首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Utilization of industrial solid wastes for the treatment of wastewater from another industry could help environmental pollution abatement, in solving both solid waste disposal as well as liquid waste problems. Red mud (RM) is a waste product in the production of alumina and it poses serious pollution hazard. The present paper focuses on the possibility of utilization of RM as an adsorbent for removal of Remazol Brilliant Blue dye (RBB), a reactive dye from dye-contaminated water. Adsorption of RBB, from dye-contaminated water was studied by adsorption on powdered sulfuric acid-treated RM. The effect of initial dye concentration, contact time, initial pH, and adsorbent dosage were studied. Langmuir isotherm model has been found to represent the equilibrium data for RBB?CRM adsorption system better than Freundlich model. The adsorption capacity of RM was found to be 27.8?mg dye/g of adsorbent at 40?°C. Thermodynamic analysis showed that adsorption of RBB on acid-treated RM is an endothermic reaction with ?H 0 of 28.38?kJ/mol. The adsorption kinetics is represented by second-order kinetic model and the kinetic constant was estimated to be 0.0105?±?0.005?g/mg?min. Validity of intra-particle diffusion kinetic model suggested that among the mass transfer processes during the dye adsorption process, pore diffusion is the controlling step and not the film diffusion. The process can serve dual purposes of utilization of an industrial solid waste and the treatment of liquid waste.  相似文献   

2.
The adsorption and desorption of copper (II) ions from aqueous solutions were investigated using polydopamine (PD) nanoparticles. The nanoscale PD nanoparticles with mean diameter of 75?nm as adsorbent were synthesized from alkaline solution of dopamine and confirmed using scanning electron microscopy and X-ray diffraction analysis. The effects of pH (2?C6), adsorbent dosage (0.2?C0.8?g?L?1), temperature (298?C323?K), initial concentration (20?C100?mg?L?1), foreign ions (Zn2+, Ni2+, Cd2+, Fe2+, and Ag+), and contact time (0?C360?min) on adsorption of copper ions were investigated through batch experiments. The isotherm adsorption data were well described by the Langmuir isotherm model. The maximum uptake capacity of Cu2+ ions onto PD nanoparticles was found to 34.4?mg/g. The kinetic data were fitted well to pseudo-second-order model. Moreover, the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy) were studied.  相似文献   

3.
Sulphuric acid-modified bagasse has been used as low-cost adsorbent for the removal of methylene blue (MB) dye from aqueous solution. In order to remove organic compounds that contribute to chemical oxygen demand (COD), pretreatment with thorough washing of adsorbent using boiling distilled water was performed instead of conventional washing using distilled water at room temperature only. This has resulted in the highest efficiency of color removal of 99.45% and COD reduction of 99.36% for MB dye solution at pH 9. Effects of initial pH, dye concentration, adsorbent dosage, temperature, and contact time have been studied. The adsorption of MB dye was pH dependent. Langmuir and Freundlich isotherm models were tested on the adsorption data. The kinetic experimental data were analyzed using pseudo-first order, pseudo-second order, and the intraparticle diffusion model in order to examine the adsorption mechanisms. The adsorption process followed the Langmuir isotherm as well as the Freundlich isotherm and pseudo-second-order kinetic model. The process was found to be endothermic in nature.  相似文献   

4.
Batch sorption experiments were carried out to investigate the potentiality of papaya leaf powder (PLP) for the removal of methylene blue (MB) from aqueous solution. The effects of various experimental parameters, such as adsorbent dose, initial solution concentration, contact time, and solution pH were also studied. The amount of dye adsorbed was found to increase with increase in initial dye concentrations. Papaya leaf adsorbs MB better in basic medium. The adsorption equilibrium data fitted well in the Langmuir isotherm equation with a monolayer sorption capacity of 512.55?mg?g?1. The kinetics of MB adsorption onto papaya leaf was examined using the pseudo-first and pseudo-second order and unified approach kinetic models. The adsorption kinetics followed the pseudo-second order kinetic model, but the rate constant was found to depend on initial dye concentration. The unified approach model described the equilibrium and kinetics well. The forward and backward rate constants were determined from the unified approach model.  相似文献   

5.
Cuprous oxide-modified diatomite waste (Cu2O-DW) as a low-cost and effective adsorbent was prepared via a hydrothermal route combined with acid-alkali treatment. The microstructure and surface properties of the obtained Cu2O-DW composite was characterized by Brunauer-Emmett-Teller, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorption behaviors of three different types of dyes such as cationic dye methyl blue (MB), anionic dye acid orange (AO), and reactive dye reactive yellow (RY) onto the as-prepared Cu2O-DW were investigated. Several experimental parameters such as contact time, adsorbent dosage, initial dye concentration, and initial pH values were systematically estimated. The experimental results indicated that as-prepared Cu2O-DW have a better adsorption performance for MB, AO, and RY. Moreover, the kinetic and isotherm models were also used to account for the adsorption mechanism of dye molecules onto Cu2O-DW. The results demonstrated that three different dyes are all fitted well with pseudo-first-order kinetic model. Additionally, the Langmuir and Freundlich isotherm model is more suitable for describing the adsorption process of RY and MB on the as-prepared Cu2O-DW, respectively, and the AO adsorption is propitious to the D-R isotherm model. The value of adsorption energy (E?<?8 kJ mol?1) confirmed that the physical adsorption is dominator during the adsorption process. The findings of the study demonstrated that the synthesized Cu2O-DW composite can be a promising adsorbent for the removal of organic dyes from wastewater and it provided a sustainable development method for cycling the diatomite waste from the brewery.  相似文献   

6.
In this study, activated red mud was used to develop an effective adsorbent in order to remove a toxic azo dye (tartrazine E102) from aqueous solutions. To increase the adsorption capacity, the red mud was activated by acid-heat treatment using 20 wt.% HCl (RM-HCl). To establish the optimum operating parameters, the influence of pH, adsorbent dose, contact time, initial dye concentration, and stirring rate was investigated. The adsorption equilibrium was studied using Langmuir, Freundlich, Dubinin-Radushkevich, Temkin isotherm models, and the characteristic parameters for each adsorption isotherm were determined. The kinetics of the adsorption process was analyzed by means of pseudo-first-order and pseudo-second-order models. The maximum removal efficiency obtained under optimum conditions was 84.72%. These results were in accordance with the isotherm and kinetic data. The results suggested that tartrazine adsorption process follows the pseudo-second-order kinetic model and also that fits Langmuir isotherm model. The maximum monolayer adsorption capacity was 136.98 mg/g.  相似文献   

7.
Natural zeolite clinoptilolite and synthetic zeolite Na-A were characterized using XRD and SEM to be used as adsorbents for ammonia from aqueous solutions, ground water, and sewage water. Clinoptilolite was mechanically activated for 2, 4, 6, and 8 h to study the effect of activation in enhancing the adsorption capacity. The adsorption by activated natural zeolite and synthetic zeolite is high pH dependent and achieve the best values at pH?=?7. The adsorption capacity of activated natural zeolite increases with increasing the activation from 2 to 8 h achieving removal percentage close to that obtained using synthetic zeolite. The equilibrium was obtained after 60 min for synthetic zeolite and all the activated natural zeolite (except 2-h-activated product, the equilibrium was achieved after 30 min). The kinetic studies reflected the high fitness of the adsorption results of activated natural zeolite products and synthetic zeolite with pseudo-second-order model rather than the other kinetic models. The obtained isotherms reflected the formation of S-type isotherm curve for the adsorption using mechanically activated clinoptilolite and L-type curve for the uptake using synthetic zeolite. The results represented well with Langmuir model followed by Temkin and Freundlich model for adsorption using synthetic zeolite. The uptake using mechanically activated clinoptilolite can be represented by Temkin model rather than both Langmuir and Freundlich models. Thermodynamic parameters indicate spontaneous endothermic adsorption of ammonia using all the zeolitic products under investigation. Finally, the mechanically activated natural zeolite and synthetic zeolite exhibit high efficiency in the removal of ammonia and other water pollutants from ground water and sewage water.  相似文献   

8.
Co(II) adsorption on high-purity amorphous Fe?CMn binary oxide adsorbent was investigated. The Co(II) adsorption behavior of this synthetic material was studied and discussed as a function of contact time, pH and initial concentration. The Langmuir and Freundlich isotherm models were applied to fit the Co(II) adsorption data on Fe?CMn binary oxide with mesoporous particles of irregular surface morphology and a specific surface area of 201.8?m2?g?1 with a maximum capacity of 32.25?mg?g?1. Various kinetic models applied to the adsorption rate data of the Co(II) ion were evaluated. The results show that the pseudo-second order and the intra-particle mass transfer diffusion models correlated best with the experimental rate data. The adsorption activation energy was found to be 9.07?kJ?mol?1 indicating that it corresponds to a physical adsorption. The evaluated thermodynamics parameters of the adsorption values indicated the endothermic and spontaneous nature of the adsorption. The results obtained confirmed that Fe?CMn binary oxide had the potential to be utilized as a low-cost and relatively effective adsorbent for Co(II) removal from wastewater.  相似文献   

9.
The adsorption behavior of denim blue from aqueous solutions in column systems, using both carbonaceous material and Fe-zeolitic tuff (Fe-Z), was determined. The breakthrough data obtained for denim blue adsorption were fitted to the empty-bed contact time, Bohart?CAdams, Thomas, and Yoon?CNelson models. The parameters such as breakthrough and saturation times, bed volumes, kinetic constants, adsorption capacities, and adsorbent usage rates (AUR) were determined. The results show that the breakthrough time increases proportionally with increasing bed height, but it decreases as the kinetic constant increases. The adsorption capacity for denim blue for carbonaceous material was higher than Fe-Z. AUR was lower for carbonaceous material than Fe-Z. The results indicated that the carbonaceous material from pyrolysis of sewage sludge is a good adsorbent for denim blue removal.  相似文献   

10.
The adsorption capacity of pine tree leaves for removal of methylene blue (MB) from aqueous solution was investigated in a batch system. The effects of the process variables, such as solution pH, contact time, initial dye concentration, amount of adsorbent, agitation speed, salt concentration, and system temperature on the adsorption process were studied. The extent of methylene blue dye adsorption increased with increase in initial dye concentration, contact time, agitation speed, temperature, and solution pH but decreased with increased in amount of adsorbent and salt concentration. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine tree leaves biomass was 126.58?mg/g at 30?°C. The value of separation factor, R L , from Langmuir equation and Freundlich constant, n, both give an indication of favorable adsorption. The intrapartical diffusion model, liquid film diffusion model, double exponential model, pseudo-first and second order model were used to describe the kinetic and mechanism of adsorption process. A single stage bath adsorber design for the MB adsorption onto pine tree leaves has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters such as standard Gibbs free energy (??G 0), standard enthalpy (??H 0), and standard entropy (??S 0) were calculated.  相似文献   

11.
This study evaluated the effectiveness of a novel adsorbent (Fe(III)-AM-PGMACell), Iron(III)-coordinated amino-functionalized poly(glycidyl methacrylate)-grafted cellulose for the adsorption of arsenic(V) from aqueous solutions. The Fe(III)-AM-PGMACell was prepared through graft copolymerization of glycidyl methacrylate (GMA) onto cellulose (Cell) in the presence of N,N??-methylenebisacrylamide (MBA) as a cross linker using benzoyl peroxide initiator, followed by treatment with ethylenediamine and ferric chloride in the presence of HCl. Batch experiments were performed to evaluate the adsorption efficiency of Fe(III)-AM-PGMACell towards As(V) ions. The contact time to attain equilibrium and the optimum pH were 90?min and 6.0, respectively. More than 99.0% adsorption was achieved from an initial concentration of 25.0?mg/L. A two-step pseudo-first-order kinetic model agreed well with the dynamic behavior for the adsorption process. Equilibrium data fitted well with Sips isotherm model with maximum adsorption capacity of 78.8?mg/g at 30??C. The desorption of As(V) was achieved over 98.0% with 0.1?M NaCl solution.  相似文献   

12.
以粉煤灰(Fly ash,FA)为原料,通过负载壳聚糖和钙离子制备一种新型吸附剂(Ca/CTS/FA)用于酸性大红3R(Acid scarlet 3R,AS 3R)染料的吸附去除,考察了最佳吸附条件和吸附性能,探讨了吸附动力学、吸附热力学及复合吸附剂的再生。结果表明:水体pH、吸附剂投加量、吸附时间和振荡频率均对吸附有影响。在不同温度下,Ca/CTS/FA对AS 3R的吸附动力学均能用准二级吸附速率方程精确描述(R2=1.00)。不同温度下的等温吸附数据分别用Langmuir模型、Freundlich模型和Dubinin-Radushkevich(D-R)模型进行拟合,结果表明等温吸附行为更符合Langmuir模型,同时也较好地符合Freundlich模型和D-R模型;由D-R方程获得的平均吸附能、表观活化能及热力学研究均表明该吸附过程由化学吸附、物理吸附和氢键作用共同控制。热力学参数中吸附自由能变为负值、焓变为正值说明该吸附是吸热性质的自发过程。Ca/CTS/FA复合吸附剂能用0.01 mol·L-1 NaOH溶液再生,至少可循环使用8次以上,再生率均在99%以上。  相似文献   

13.
In the present study, the applications of mesoporous materials based on silica, namely post-synthesized, one-pot synthesized, and pure MCM-41, were investigated for the removal of phosphate from aqueous solution. The mesostructures were confirmed by X-ray diffraction, Brunauer?CEmmett?CTeller, Fourier transform spectroscopy, and transmission electron microscopy. The absorptions of phosphate by the mesoporous adsorbents were examined, with different adsorption models used to describe the equilibrium and kinetic data. The maximum adsorption capacities of the mesostructure adsorbents were found to be 45.162, 40.806, and 31.123 mg g?C1 for the post-synthesized, one-pot synthesized, and pure MCM-41, respectively. The kinetic data showed that the adsorptions of phosphate onto the post-synthesized and pure MCM-41 followed the pseudo-first-order kinetic model, whereas the one-pot synthesized adsorbent was described by the pseudo-second-order model.  相似文献   

14.
Three novel composite adsorbents, sulfate-coated zeolite (SCZ), hydrotalcite (SCH), and activated alumina (SCAA), were characterized and employed for the removal of phosphate from aqueous solution using equilibrium and kinetic batch experiments. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectrum were used to study the surface characteristics of the coated layer. Equilibrium tests showed that the adsorption of phosphate followed both Langmuir and Freundlich isotherms. The powder-type SCZ was better for phosphate removal (maximum binding energy, ???=?111.49?mg?g?1) compared to hydrotalcite and activated alumina. The adsorption of phosphate was considered to take place mainly by ion exchange. The kinetic data followed a pseudo-second-order kinetic model. The initial adsorption of phosphate onto the sulfate-coated adsorbents was fast, indicating that the sulfate-coated materials developed in this study can be used as promising adsorbents for the removal of phosphate from wastewater or sewage.  相似文献   

15.
The adsorption of lead onto date palm fibers (palm fibers) and leaf base of palm (petiole) has been examined in aqueous solution by considering the influence of various parameters such as contact time, solution pH, adsorbent dosage, particle sizes, ionic strength, and temperature. The adsorption of Pb(II) increased with an increase of contact time. The optimal range of pH for Pb(II) adsorption is 3.0?C4.5. The linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both models fitted well. The monolayer adsorption capacity of Pb(II) on palm fibers and petiole was found as 18.622 and 20.040 mg/g, respectively, at pH 4.5 and 25°C. Dubinin-Radushkevich (D-R) isotherm model was also applied to equilibrium data. The mean free energy of adsorption (2.397 and 4.082 kJ/mol) onto palm fibers and petiole, respectively, may be carried out via physisorption mechanism. Pseudo-first-order rate equation and pseudo-second-order rate equation were applied to study the adsorption kinetics. In comparison to first-order kinetic model, pseudo-second-order model described well the adsorption kinetics of Pb(II) onto palm fibers and petiole from aqueous solution. From the results of the thermodynamic analysis, Gibbs free energy ??G, enthalpy change ??H, and entropy ??S were determined. The positive value of ??H suggests that interaction of Pb(II) adsorbed by palm fibers is endothermic. In contrast, the negative value of ??H indicates that interaction of Pb(II) ions by petiole is exothermic. The negative value of ??G indicates that the adsorption of Pb(II) ions on both palm fibers and petiole is a spontaneous process.  相似文献   

16.
The kinetics of the adsorption of Pb2+ and Cd2+ by sodium tetraborate (NTB)-modified kaolinite clay adsorbent was studied. A one-stage and two-stage optimization of equilibrium data were carried out using the Langmuir and time-dependent Langmuir models, respectively. Increasing temperature was found to increase the pseudo-second order kinetic rate constant and kinetic data for Pb2+ adsorption were found to fit well with the pseudo-second order kinetic model (PSOM) while that for Cd2+ were found to show very good fit to the modified pseudo-first order kinetic model (MPFOM). Binary solutions of Pb2+ and Cd2+ reduced the adsorption capacity of the modified adsorbent for either metal ion with increased initial sorption rate due to competition of metal ions for available adsorption sites. The use of NTB-modified kaolinite clay adsorbent reduces by approximately 72.2% and 96.3% the amount of kaolinite clay needed to adsorb Pb2+ and Cd2+ from wastewater solutions. From the two-stage batch adsorber design study, the minimum operating time to determine a specified amount of Pb2+ and Cd2+ removal was developed. The two-stage batch adsorption process predicted less than half the minimum contact time to reach equilibrium in the one-stage process for the adsorption of Pb2+ and Cd2+ by NTB-modified kaolinite clay adsorbent and requires 0.05 times the mass of the adsorbent for the single-stage batch adsorption at the same operating conditions.  相似文献   

17.
The magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter 53-212?μm) were synthesized and characterized; their use as adsorbent in removal of Cr(VI) ions from aqueous solutions was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterized by N(2) adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM) and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. Langmuir, Freundlich and Dubinin-Radushkvich isotherms were used as the model adsorption equilibrium data. Langmuir isotherm model was the most adequate. The pseudo-first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The apparent activation energy was found to be 5.024?kJ?mol(-1), which is characteristic of a chemically controlled reaction. The experimental data fitted to pseudo-second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The thermodynamic parameters obtained indicated the endothermic nature of adsorption of Cr(VI) ions. Morever, after the use in adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property were separeted via the applied magnetic force. The magnetic beads could be desorbed up to about 97% by treating with 1.0?M NaOH. These features make the m-poly(DVB-VIM) microbeads a potential candidate for support of Cr(VI) ions removal under magnetic field.  相似文献   

18.
Two types of granular adsorbents-supported zero-valent iron (ZVI) were prepared and applied to remove crystal violet (CV). One type of ZVI was synthesized by the chemical reduction method and deposited on the surface of granular porous adsorbent (Fe@GAC). The other type of ZVI was synthesized by direct reduction of iron ore tailing powder with the coke in high temperature reducing atmosphere and was embedded in granular porous adsorbent (Fe@GAR). Fe@GAC and Fe@GAR were characterized by SEM, EDX, XRD, FTIR, and BET. The effect of parameters like contact time, initial CV concentration, pH values, and temperature on the removal of CV was investigated. According to the results, the Langmuir model was in good agreement with the experimental data, where the maximum removal capacity of Fe@GAC and Fe@GAR was found to be 95.24 mg/g and 123.45 mg/g at 293 K, respectively. The kinetic studies indicated that the pseudo-second-order kinetic model agreed well with the experimental data. Thermodynamic parameters were calculated and analyzed, which suggested that the removal processes were spontaneous and endothermic. The mechanism of CV removal by Fe@GAC and Fe@GAR included adsorption and simultaneous chemical reduction. Compared with Fe@GAC, Fe@GAR owned more amount of ZVI, larger specific surface area and higher removal capacity, which made it a more promising adsorbent in wastewater treatment.  相似文献   

19.
This study reports on the feasibility of remediation of catechol- and resorcinol-contaminated water using low-cost sunflower seed hull activated carbon (SSHAC). Sunflower seed hull (SSH), an abundant agricultural waste in Malawi, was used as precursor to prepare highly porous activated carbon by physicochemical activation, with zinc chloride (ZnCl2) as an activating agent. The activated carbon was characterized by FTIR, SEM-EDS, XRD and BET analyses. In this work, pertinent parameters that affect the adsorption efficiency—pH, initial adsorbate concentration, contact time, adsorbent dosage, and solution temperature—were investigated in batch mode. At the same experimental conditions, more catechol was adsorbed than resorcinol may be due to the compound’s affinity towards water and the position of the hydroxyl group on the benzene ring. A maximum equilibrium adsorption of 271 and 250 mg/g was obtained at pH 9.0 and pH 8.0 for catechol and resorcinol, respectively. The adsorption behaviour of both adsorbates (catechol and resorcinol) on SSHAC can be well described by Langmuir isotherm model and pseudo-second-order kinetic model. The value ?G, ?S and ?H indicated spontaneous and endothermic adsorption process. The adsorption process was readily reversible allowing reusability of the adsorbate. This study’s outcome is value addition to this category of wastes for environmental protection.  相似文献   

20.
探究了炉渣和污泥高温合成陶瓷吸附剂去除水中土臭素(geosmin,GSM)的能力,结果表明,陶瓷吸附剂对GSM的吸附行为可采用准一级动力学方程来拟合。GSM去除率随着反应时间增加而提高,在10 h接触时间内,陶瓷吸附剂对浓度200 ng L~(-1)和600 ng L~(-1)的GSM去除率分别是81.5%和76.4%。当pH=7,合成陶瓷吸附剂对GSM的去除效果最佳,去除率为82.3%。随着合成陶瓷吸附剂剂量增加,GSM的去除率呈现明显上升的趋势,当合成陶瓷吸附剂的投加量达到2 g L~(-1)时,GSM的去除率最大。Freundlich等温吸附方程模拟合成陶瓷吸附剂的GSM吸附性能优于Langmuir模型。陶瓷吸附剂具有较好pH缓冲性能力和再生性能,经5次再生的陶瓷吸附剂GSM去除率为76.9%。综上所述,合成陶瓷吸附剂GSM去除率高,生产成本低,是一种高效的、可循环使用的绿色GSM吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号