首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agricultural runoff containing nitrogen fertilizer is a major contributor to eutrophication in aquatic systems. One method of decreasing amounts of nitrogen entering rivers or lakes is the transport of runoff through vegetated drainage ditches. Vegetated drainage ditches can enhance the mitigation of nutrients from runoff; however, the efficiency of nitrogen removal can vary between plant species. The efficiency of three aquatic macrophytes, cutgrass (Leersia oryzoides), cattail (Typha latifolia), and bur-reed (Sparganium americanum), to mitigate dissolved and total nitrogen from water was investigated. Replicate mesocosms of each plant species were exposed to flowing water enriched with ammonium and nitrate for 6?h, allowed to remain stagnant for 42?h, and then flushed with non-enriched water for an additional 6?h to simulate a second storm event. After termination of the final simulated runoff, all vegetated treatments lowered total nitrogen loads exiting mesocosms by greater than 50%, significantly more than unvegetated controls, which only decreased concentrations by 26.9% (p????0.0023). L. oryzoides and T. latifolia were more efficient at lowering dissolved nitrogen, decreasing ammonium by 42?±?9% and 59?±?4% and nitrate by 67?±?6% and 64?±?7%, respectively. All treatments decreased ammonium and nitrate concentrations within mesocosms by more than 86% after 1?week. However, T. latifolia and L. oryzoides absorbed nitrogen more rapidly, lowering concentrations by greater than 98% within 48?h. By determining the nitrogen mitigation efficiency of different vegetative species, plant communities in agricultural drainage ditches can be managed to significantly increase their remediation potential.  相似文献   

2.
Eutrophication of surface water bodies is a worldwide concern. In the USA alone, excessive nutrients are blamed for nearly 5,700 impairments of surface water bodies. Innovative measures, such as maximizing drainage ditch nutrient retention, are being examined to decrease the amount of nitrogen (N) and phosphorus (P) running off agricultural lands and into aquatic receiving systems. The goal of this experiment was to measure the nutrient mitigation ability of six aquatic plants typically found in agricultural drainage ditches in the lower Mississippi River Basin. Experimental mesocosms (1.25?×?0.6?×?0.8 m) were filled with sediment and planted with monocultures of one of six obligate wetland plant species (Typha latifolia (broadleaf cattail), Panicum hemitomon (maidencane), Thalia dealbata (powdery alligator-flag), Echinodorus cordifolia (creeping burhead), Myriophyllum spicatum (Eurasian watermilfoil), and Saururus cernuus (lizard??s tail)), while three replicates were left non-vegetated to serve as controls. Mesocosms were amended with 5 mg?L?1 (each) of nitrate, ammonia, dissolved inorganic phosphorus, and total inorganic phosphorus, while nitrite amendments (1 mg?L?1) were also made over a 4-h hydraulic retention time. Following the 4-h exposure, ??clean?? (non-amended) water was flushed through mesocosms for an additional 8 h to assess residual leaching of nutrients. Outflow water concentrations and loads decreased for all examined forms of N and P. In certain cases, there were significant differences between plant species; however, for the majority, there was no statistical difference in percent decrease between plant species. While native aquatic vegetation shows promise for mitigation of nutrient runoff, further studies altering the hydraulic retention time for improved efficiency should be conducted.  相似文献   

3.
Vegetated drainages are an effective method for removal of pollutants associated with agricultural runoff. Leersia oryzoides, a plant common to agricultural ditches, may be particularly effective in remediation; however, research characterizing responses of L. oryzoides to flooding are limited. Soil reduction resulting from flooding can change availability of nutrients to plants via changes in chemical species (e.g., increasing solubility of Fe). Additionally, plant metabolic stresses resulting from reduced soils can decrease nutrient uptake and translocation. The objective of this study was to characterize belowground and aboveground nutrient allocation of L. oryzoides subjected to various soil moisture regimes. Treatments included: a well-watered and well-drained control; a continuously saturated treatment; a 48-h pulse-flood treatment; and a partially flooded treatment in which water level was maintained at 15 cm below the soil surface and flooded to the soil surface for 48 h once a week. Soil redox potential (Eh, mV) was measured periodically over the course of the 8-week experiment. At experiment termination, concentrations of Kjeldahl nitrogen, phosphorus (P), potassium (K), iron (Fe), and manganese (Mn) were measured in plant tissues. All flooded treatments demonstrated moderately reduced soil conditions (Eh < 350 mV). Plant Kjeldahl nitrogen concentrations demonstrated no treatment effect, whereas P and K concentrations decreased in aboveground portions of the plant. Belowground concentrations of P, Mn, and Fe were significantly higher in flooded plants, likely due to the increased solubility of these nutrients resulting from the reductive decomposition of metal–phosphate complexes in the soil and subsequent precipitation in the rhizosphere. These results indicate that wetland plants may indirectly affect P, Mn, and Fe concentrations in surface waters by altering local trends in soil oxidation–reduction chemistry.  相似文献   

4.
Animal hormones can enter the aquatic environment along with runoff as a result of manure or litter application on agricultural landscapes. Our understanding of the transport of these hormones and their concentrations at various points along the watershed drainage is however limited. We investigated the transport of naturally produced poultry hormones in an agricultural watershed located on coastal plain soils of Delaware receiving land application of raw poultry manure. The objective of this study was to determine the concentrations of free and conjugated forms of estrogens in agricultural runoff at selected landscape positions in the agricultural watershed. Estrogen concentrations were determined for surface water, soil water, and runoff sediment. Estrogen forms that were analyzed were: Estrone (E1), Estradiol (E2?? and E2??), Estriol (E3), and their sulfate and glucuronide conjugates. Poultry litter application occurred at a rate of 9 Mg ha?1 in early spring (April 2010). Sampling was performed for surface runoff, subsurface drainage, and sediment for nine storm events extending over 187 days before and after manure application (March?COctober 2010). Runoff was collected from the field edge, upland and lowland riparian positions and from the stream. Samples were analyzed by for liquid chromatography with tandem mass spectrometry (LC-MS/MS). Concentrations of estrogens were low (<20 ng l?1) for most of the samples and decreased from the field edge into the riparian zone. Estrogens were not detected in soil water and runoff sediments. Overall, this study suggests that manure application practices at our sites in Delaware such as incorporation of litter into the soil likely reduced the concentrations of estrogens in runoff and reduced the threat posed to aquatic ecosystems.  相似文献   

5.
针对水稻灌区农田排水氮素输出影响水环境的问题,该研究以大运河扬州段沿运灌区为例,在大田监测的基础上,运用田间水文模型--DRAINMOD模拟分析不同田间灌排控制措施的减排效果,并探讨利用农田周边沟塘湿地净化排水,达到灌区小流域不同水质目标的水管理方案。结果表明,在研究区目前常规灌溉(定额为9 600 m3/hm2,合水深960 mm)和常规排水(排水沟深0.6 m,等效间距50 m)模式下,农田单位面积上的年均排水总量高达1 162 mm,是灌溉量与降雨量之和的59%;其中地表径流占比51%,仅有25%是由降雨造成的不可控部分。采取理想的避免地表径流的干湿交替控制灌溉措施(年均灌溉量320 mm)可以显著降低排水量和氨氮的输出,相较于常规灌溉模式,可削减55%的排水量和59%的氨氮输出。研究区农田控制排水削减排水总量的效果较差,且在一定程度上增加了地表径流。由于地表排水中氨氮浓度(2.85 mg/L)高于地下排水(其浓度为1.80 mg/L),地表排水比例的提高会增加排水对氨氮的输出。从研究区小流域范围内沟塘湿地分布考虑,目前灌溉与排水量均过高,现有沟塘湿地不足以发挥作用;只有通过控制灌溉措施显著减少排水量以后,才有可能利用现存的湿地面积将排水中的氨氮浓度降低到地表水水质标准Ⅴ类水。因此,该研究建议在合理控制灌排水量的基础上,通过整合、优化灌区现有沟塘湿地资源来有效改善研究区农田排水水质。研究可为类似地区农田排水污染控制提供理论依据。  相似文献   

6.
Agricultural drainage ditches, their biological importance and functioning   总被引:3,自引:0,他引:3  
We reviewed studies on the biological state of agricultural drainage ditches in the temperate and boreal zones of the Northern Hemisphere. We looked at the relative importance of ditches for farmland biota as compared to that of other habitats, and assessed the degree to which biological communities of ditches contribute to the provisioning of ecosystem services. We evaluated impacts pertaining to replacement of open drains by subsurface drainage, removal of main ditches, rehabilitation of old drainage systems, and maintenance of ditches. Most ditches support species also common elsewhere. Whenever comprehensive surveys were conducted, ditches were shown to provide valuable wet vegetated non-cropped habitats to both aquatic and terrestrial taxa, supply food resources lacking in otherwise dry and intensively managed cropland, and perform connectivity functions within a wider landscape. Regionally ditches were shown to harbour rare species or species not found presently in other farmland habitats. Some functions of drainage ditches, such as regulating water flow and nutrient retention, are likely to depend on the composition and structure of biological communities of ditches, though the issue remains poorly explored. The biggest threat to the quality of ditch networks as ecosystems is presented by a severe runoff from the fields, management in disregard of a habitat value of ditches, and removal of ditches.  相似文献   

7.
Leersia oryzoides (rice cutgrass) is an obligate wetland plant common to agricultural drainage ditches. The objective of this greenhouse study was to expose plants to various flooding and aqueous nitrogen (N) concentrations and then to quantify the allocation of nutrients and biomass to plant components. Plants in the continuously flooded treatment (CF) had the highest tissue concentrations of copper (Cu), sulfur (S), zinc (Zn), potassium (K), sodium (Na), and manganese (Mn) in one or more plant components. Plants in the partially flooded treatment (PF) had the highest concentrations of magnesium (Mg) in leaves. The N input affected phosphorus (P) and S concentrations in roots. Leaf, stem, and root biomass were highest in PF plants. Rhizome biomass was the lowest in CF plants. These results indicate that L. oryzoides may significantly affect elemental concentrations in surface waters by its ability to uptake various elements and subsequent sequestration in various biomass components.  相似文献   

8.
Typical controlled drainage structures in drainage ditches provide drainage management strategies for isolated temporal periods. Innovative, low-grade weirs are anticipated to provide hydraulic control on an annual basis, as well as be installed at multiple sites within the drainage ditch for improved spatial biogeochemical transformations. This study provides evidence toward the capacity of low-grade weirs for nutrient reductions, when compared to the typical controlled drainage structure of a slotted riser treatment. Three ditches with weirs were compared against three ditches with slotted risers, and two control ditches for hydraulic residence time (HRT) and nutrient reductions. There were no differences in water volume or HRT between weired and riser systems. Nutrient concentrations significantly decreased from inflow to outflow in both controlled drainage strategies, but there were few statistical differences in N and P concentration reductions between controlled drainage treatments. Similarly, there were significant declines in N and P loads, but no statistical differences in median N and P outflow loads between weir (W) and riser (R) ditches for dissolved inorganic phosphate (W, 92%; R, 94%), total inorganic phosphate (W, 86%; R, 88%), nitrate-N (W, 98%; R, 96%), and ammonium (W, 67%; R, 85%) when nutrients were introduced as runoff events. These results indicate the importance of HRT in improving nutrient reductions. Low-grade weirs should operate as important drainage control structures in reducing nutrient loads to downstream receiving systems if the hydraulic residence time of the system is significantly increased with multiple weirs, as a result of ditch length and slope.  相似文献   

9.
为探索宁夏引黄灌区农田排水沟水生植物物种组成和多样性,采用样方调查法在灌区农田选取典型支沟、斗沟和农沟,并在每条沟渠布设上、中、下游断面,断面上设置样方大小进行退水沟渠水生植物物种种类、数量、多度、盖度调查。结果表明:宁夏引黄灌区排水沟水生植物由11个科,13个属,20个种组成,其中,芦苇、蔗草、水莎草、香蒲、龙须眼子菜和浮叶眼子菜是分布较广的优势种。群落垂直分层明显,但以芦苇及其伴生种组成的挺水群落多见。灌区农田排水沟各层次植物种类分布和多样性指数差异较大,表现为农沟〉斗沟〉支沟。水位和流速是影响沟渠水生植物形态及分布的主要因素。农沟中水流速度较慢,生长环境稳定,有利于多种植物的繁殖,为科学合理布局优势物种富集农田排水中的养分,以达到控制农田非点源污染目的提供了可能。  相似文献   

10.
The landscape structure of a multipond system, runoff type andP-pollutant transport in an experimental watershed was studiedduring 1995 and 1998. A multipond system is a wetland system composed with many tiny ponds and ditches. In this watershed, it was found that such a system effectively controls the hydrological process through its huge storage capacity. The multipond system has a high interaction of land/water ecotones,which decreases the flow velocity systematically and results ina high sedimentation of the particulate matters.The multipond system intercepts runoff and creates either continuous or discontinuous flow. The retention efficiency of the system was very high in both cases but differed in nature. During continuous runoff on 1 May 1998, in a subwatershed Baojiatang, the retention rates of water, total phosphorus (TP),dissolved phosphorus (DP) and suspended solids (SS) by the multipond system were 83.0, 93.9, 90.9 and 94.9%, respectively.During discontinuous runoff on 29 June 1998, runoff volume generated from all lands was 1841 m3, but no surface waterwas exported and the system retention rates of TP, DP and SS were nearly complete. The removal of particulate phosphorus bythe system was more effective than removal of DP and thus DP wasthe main form of phosphorus exported from the watershed duringcontinuous flow. Because of such control, the export amount ofphosphorus was greatly reduced. The output of TP and DP was 0.013 and 0.012 kg ha-1, respectively, from Liuchahe watershed in 1995, and they were 0.037 and 0.030 kg ha-1 in 1998 correspondingly.  相似文献   

11.
The concentrations of Pb, Cd, Cr, Mn and Fe were evaluated in leaves, stem and root of the Scirpus americanus and Typha latifolia aquatic macrophytes, which were collected from Tanque Tenorio, an artificial lagoon highly polluted by municipal and industrial wastewater. Some S. americanus and T. latifolia plants were collected from four different sites within Tanque Tenorio. The sites were chosen regarding their proximity with the main channel discharging wastewater into the lagoon. The results showed that S. americanus and T. latifolia have the ability to extract Pb, Cd, Cr, Mn and Fe from their water surroundings; on the whole, the roots presented higher concentrations of heavy metals than the stem and the leaves. The highest accumulation of heavy metals was observed in plants growing at the site near the channel entering the lagoon. S. americanus accumulated more Pb, Cr, Mn and Fe than T. latifolia; Cd concentrations were comparably the same in both species. This study provides information in relation to aquatic plants growing in polluted waters, which accumulate heavy metals. These findings are of interest pertaining to the removal processes for treating aquatic systems with heavy metal content.  相似文献   

12.
太湖地区渗育性水稻土径流中磷组分的研究   总被引:6,自引:3,他引:6       下载免费PDF全文
本试验于 2 0 0 2年在太湖地区渗育性水稻土上进行 ,研究不同施磷水平下 (P 0、30、70、15 0和30 0kghm-2 )麦稻轮作中土壤径流磷的损失。研究结果表明 :在麦稻轮作期间 ,除最高施磷处理P 30 0kghm-2的径流磷损失达到P 0 75kghm-2 外 ,其余各施肥处理与对照无显著差异。虽然径流损失的磷最多也不足施磷量的 0 1% ;但径流中溶解磷浓度均已超过水体富营养化磷浓度的阈值 ( 0 0 2mgL-1) ,故农田径流携带的磷长期进入水体也会加重水体富营养化。径流携带的磷以产生第一次径流时为最多 ;径流磷中以颗粒磷为主占总磷的 6 0 %以上 ;溶解磷则在 4 0 %以下 ,而溶解磷中以有机磷为主 ,除P 30 0kghm-2 处理外 ,其余处理的径流中溶解有机磷占总溶解磷的 5 2 0 %~ 76 2 %之间。因此 ,仅测定溶解的无机磷作为溶解磷组分 ,必将低估径流溶解磷的数量及其贡献 ;施肥未增加当季径流中溶解有机磷的浓度  相似文献   

13.
华北低平原农田排水沟平填及洪涝灾害风险分析   总被引:2,自引:1,他引:1  
近20 a来,华北平原普遍出现平填农田排水沟现象。为分析排水沟平填状况及平填后洪涝灾害的发生风险,该研究基于土地利用调查数据库,以地处华北低平原的河北沧县为例,运用Arc GIS10.2分析1992-2010年间沧县排水沟面积变化情况,采用实地调查法来验证和分析排水沟平填现象,并从降水量、地下水位、土壤水、上游来水等方面对排水沟平填后可能发生的洪涝灾害风险进行分析。研究结果表明:1992-2010年间,排水沟面积减少了37.73%,其中农田末级排水沟平填最为严重,排水体系贯通性下降;通过水文要素分析得出沧县地区洪涝灾害的发生风险有所降低,平填末级排水沟对洪涝灾害的发生影响不大。基于此,该文认为华北平原的不同区域,应根据所处地形地势、地下水位、土壤状况来重新设计排水体系,通过土地整治,使其既能增加耕地面积,又不致引发洪涝灾害。该研究结果可为土地整治规划及农田基础设施建设提供参考。  相似文献   

14.
流域沟渠植草拦截农田氮磷入河污染的有效性研究   总被引:2,自引:1,他引:1  
  【目的】  过度施肥与降雨径流的耦合作用使得大量氮磷从农田流失进入河道,导致河湖水体污染。在水土流失严重区,尤其是热带–亚热带集约化农业坡地,土层浅薄、蓄水性差,在降雨条件下所施肥料极易发生径流侵蚀流失,通过沟渠进入下游河湖水体,导致水体污染。如何控制这种水蚀型面源污染物从农田向河湖水体的输送愈来愈受到人们的关注,为此在流域下游沟渠构建植物拦截系统,评价其减少坡面氮磷入河污染的有效性,为水蚀型农田面源污染物的流域防控提供理论依据。  【方法】  本研究在广西客兰水库水源区那辣小流域,选择下游500 m长的沟渠,该沟渠接收流域上游来水并直接输入水库,隔段种植当地优势植物狗牙根[Cynodon dactylon (L.) Pers]和象草(Pennisetum purpureum),以及引种植物香根草[Vetiveria zizanioides (L.) Nash] (于南宁花鸟市场购买香根草籽育苗移栽)。在13次降雨事件下分别采集沟渠入口和出口处的水样进行检测,用以研究面源污染防治效益。  【结果】  与流域上游入口比较,下游植草沟渠输出水体中溶解态总氮(TDN)浓度由17.55 mg/L降至12.43 mg/L,NH4+-N由1.06 mg/L降至0.73 mg/L,NO3?-N浓度由15.10 mg/L降至10.92 mg/L,溶解态总磷(TDP)浓度由0.031 mg/L降至0.021 mg/L;植物对降雨事件下流域输入沟渠中的TDN、NH4+-N、NO3?-N和TDP平均去除率分别为31.90%、27.92%、29.80%和31.02%。  【结论】  在热带和亚热带集约化径流农业流域,选择连接上游坡地与下游河湖水库的沟渠植草,可以对流域流失氮磷实施有效地拦截和去除,是一个简单、可行、有效的农业面源污染流域防控措施,值得推广应用。  相似文献   

15.
人工布设基质对农田排水沟水质的影响   总被引:1,自引:0,他引:1  
本研究选择宁夏灵武农场的典型排水支沟进行人工布设基质,在沟中布设土壤、炉渣、秸秆、锯末4种基质处理及铲草处理和对照(不做任何处理),研究分析了基质对农田排水沟水质的影响。对基质的组分分析表明,锯末显著地吸附盐分和全氮,吸附量分别达0.4 g.kg 1和0.3 g.kg 1,土壤、炉渣、秸秆均明显地释放盐分,释放量为5.3~50.8 g.kg 1;秸秆显著地释放有机碳,释放量达54.0 g.kg 1;4种基质对全磷吸附效果不明显。水质分析表明,除秸秆处理和对照外,盐分(TDS)在其他处理下显著减少,而化学需氧量(COD)、总氮(TN)、总磷(TP)、NO3-N和NH4+-N浓度在锯末和土壤处理下均有不同程度的减小。对于整条试验沟道,农田退水中TDS、TN、TP的浓度随着在沟道迁移距离的增加呈明显减小的趋势,至出水断面时浓度分别为0.60~0.80g.L 1、0.24~0.33 mg.L 1和0.04~0.09 mg.L 1。田间沟道试验说明,农田排水沟能有效地截留农田退水污染物,选择适合的基质进行人工布设实际可行,有助于发挥农田排水沟的生态功能。  相似文献   

16.
Surface water contamination can often be reduced by passing runoff water through perennial grass filters. Research was conducted in 2006 to 2008 to evaluate the size of cool season grass filters consisting primarily of tall fescue (Festuca arundinacea Schreb) with some orchard grass (Dactylis glomerata L.) relative to drainage area size in reducing runoff sediment and phosphorus (P). The soil was Pohocco silt loam Typic Eutrochrepts with a median slope of 5.5?%. The grass filters occupying 1.1 and 4.3?% of the plot area were compared with no filter with four replications. The filters were planted in the V-shaped plot outlets which were 3.7?×?11.0?m in size. The filter effect on sediment and P concentration was determined from four natural runoff events when nearly all plots had runoff. Filter effect on runoff volume and contaminant load was determined using total runoff and composites of samples collected from 12 runoff events. Sediment concentration was reduced by 25?% with filters compared with no filter (from 1.10 to 1.47?g?L?1), but P concentration was not affected. The 1.1 and 4.3?% filters, respectively, compared with having no grass filter, reduced: runoff volume by 54 and 79?%; sediment load by 67 and 84?% (357 to 58?kg?ha?1); total P load by 68 and 76?% (0.58 to 0.14?kg?ha?1); particulate P (PP) load by 66 and 82?% (0.39 to 0.07?kg?ha?1); and dissolved reactive P (DRP) load by 73 and 66?% (0.2 to 0.07?kg?ha?1), respectfully. A snowmelt runoff event had 56?% greater DRP concentration compared with rainfall-induced runoff events. Grass filters reduced sediment and P load largely by reducing runoff volume rather than reducing concentration. Well-designed and well-placed grass filters that occupy 1.0 to 1.5?% of the drainage area and intercept a uniform flow of runoff from a drainage area can reduce sediment and nutrient loss in runoff by greater than 50?%.  相似文献   

17.
水稻沟田协同控制灌排模式的节水减污效应   总被引:6,自引:3,他引:3  
南方地区水稻生长期暴雨较多,高施肥量下的稻田易使大量氮磷随排水流失,导致水体环境恶化。该文提出稻作区沟田协同控制灌排技术的概念,即在农田蓄雨控排的基础上,利用农沟对农田排水再次拦截,并滞蓄农沟控制区内沟渠、道路以及农田侧渗排水,利用农沟和农田的湿地效应,减少排水量及氮磷浓度,降低污染物负荷。2013年采用大田试验,测试农田和农沟尺度上的灌排水量、灌排次数和氮磷流失量,对上述模式进行验证。结果表明,农田尺度上,蓄雨控排模式较对照处理(浅水勤灌)需水量和耗水量减少18.8%和15.3%,灌溉定额和地面排水量分别减少28.0%和60.6%,氮、磷负荷分别减少58.6%和58.8%,灌水次数减少4次,处理间差异显著(P0.05),处理间籽粒产量无显著差异(P0.05)。农沟尺度上,沟田协同控制灌排技术较非控排模式排水量减少55.9%,总氮和总磷负荷分别减少59.7%和66.7%;降雨初期农田和农沟水中氮磷浓度高且随滞留时间衰减较快,控制排水能有效减少氮磷负荷;渗漏水量中氮磷浓度较低。沟渠、道路等非农田的地面排水量占沟道总排水量的31.3%~38.7%,也是重要的氮磷负荷来源。结果表明沟田协同控制灌排技术具有较好的节水、省工和减排、控污效果,对南方稻作区灌排管理具有指导意义。  相似文献   

18.
This study reports on the short-term impact of constructing a rural cycle way on the suspended sediment load (SSL) of Golborne Brook, Cheshire, UK between August 2003 and February 2004. A float switch activated automatic water sampler retrieved 275 water samples during the 5 months following ground disturbance, which were analysed for their suspended sediment concentration (SSC). SSC vs. discharge (Q) rating curves established for three phases of the disturbance were combined with a 10-min Q record to estimate SSLs before, during and after the work. A three-fold increase in SSL was observed 5 m downstream of where drainage ditches created alongside the cycle way entered Golborne Brook. There is strong evidence that the SSLs decreased to near their pre-disturbance levels within 5 months. Re-growth of natural vegetation on the roadside drainage ditches cleared during the construction work along with the build up of natural deciduous organic debris dams (consisting mainly of leaves, twigs and small branches from hedgerows alongside the ditches) at the ends of the drainage ditches some 1–2 m before they discharged into Golborne Brook contributed to the reduced SSLs observed downstream. Further research into the precise role played by these deciduous organic debris dams in trapping sediment is needed.  相似文献   

19.
Irrigation of crops with treated wastewater has the potential to introduce effluent-derived organic microcontaminants into surface waters through agricultural runoff. To determine whether compounds indicative of the presence of treated effluent in irrigation water could be identified in agricultural runoff, surface runoff samples collected from effluent-irrigated and rain-fed cultivated fields were analyzed for a broad spectrum of organic compounds. A variety of compounds was identified that appeared to be associated with irrigation with treated wastewater. These compounds included human pharmaceuticals (e.g., carbamazepine, gemfibrozil, carisoprodol), personal care product ingredients (e.g., insect repellent, polycyclic musks), and alkyl phosphate flame retardant chemicals. Most of these compounds appear not to have been previously reported in agricultural runoff. These compounds were present at concentrations below the few published aquatic toxicology data available; however, their potential to elicit more subtle effects in aquatic organisms cannot be excluded. None of these compounds were detected by broad-spectrum analysis in samples from the same fields during runoff-producing rain events.  相似文献   

20.
The combination of runoff‐generating areas (saturated soils) and overland flow concentration in features such as drainage ditches makes sloping farmland vulnerable to soil erosion. The establishment of drainage ditches aims at draining the excess of water from the farmland, particularly in areas where soils are saturated in the rainy season. The hydrogeomorphic impacts on the farmland itself and on downstream areas need however also to be studied. Off site, downstream problems comprise higher peak discharges, leading to gully initiation, an increase in sediment load, and flooding problems. On‐site problems such as the development of the drainage ditches into (ephemeral) gullies are less documented, although they may be important, as illustrated in the Lake Tana Basin (Ethiopia). The similarities and interactions between ephemeral gully channels and drainage ditches have to be considered to better understand all effects of drainage. Drainage ditches are a potential source of conflict between farmers with different interests and power, as well as between upstream and downstream users. A case study on drainage ditches on sloping farmlands in the Lake Tana Basin showed that nine out of ten catchments had drainage densities by ditches ranging from 53 to 510 m ha−1. Drainage ditches were constructed with an average top width of 27 (±9) cm. A significant correlation was found between stone bund density (physical conservation structures) and ditch drainage density (R = −0·72), in line with the Ethiopian government's ban on drainage ditches in farmlands where stone bunds have been constructed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号