首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nandong Underground River System (NURS) is located in Southeast Yunnan Province, China. Groundwater in NURS plays a critical role in socio-economical development of the region. However, with the rapid increase of population in recent years, groundwater quality has degraded greatly. In this study, the analysis of 36 groundwater samples collected from springs in both rain and dry seasons shows significant spatial disparities and slight seasonal variations of major element concentrations in the groundwater. In addition, results from factor analysis indicate that NO 3 ? , Cl?, SO 4 2? , Na+, K+, and EC in the groundwater are mainly from the sources related to human activities while Ca2+, Mg2+, HCO 3 ? , and pH are primarily controlled by water–rock interactions in karst system with Ca2+ and HCO 3 ? somewhat from anthropogenic inputs. With the increased anthropogenic contaminations, the groundwater chemistry changes widely from Ca-HCO3 or Ca (Mg)-HCO3 type to Ca-Cl (+NO3) or Ca (Mg)-Cl (+NO3), and Ca-Cl (+NO3+SO4) or Ca (Mg)-Cl (+NO3+SO4) type. Concentrations of NO 3 ? , Cl?, SO 4 2? , Na+, and K+ generally show an indistinct grouping with respect to land use types, with very high concentrations observed in the groundwater from residential and agricultural areas. This suggests that those ions are mainly derived from sewage effluents and fertilizers. No specific land use control on the Mg2+ ion distribution is observed, suggesting Mg2+ is originated from natural dissolution of carbonate rocks. The distribution of Ca2+ and HCO 3 ? does not show any distinct land use control either, except for the samples from residential zones, suggesting the Ca2+ and HCO 3 - mainly come from both natural dissolution of carbonate rocks and sewage effluents.  相似文献   

2.
The chemical composition of snowmelt, groundwater, and streamwater was monitored during the spring of 1991 and 1992 in a 200-ha subalpine catchment on the western flank of the Rocky Mountains near Steamboat Springs, Colorado. Most of the snowmelt occurred during a one-month period annually that began in mid-May 1991 and mid-April 1992. The average water quality characteristics of individual sampling sites (meltwater, streamwater, and groundwater) were similar in 1991 and 1992. The major ions in meltwater were differentially eluted from the snowpack, and meltwater was dominated by Ca2+, SO 4 2? , and NO 3 ? . Groundwater and streamwater were dominated by weathering products, including Ca2+, HCO 3 ? (measured as alkalinity), and SiO2, and their concentrations decreased as snowmelt progressed. One well had extremely high NO 3 ? . concentrations, which were balanced by Ca2+ concentrations. For this well, hydrogen ion was hypothesized to be generated from nitrification in overlying soils, and subsequently exchanged with other cations, particularly Ca2+. Solute concentrations in streamwater also decreased as snowmelt progressed. Variations in groundwater levels and solute concentrations indicate that most of the meltwater traveled through the surficial materials. A mass balance for 1992 indicated that the watershed retained H+, NH 4 + , NO 3 ? , SO 4 2? and Cl? and was the primary source of base cations and other weathering products. Proportionally more SO 4 2? was deposited with the unusually high summer rainfall in 1992 compared to that released from snowmelt, whereas NO 3 ? was higher in snowmelt and Cl? was the same. The sum of snowmelt and rainfall could account for greater than 90% of the H+ and NH 4 + retained by the watershed and greater than 50% of the NO 3 ? .  相似文献   

3.
The effect of different anions on the balance of heavy metal cations in the soil-solution system has been assessed under model laboratory conditions. It has been found that the uptake of the Cu, Zn, and Pb cations by an ordinary chernozem from solutions of different salts is accompanied by the displacement of the exchangeable cations to the solution in the following order: Ca2+ > Mg2+ > Na+ > K+. The sum of the displaced exchangeable cations in most cases exceeds the amount of the adsorbed heavy metal cations. According to the effect of the anions on the displacing capacity of the metal cations, the following series are formed: for copper, SO 4 2? ? Cl? > OAc? > NO 3 ? ; for lead, Cl? ? NO 3 ? > OAc?; and, for zinc, SO 4 2? ? Cl? ? OAc? > NO 3 ? .  相似文献   

4.
The study aimed to determine the influence of catchment characteristics and flood type on the relationship between streamflow and a number of chemical characteristics of streamwater. These were specific electrical conductivity (SC), pH, the concentrations of main ions (Ca2+, Mg2+, Na+, K+, HCO 3 ? , SO 4 2? , and Cl?), and nutrients (NH 4 + , NO 2 ? , NO 3 ? , and PO 4 3? ). These relationships were studied in three small catchments with different geological structure and land use. Several flood types were distinguished based on the factors that initiate flooding and specific conditions during events. Geological factors led to a lower SC and main ion concentrations at a given specific runoff in catchments built of resistant sandstone versus those built of less resistant sediments. A lower concentration of nutrients was detected in the semi-natural woodland catchment versus agricultural and mixed-use catchments, which are strongly impacted by human activity. The strongest correlation between streamflow and the chemical characteristics of water was found in the woodland catchment. Different types of floods were characterized by different ion concentrations. In the woodland catchment, higher SC and higher concentrations of most main ions were noted during storm-induced floods than during floods induced by prolonged rainfall. The opposite was true for the agricultural and mixed-use catchments. During snowmelt floods, SC, NO 3 ? , and most main ion concentrations were higher when the soil was unfrozen in the agricultural and mixed-use catchments versus when the soil was frozen. In the case of the remaining nutrients, lower concentrations of NH 4 + were detected during rain-induced floods than during snowmelt floods. The opposite was true of PO 4 3? .  相似文献   

5.

Purpose

Nitrate (NO 3 ? ) is often considered to be removed mainly through microbial respiratory denitrification coupled with carbon oxidation. Alternatively, NO 3 ? may be reduced by chemolithoautotrophic bacteria using sulfide as an electron donor. The aim of this study was to quantify the NO 3 ? reduction process with sulfide oxidation under different NO 3 ? input concentrations in river sediment.

Materials and methods

Under NO 3 ? input concentrations of 0.2 to 30?mM, flow-through reactors filled with river sediment from the Pearl River, China, were used to measure the processes of potential NO 3 ? reduction and sulfate (SO 4 2? ) production. Molecular biology analyses were conducted to study the microbial mechanisms involved.

Results and discussion

Simultaneous NO3 ? removal and SO4 2? production were observed with the different NO 3 ? concentrations in the sediment samples collected at different depths. Potentially, NO 3 ? removal reached 72 to 91?% and SO 4 2? production rates ranged from 0.196 to 0.903?mM?h?1. The potential NO 3 ? removal rates were linearly correlated to the NO 3 ? input concentrations. While the SO 4 2? production process became stable, the NO 3 ? reduction process was still a first-order reaction within the range of NO 3 ? input concentrations. With low NO 3 ? input concentrations, the NO 3 ? removal was mainly through the pathway of dissimilatory NO 3 ? reduction to NH 4 + , while with higher NO 3 ? concentrations the NO 3 ? removal was through the denitrification pathway.

Conclusions

While most of NO 3 ? in the sediment was reduced by denitrifying heterotrophs, sulfide-driven NO 3 ? reduction accounted for up to 26?% of the total NO 3 ? removal under lower NO 3 ? concentrations. The vertical distributions of NO 3 ? reduction and SO 4 2? production processes were different because of the variable bacterial communities with depth.  相似文献   

6.
A modeling study on fertilizer by-products fate and transport was performed in an unconfined shallow aquifer equipped with a grid of 13 piezometers. The field site was located in a former agricultural field overlying a river paleochannel near Ferrara (Northern Italy), cultivated with cereals rotation until 2004 and then converted to park. Piezometers were installed in June 2007 and were monitored until June 2009 via pressure transducer data loggers to evaluate the temporal and spatial variation of groundwater heads, while an onsite meteorological station provided data for recharge rate calculations via unsaturated zone modeling. The groundwater composition in June 2007 exhibited elevated nitrate (NO 3 ? ) and chloride (Cl?) concentrations due to fertilizer leaching from the top soil. The spatial distribution of NO 3 ? and Cl? was heterogeneous and the concentration decreased during the monitoring period, with NO 3 ? attenuation (below 10?mg/l) after 650?days. A transient groundwater flow and contaminant transport model was calibrated versus observed heads and NO 3 ? and Cl? concentrations. Cl? was used as environmental tracer to quantify groundwater flow velocity and it was simulated as a conservative species. NO 3 ? was treated as a reactive species and denitrification was simulated with a first order degradation rate constant. Model calibration gave a low denitrification rate (2.5e?3 mg-NO 3 ? /l/d) likely because of prevailing oxic conditions and low concentration of dissolved organic carbon. Scenario modeling was implemented with steady state and variable flow time discretization to identify the mechanism of NO 3 ? attenuation. It was shown that transient piezometric conditions did not exert a strong control on NO 3 ? clean up time, while transient recharge rate did, because it is the main source of unpolluted water in the domain.  相似文献   

7.
The present study was conducted in tropical Sal forest ecosystem of the Doon valley in the Indian Himalayas to assess the critical load of sulfur and nitrogen and their exceedances. The observed pattern of throughfall ionic composition in the study are Ca2+>K+>Mg2+>Cl?>?HCO3?>?Na+>NO 3 ? >?SO 3 2? ???NH 4 + >F?. The sum of cation studied is 412.29 ??eq l?1 and that of anions is 196.98 ??eq l?1, showing cation excess of 215.31 ??eq l?1. The cations, namely Ca2+, Mg2+, K+, Na+, and NH 4 + , made a contribution of about 67% of the total ion strength, where as anion comprising of SO 4 2? , Cl?, NO 3 ? , and HCO 3 ? contributed 33%. The chief acidic components were Cl?C (12%) and HCO 3 ? (8%), while the presence of SO 4 2? (5%) and NO 3 ? (6%), respectively. Percentage contribution of bole to total aboveground biomass was ??72.38% in comparison to 2.24?C2.93% of leaf biomass, 10.34?C10.96% of branch biomass and 13.21?C17.07% of bark biomass. There was high and significant variation (P?<?0.001) in the total aboveground biomass produced at different sites. The aboveground net primary productivity (ANPP) in these sites ranged between 2.09 and 9.22 t ha?1 year?1. The base cations and nitrogen immobilization was found to be maximum in bole. The net annual uptake of the base cations varied from 306.85 to 1,311.46 eq ha?1 year?1 and of nitrogen from 68.27 to 263.51 eq ha?1 year?1. The critical appraisal of soil showed that cation exchange capacity lied between 18.37 and 10.30 Cmol (p+) kg?1. The base saturation percentage of soil was as high as 82.43% in Senkot, whereas in Kalusidh it was just 44.28%. The local temperature corrected base cation weathering rates based on soil mineralogy, parent material class, and texture class varied from 484.15 to 627.25 eq ha?1 year?1, showing a weak potentiality of the system to buffer any incoming acidity and thus providing restricted acid neutralizing capacity to keep the ecosystem stable under increased future deposition scenarios in near future. The appreciable BS of the soil indicates the presence of intense nutrient phytorecycling forces within this climate and atmospheric deposition in replenishing base cations in the soil, which includes intrinsic soil-forming processes, i.e., weathering. The highest value of critical load for acidity was 2,896.50 eq ha?1 year?1 and the lowest was 2,792.45 eq ha?1 year?1. The calculated value of the minimum critical loads for nitrogen varied from 69.77 to 265.01 eq ha?1 year?1, whereas the maximum nitrogen critical load ranged between 2,992.63 and 4,394.45 eq ha?1 year?1. The minimum and the maximum critical loads of sulfur ranged between 2,130.49 and 3,261.64 eq ha?1 year?1 and 2,250.58 and 3,381.73 eq ha?1 year?1, respectively. The values of exceedance of sulfur and nitrogen were negative, implying that in the current scenario Sal forests of the Doon valley are well protected from acidification.  相似文献   

8.
The efficiency of UV- and VUV-based processes (UV, VUV, UV/H2O2, and VUV/H2O2) for removal of sulfamethoxazole (SMX) in Milli-Q water and sewage treatment plant (STP) effluent was investigated at 20??C. The investigated factors included initial pH, variety of inorganic anions (NO 3 ? and HCO 3 ? ), and humic acid (HA). The results showed that the degradation of SMX in Milli-Q water at both two pH (5.5 and 7.0) followed the order of VUV/H2O2 > VUV > UV/H2O2 > UV. All the experimental data well fitted the pseudo-first order kinetic model and the rate constant (k) and half-life time (t 1/2) were determined accordingly. Indirect oxidation of SMX by generated ?OH was the main degradation mechanism in UV/H2O2 and VUV/H2O2, while direct photolysis predominated in UV processes. The quenching tests showed that some other reactive species along with ?OH radicals were responsible to the SMX degradation under VUV process. The addition of 20?mg?L?1 HA significantly inhibited SMX degradation, whereas, the inhibitive effects of NO 3 ? and HCO 3 ? (0.1?mol?L?1) were observed as well in all processes except in UV irradiation for NO 3 ? . The removal rate decreased 1.7?C3.6 times when applying these processes to STP effluent due to the complex constituents, suggesting that from the application point of view the constituents of these complexes in real STP effluent should be considered carefully prior to the use of UV-based processes for SMX degradation.  相似文献   

9.
A 2 yr field study on the influence of N fertilization and rainfall on groundwater pollution was carried out in the sandy area of Belgium. The NO inf3 sup? -N and Cl? content of the groundwater at 0.5, 1.0, 1.5, and 2.0 m depths was monitored every two weeks on a field, grown with barley in 1980 and with maize in 1981. Turnips for cattle feed were grown in between the two crops. The total annual rainfall during the period under study was about 800 mm. The NO inf3 sup? -N content at all depths was at all times above 11.3 mg NO inf3 sup? -N dm?3, the WHO safe limit. Fluctuation of the NO inf3 sup? -N content occurred mainly at 0.5 and 1.0 m. The concentration at 1.5 and 2.0 m depths was higher most of the time than at 0.5 and 1.0 m. Leaching of NO inf3 sup? -N into deeper layers occurred when there was heavy rainfall. There was no important loss of NO inf3 sup? -N through denitrification at 1.5 and 2.0 m depths.  相似文献   

10.
Brine shrimp excystment, although highly resistant, is severely inhibited by mmolar mercuric chloride. The presence of 100 mmolar NaCl largely prevents the toxic response. The chloride effect can be explained if the toxic Hg species, neutral HgCl2, is converted into HgCl inf3 sup2? and HgCl inf4 sup2? since charged species not likely to penetrate cyst walls. Other Hg antagonists include SO in3 su2? , SeO inf3 sup2? , TeO inf3 sup2? and TeO inf4 sup2? , but not SO inf4 sup2? and SeO inf4 sup2? . The activity of both Te species can be explained by ready reduction of Te(VI) to Te(IV). Significant anti-mercurial effects were seen in mmolar thiols, ethionine and organoselenium compounds. Thiamine and methionine were both active Hg antagonists at 10 to 30 mmolar levels. The activities of S, Se and Cl? compounds show that both geochemical and physiological modes of defense against and adaptation to high Hg levels exist.  相似文献   

11.
In this study, an iron?Czirconium binary oxide with a molar ratio of 4:1 was synthesized by a simple coprecipitation process for removal of phosphate from water. The effects of contact time, initial concentration of phosphate solution, temperature, pH of solution, and ionic strength on the efficiency of phosphate removal were investigated. The adsorption data fitted well to the Langmuir model with the maximum P adsorption capacity estimated of 24.9?mg P/g at pH?8.5 and 33.4?mg P/g at pH?5.5. The phosphate adsorption was pH dependent, decreasing with an increase in pH value. The presence of Cl?, SO 4 2? , and CO 3 2? had little adverse effect on phosphate removal. A desorbability of approximately 53?% was observed with 0.5?M NaOH, indicating a relatively strong bonding between the adsorbed PO 4 3? and the sorptive sites on the surface of the adsorbent. The phosphate uptake was mainly achieved through the replacement of surface hydroxyl groups by the phosphate species and formation of inner-sphere surface complexes at the water/oxide interface. Due to its relatively high adsorption capacity, high selectivity and low cost, this Fe?CZr binary oxide is a very promising candidate for the removal of phosphate ions from wastewater.  相似文献   

12.
This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ? ), NH 4 + to NO 3 ? ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 ? uptake was examined. Uptake rates were on average five times higher (p?<?0.05) for NH 4 + than for NO 3 ? and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ? ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.  相似文献   

13.
The present work discusses the startup and operation of different biotrickling filters during the simultaneous removal of NH3, H2S, and ethyl mercaptan (EM) for odor control, focusing on (a) the impact of pH control in the stability of the nitrification processes during reactor startup and (b) the crossed effects among selected pollutants and their by-products. Two biotrickling filters were packed with poplar wood chips (R1 and R2A), while a third reactor was packed with polyurethane foam (R2B). R2A and R2B presented a pH control system, whereas R1 did not. Loads of 2?C10?g N?CNH3 m?3?h?1, 5?C16?g S?CH2S m?3?h?1, and 1?C6?g EM m?3?h?1 were supplied to the bioreactors. The presence of a pH control loop in R2A and R2B proved to be crucial to avoid long startup periods and bioreactors malfunctioning due to biological activity inhibition. In addition, the impact of the presence of different concentrations of a series of N species (NH 4 + , NO 2 ? , and NO 3 ? ) and S species (SO 4 2? and S2?) on the performance of the two biotrickling filters was studied by increasing their load to the reactors. Sulfide oxidation proved to be the most resilient process, since it was not affected in any of the experiments, while nitrification and EM removal were severely affected. In particular, the latter was affected by SO 4 2? and NO 2 ? , while nitrification was significantly affected by NH 4 + . The biotrickling filter packed with polyurethane foam was more sensitive to crossed effects than the biotrickling filter packed with poplar wood chips.  相似文献   

14.
In the Vosges Mountains (NE of France), integrated plot-catchment studies have been carried out since 1985 in the Strengbach basin to study the influence of acid atmospheric inputs on surface water quality and element budgets. In this paper, available mid-term time series (1985–1991) have been considered to detect obvious trends, if any, in surface water chemistry and element budgets. Air quality data showed a slight decline for SO2, whereas NO2 slightly increased over the period, but these trends are not very significant. This is in agreement with increased N concentration (mainly as NH 4 + ) and with the stability of SO 4 2? in open field precipitation. Because of a significant decrease in rainfall amount over the period, only inputs of NH 4 + increased significantly whereas H+ and SO 4 2+ inputs declined. In spring and streamwaters, pH and dissolved Si concentration increased mainly as a result of a reduced flow. Na+, K+, Cl? and HCO-3~? concentrations remained stable whereas Ca2+, Mg2+ and SO 4 2+ concentrations declined significantly. Only NO 3 ? concentration increased significantly in springwaters. The catchment budgets revealed significant losses of base cations, Si and SO 4 2? . These losses decreased over the period. Nitrogen was retained in the ecosystem. However, a longer record is needed to determine whether or not changes in surface water chemistry have resulted from short-term flow reductions or long-term changes in input-output ion budgets. This is specially true with N because the decline in SO 4 2? output was accompanied by N accumulation.  相似文献   

15.
Ion mass and H+ budgets were calculated for three pristine forested catchments using bulk deposition, throughfall and runoff data. The catchments have different soil and forest type characteristics. A forest canopy filtering factor for each catchment was estimated for base cations, H+, Cl? and SO 4 2? by taking into account the specific filtering abilities of different stands based on the throughfall quality and the distribution of forest types. Output fluxes from the catchments were calculated from the quality and quantity of the runoff water. Deposition, weathering, ion exchange, retention and biological accumulation processes were taken into account to calculate catchment H+ budgets, and the ratio between external (anthropogenic) and internal H+ sources. In general, output exceeded input for Na+, K+, Ca2+, Mg2+, HCO 3 ? (if present) and A? (organic anions), whereas retention was observed in the case of H+, NH 4 + , NO 3 ? and SO 4 2? . The range in the annual input of H+ was 22.8–26.3 meq m?2 yr?1, and in the annual output, 0.3–3.9 meq m?2 yr?1. Compared with some forested sites located in high acid deposition areas in southern Scandinavia, Scotland and Canada, the catchments receive rather moderate loads of acidic deposition. The consumption of H+ was dominated by base cation exchange plus weathering reactions (41–79 %), and by the retention of SO 4 2? (17–49 %). The maximum net retention of SO 4 2? was 87% in the HietajÄrvi 2 catchment, having the highest proportion of peatlands. Nitrogen transformations played a rather minor role in the H+ budgets. The ratio between external and internal H+ sources (excluding net base cation uptake by forests) varied between 0.74 and 2.62, depending on catchment characteristics and acidic deposition loads. The impact of the acidic deposition was most evident for the southern Valkeakotinen catchment, where the anthropogenic acidification has been documented also by palaeolimnological methods.  相似文献   

16.
The atmospheric deposition of air pollutants at a forest edge was studied by means of monitoring canopy throughfall at the edge and at five different parallel lines in the forest behind the edge. The investigation was carried out at a pine forest on the Swedish west coast. Throughfall and bulk deposition samples were analyzed for volume, SO 4 2? , NO 3 ? , Cl?, NH 4 + , Na+, K+, Mg2+, Ca2+, and for pH. The results show that the throughfall flow at the edge was increased substantially for most ions. The ratios in throughfall flows between the edge and the line 50 m into the forest were for SO 4 2? , 1.5, NO 3 ? 2.9, NH 4 + 2.7, and Na+ 3.1. Since this effect is not only valid for forest edges but also for hillsides, hilltops, and edges between stands of different age, etc., there might be substantial areas which get much larger total deposition than the normally considered closed forest.  相似文献   

17.
A long-term hydrological and water chemistry research was conducted in three experimental microbasins differing in land cover: (1) a purely agricultural fertilized microbasin, (2) a forested microbasin dominated by Carpinus betulus (European hornbeam), and (3) a forested microbasin dominated by Picea abies (L.) (Norway spruce). The dissolved inorganic nitrogen (DIN: NH 4 + , NO 2 ? , NO 3 ? ) budget was examined for a period of 3 years (1991–1993). Mean annual loads of DIN along with sulfate SO 4 2? and base cations Ca2+, Mg2+, Na+, K+, and HCO 3 ? were calculated from ion concentrations measured in stream water, open-area rainfall, throughfall (under tree canopy), and streamwater at the outlets from the microbasins. Comparison of the net imported/exported loads showed that the amount of NO 3 ? leached from the agricultural microbasin is ~3.7 times higher (43.57 kg ha?1?a?1) than that from the spruce dominated microbasin (11.86 kg ha?1?a?1), which is a markedly higher export of NO 3 ? compared to the hornbeam dominated site. Our analyses showed that land cover (tree species) and land use practices (fertilization in agriculture) may actively affect the retention and export of nutrients from the microbasins, and have a pronounce impact on the quality of streamwater. Sulfate export exceeded atmospheric rainfall inputs (measured as wet deposition) in all three microbasins, suggesting an additional dry depositions of SO 4 2? and geologic weathering.  相似文献   

18.
Laboratory experiments were conducted to evaluate the impact of various concentrations (2.5, 5, 10, 25, and 50%) of fertilizer factory effluent on certain physico-chemical properties of soil, and germination, growth, photosynthetic pigments, and dry matter productions of corn (Zea mays L.) and rice (Oryza sativa L.). The effluent was highly alkaline and contained high amounts of N+, Ca2+, Na+, Cl?, CO in3 su? , HCO in3 su? and suspended and dissolved solids. Its BOD value was also high. The effluent treatment to soil resulted in a significant increase in the water soluble salts, electrical conductivity, cation exchange capacity, pH, N, Ca, Na, and Cl content of the soil for effluent concentrations of 10% and above. The effluent in the lower concentrations of 2.5 and 5 % enhanced the growth and development of corn and rice. Higher concentrations of effluent (10% and above), however, inhibited the percentage of seed germination and caused deleterious effects on the dry matter production, yield (quantitative and qualitative) and the photosynthetic pigments of both test crops.  相似文献   

19.
Hydrochemical data have been collected for between 6 and 9 years from forest harvesting experiments in small catchments (>10 ha) at Plynlimon and Beddgelert, Wales, UK. Felling resulted in rapid increases in NO 3 ? and K+ concentrations at both sites. A maximum of 3.2 mg N L?1 was observed at Plynlimon about one year after the start of felling. Concentrations declined to control stream values (0.5 mg N L?1) after 5 years. At Beddgelert, NO 3 ? concentrations in the manipulated catchments remained above those in the unfelled control catchment for three years, before declining below control values. The NO 3 ? pulse was related to increased rates of mineralization and nitrification in the soil after felling. The initial increase in K+ concentration after felling at Plynlimon was followed by a slow decline, but concentrations were still above those in the control stream after 5 years. From 4 to 8 years after felling at Beddgelert, K+ concentrations fell below and then generally remained lower than control values. The NO 3 ? pulse after felling at Plynlimon sustained inorganic anion concentrations above those in the control stream for the first 18 months after felling. As the NO 3 ? pulse declined, inorganic anion concentrations decreased to below those in the control stream about 4 years after felling. At Beddgelert, the smaller increase in NO 3 ? concentrations had less of an effect on inorganic anion concentrations which decreased after felling relative to values in the control stream. The increase in NO 3 ? was associated with temporary streamwater acidification in the felled catchments due to the increased rates of nitrification and nitrate leaching. At Plynlimon, streamwater filterable Al concentrations declined after felling, but controls on Al behaviour are complex and not explained by simple equilibrium relationships with Al(OH)3 or by variations in inorganic anion concentrations. At Beddgelert, felling had no effect on stream water filterable Al concentrations. Felling at Plynlimon led to a large reduction in streamwater Cl?, Na+ and SO 4 2? concentrations. At Beddgelert reductions in SO 4 2? and ‘sea salt’ ion concentrations were less clear, reflecting the smaller proportions of the catchments which were harvested. Felling had no deleterious effects on water quality, apart from a temporary slight further decline in stream pH at Beddgelert. Increases in NO 3 ? concentrations were short-lived and concentrations were well below drinking water standards. Filterable Al concentrations were already higher than statutory standards, but were not increased or decreased through felling.  相似文献   

20.
The pH and amount of rainfall from over 60 selected stations throughout northern and lower Michigan was determined from September 1972 to December 1974. Precipitation pH was determined for each station by calibrated electrode meters. The seasonal weighted average and median pH from all stations in the study was 5.0 and 6.3, respectively. Daily readings from stations throughout Michigan indicate that pH is dependent on the amount of rainfall and that variations in it are often locally controlled. Collectively the pH values suggest carbonic acid control for most of the state. Annual median pH varied from a high of 8.45 at Dimondale, a station located 1.5 km from a concrete tile plant in central Michigan to 4.65 at Vassar, a small town located east of several industrial centers in the thumb region of the state. A comparison of annual nutrient loading for NO 3 ? , SO 4 = , Cl?,PO 4 , Ca++, Mg++ Na+ K+ and pH of rainwater from selected stations revealed that the eastern U.S. stations reporting pHs < 4.02 have similar loadings for NO3 but twice the SO4 input found for rural areas of Michigan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号