removal was improved at low pulp densities and when EDTA concentration was increased from 0.025 to 0.25 M. The tetrasodium salt Na4-EDTA was found to be less effective for metals removal compared to the disodium salt Na2-EDTA, though applied at higher concentrations. This experimental work has also demonstrated the great importance of soil matrix for the overall evaluation of the EDTA leaching as a cost effective remedial option. The simultaneous dissolution of calcite was found to consume approximately 90% of the available EDTA. It was thus concluded that for the treatment of calcareous soils the design criteria and cost estimations should be based on the calcite content of the soil.  相似文献   

7.
Mixed microbial culture was isolated from heavy metal-contaminated ground soils located inside iron, vinyl and cement factory area. Isolated mixed microbial culture was used for the heavy metal ions (Fe2+, Cu2+, Ni2+ and Zn2+) removal process in horizontal rotating tubular bioreactor (HRTB). In this research, the effect of bioreactor process parameters on the bioprocess dynamics in the HRTB was studied. Results of this research have shown that profiles of heavy metals concentration were gradually reduced along HRTB at all combinations of bioreactor process parameters [inflow rates (0.5?C2.0 L?h-1) and rotation speed (5?C30 min-1)]. Hydrodynamic conditions and biomass sorption capacity have main impact on the metal ions removal efficiency that was varied in the range of 38.1% to 95.5%. Notable pH gradient (cca 0.7 pH unit) along the HRTB was only observed at the inflow rate of 2.0 L?h-1. On the basis of obtained results, it is clear that medium inflow rate (F) has higher impact on the heavy metal removal process than bioreactor rotation speed (n) due to the fact that increase of inflow rate was related to the reduction of equilibrium time for all examined metal ions. Furthermore, equilibrium times for all metal ions are significantly shorter than medium residence times at all examined combinations of bioreactor process parameters. The main impact on the biofilm sorption capacity has covalent index of metal ions and biofilm volumetric density. The sorption capacity of suspended microbial biomass is closely related to its concentration. Results of this research have also shown that the removal of heavy metals ion can be successfully conducted in an HRTB as a one-step process.  相似文献   

8.
The present research was done to study the ability of cyanobacterial species for removing heavy metals from sewage. As well, to estimate the growth and some metabolites of Beta vulgaris irrigated with sewage treated by cyanobacterial species. The best removal results were obtained by Anabaena oryzae compared to the other studied cyanobacteria. Whereas A. oryzae showed high removal efficiency for cadmium (Cd2+) followed by lead (Pb2+), zinc (Zn2+), iron (Fe2+), copper (Cu2+) and manganese (Mn2+) (88.5, 83.1, 68.8, 62.0, 55.2 and 42.4%, respectively). Irrigation of plants by untreated or treated sewage generally caused stimulation in the total proteins, proline, carbohydrates and ascorbic acid. B. vulgaris grown in soil irrigated with untreated sewage showed maximum catalase, peroxidase activity, hydrogen peroxide (H2O2) and lipid peroxidation compared to the other treatments. The heavy metals availability was relatively low in the plant irrigated with treated sewage by cyanobacterial species, so the antioxidants requirement was low and hence the induction of antioxidants was lower compared to the plant irrigated with untreated sewage.  相似文献   

9.
The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.  相似文献   

10.
This study was conducted to determine the optimal conditions for PAH degradation from highly contaminated attrition sludge (PAC) using a Fenton process or successive permanganate (KMnO4) oxidation and Fenton processes. The following parameters were studied to optimize the Fenton oxidation process: the amounts of reactants based on the stoichiometric oxidant demand (SOD), the reactant addition protocol and number of doses, and the solid/liquid ratio (S/L). The results showed that the following conditions were optimum: TS?=?30%, 7.5 times SOD, H2O2/Fe2+ ratio?=?10, and added five times during 60 min, which allowed the degradation of 43% of total 27 PAHs from the PAC. Successive Fenton and KMnO4 oxidation processes were also tested. PAH degradation using a sequential Fenton process followed by KMnO4 oxidation (or KMnO4 followed by Fenton) was higher than for the use of Fenton or KMnO4 treatment alone. Up to 71% of the total 27 PAHs were degraded when using a combination of both processes. It appeared that the sequential treatment is a viable method for the significant degradation of 27 PAHs from PAC (t value?>?2.77).  相似文献   

11.
碱性过硫酸钾氧化法测定溶液中全氮含量氧化剂的选择   总被引:26,自引:1,他引:26  
对碱性过硫酸钾氧化法测定溶液中全氮含量采用的氧化剂进行了比较研究。结果表明,氧化反应过程中溶液的pH值与氧化剂的效果有密切关系;氧化剂中过硫酸钾与NaOH配比合适,有利于溶液中的氮素转化为NO3--N。3%过硫酸钾与0.15mol.L-1NaOH配合是一个适宜的氧化剂,可测定的尿素最大浓度为N,80mgL-1,可定量地回收L-丙氨酸及EDTA溶液所含的氮素,测定的0.5mol.L-1K2SO4土壤浸提液中的全氮与开氏法结果基本一致。  相似文献   

12.
The main objective of this study was to examine the effectiveness of vermiculite for removing heavy metals from water. Vermiculite components were analyzed by X-ray fluorescence, and the concentrations of metal ions were measured by inductively coupled plasma spectrometry. Serial batch kinetic tests and batch sorption tests were conducted to determine the removal characteristics for heavy metals in aqueous solutions. Solution pH values of tests with the inflated vermiculites generally increased and then stabilized. Equilibrium pH was generally established within 5?h. Removal rates of inflated vermiculite were tested at the initial concentration of 3?mg/L. At equilibrium concentrations, except for chromium (36.23%), most heavy metals were effectively removed (96.08?C98.54%). Finally, sorption data were correlated with both Langmuir and Freundlich isotherms. For each metal, the Q max obtained using the Langmuir isotherm was as follows: lead, 725.4?mg?kg?1; cadmium, 568.8?mg?kg?1; zinc, 540.2?mg?kg?1; copper, 457.2?mg?kg?1; and chromium, 0.9?mg?kg?1. The study results indicate that inflated vermiculite has outstanding removal rates and therefore can be used as an adsorbent for various heavy metals.  相似文献   

13.
Abstract

The effect of sewage sludge applications on extractability and uptake by chard and lettuce of soil cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), leaf (Pb), and zinc (Zn) was investigated. Ten different treatments (0, 150, 300, and 500 kg N ha‐1) as mineral fertilizer, and 400, 800, and 1,200 kg N ha‐1 of aerobically and anaerobically‐digested sewage sludges were applied annually to a sandy‐loam soil since 1984. Seven years after the start of the treatments, higher levels of heavy metals were detected in the soil, depending on the type of metal, depth of sampling, type of sludge used, and, especially, rate of application. Following a sequential extraction procedure incorporating 0.1M CaCl2, 0.5M NaOH, and 0.05M Na2EDTA, most of the heavy metals in soil were detected in the Na2EDTA solution and the residual fractions. Large amounts of Cd appeared to be extracted by CaCl2, whereas substantial amounts of Cu and Ni were isolated by NaOH. The effect of treatments on the percentages of the metals found in each fraction depended on the type of metal, sampling depth, sludge used, and application rate. No significant increases were found in the heavy metal contents of chard and lettuce leaves, but some of the treatments resulted in a significant decrease of Cd and Cr levels in lettuce leaves.  相似文献   

14.
铬渣污染场地已经列为我国土壤污染重点治理对象,急需修复铬渣污染土壤的关键技术。本文通过室内模拟实验,采用振荡淋洗的方法研究了水、EDTA、EDDS、柠檬酸、草酸、盐酸、磷酸、环糊精和十二烷基苯磺酸钠等淋洗剂对铬渣污染场地Cr的淋洗效果,探讨了淋洗剂浓度、淋洗时间、土水比、淋洗次数等对淋洗效果的影响,并研究了不同淋洗剂复合对Cr的淋洗效果以及不同浓度柠檬酸淋洗前后重金属形态的变化。结果表明:水、EDTA、EDDS、环糊精和十二烷基苯磺酸钠对Cr的去除率较低,柠檬酸在浓度为0.5mol·L-1、土水比1:20、反应时间为24h、淋洗次数为2次的条件下可以达到最佳淋洗效果,Cr的去除率可达到82.8%;SDBS、EDTA与柠檬酸单独组合顺序或者混合淋洗,都没有增加柠檬酸对Cr的去除率。重金属形态分析表明,柠檬酸淋洗有效地改变了Cr的形态从而达到较高的修复效果。当柠檬酸浓度小于0.25mol·L-1时,对铬的去除主要以C(rⅥ)为主;当柠檬酸浓度大于0.25mol·L-1时,对铬的去除主要以C(rⅢ)为主。本文的研究结果为异位淋洗修复铬渣污染土壤提供理论依据。  相似文献   

15.
The feasibility of using chelate agents to enhance the electrokinetic remediation of heavy metal contaminated soils has been investigated in this study. Chelate agents were used as washing solutions as well as purging solutions at the electrode compartments. The pH value of the soil significantly affects the removal of heavy metal ions. Due to electrolysis reaction pH increases near the cathode. Without conditioning of the pH value metals precipitate as hydroxides. This problem is solved by the addition of an acid in the cathode compartment. The heavy metals that are dissolved will move to either the cathode or the anode, depending on their charges. This paper presents the results of electrokinetic extraction of cadmium using acetic acid, citric acid and pyridine-2,6-dicarboxylic acid (PDA) as washing and purging solutions, and the removal of zinc using ethylenediamine tetraacetic acid (EDTA) and sodium metabisulfite (Na2S2O5) as washing and purging solutions, respectively. The results showed that the increased experimental time induced a higher removal efficiency of cadmium and zinc.  相似文献   

16.
The performance of various filters used for determining inorganic species (heavy metals, light metals, anions and ammonium ion) in airborne particulates was comparatively assessed. Filters used in the determination of Ca2+, Mg2+, Na+, K+, Fe3+, Zn2+, Pb2+, Cr3+, Ni2+, V (V), Mn2+ and Cd2+ were attacked by acid extraction (glass microfibre filters, GF/A), acid extraction and microwave oven digestion (quartz filters, QM-A), and muffle furnace calcination and microwave oven digestion (Whatman-41 cellulose filters, W-41). The behaviour of the different filters tested towards aqueous extraction for the determination of anions (Cl?, NO 3 ? , SO 4 ? , ammonium ion and light metals (Ca2+, Mg2+, Na+ and K+) was also studied and the results obtained for the light metals were compared with those provided by acid attack. All metals except vanadium were determined by ICP-AES; cadmium, lead and vanadium were analysed for by GFAAS; anions were quantified by ion chromatography (SO 4 ? was also measured by ICP-AES); and ammonium ion was determined by the Indophenol Blue method.  相似文献   

17.
Fly ash generated from medical waste incinerator and wastewater produced from electroplating plants contains various hazardous contaminants such as heavy metals and chlorinated organic compounds. The primary goal of this research was to investigate the feasibility of removing heavy metals from wastewater using medical waste incinerator fly ash as the treatment reagent with addition of small amount of sodium carbonate (Na2CO3) in a hydrothermal process. Copper (Cu) was used as the model heavy metal contaminant in the process. The results revealed that medical waste incinerator fly ash could effectively stabilize Cu(II) ion from wastewater, the crystal phase and simple substance formed during the treatment played a significant role in the fixation of heavy metals in wastewater and fly ash. The heavy metal leachability of treated ash was also measured after removal process. The co-disposal of Cu-containing wastewater and heavy metals-bearing medical waste incinerator fly ash by hydrothermal treatment with addition of a small amount of Na2SO3 was found promising as an effective way of removing Cu from wastewater. The reutilization feasibility of fly ash and the formation mechanism of copper-containing substances were also discussed in this paper.  相似文献   

18.
Numerous sites are contaminated with both heavy metals and polycyclic aromatic hydrocarbons (PAHs) and the technologies to treat such mixed contaminants are very limited. Electrokinetic remediation has the potential to remediate mixed contaminants in soils, including low permeability soils; however, the efficiency of this technology depends on the extracting solution employed. Previous studies on electrokinetic remediation have focused on the removal of heavy metals and organic compounds when they exist individually in clayey soils. In the present study, the feasibility of using cosolvents to enhance the electrokinetic removal of PAHs from clayey soils in the presence of heavy metals is investigated. A series of laboratory electrokinetic experiments was conducted using kaolin soil spiked with phenanthrene and nickel at concentrations of 500 mg/kg each to simulate typical field mixed contamination. Experiments were performed using n-butylamine (cosolvent) at concentrations of 10 and 20% and deionized water, each mixed with 0.01 M NaOH solution and circulated at the anode to maintain alkaline conditions. A periodic voltage gradient of 2 VDC/cm in cycles of 5 days on and 2 days off was applied in all the tests. During the initial stages when the soil pH was low, nickel existed as a cation and electromigrated towards the cathode. However, as the soil pH increased due to hydroxyl ions generated at the cathode and also flushing of high pH n-butylamine solution from the anode, nickel precipitated with no further migration. Phenanthrene was found migrating towards the cathode in proportion to the concentration of n-butylamine. The extent of phenanthrene removal was found to depend on both the electroosmotic flow and the concentration of n-butylamine, but the presence of nickel did not influence the transport and removal of phenanthrene.  相似文献   

19.
We examined the sorption of heavy metals and polycyclic aromatic hydrocarbons (PAHs) to surface-oxidized activated carbon (AC) and its effect on the distribution of those compounds in sediments. Created surface oxygen groups on AC enhanced the sorption of copper, which is superior in sorption competition, in the marine sediments. In case of cadmium, aqueous chemistry altered by AC addition, such as pH, has greater impact on the bioavailability according to the result of a sequential extraction combined with the pore water concentration measurements. Oxidized AC exhibited 2.3 times more adsorption of reduced bioavailable copper while 23% of bioavailable cadmium was adsorbed onto unmodified AC. No significant changes in BET surface area, pore volume, and AC/water distribution coefficient (K AC) of PAHs were observed with surface-oxidized AC. The largest difference in K AC after the oxidation was only 0.14 log unit. Consequently, freely dissolved aqueous concentrations of PAHs were reduced by more than 96% for all tested ACs in a week despite the increased Cu sorption on AC. This indicates that enhanced metal sorption by surface oxidation of AC is less significant in controlling bioavailability of PAHs in sediments than particle size or sorbent dose.  相似文献   

20.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号