首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
2.
Karanjin, a furanoflavonoid (3-methoxy furano –?2 , 3 , 7, 8-flavone), is obtained from the seeds of karanja tree (Pongamia glabra Vent.), which is reported to have nitrification inhibitory properties but has been tested in few soil types. Efficiency of karanjin as a nitrification inhibitor in seven different soils of India was tested in a laboratory incubation study. The soils (800?g) were adjusted to field capacity moisture content, fertilized with urea and urea combined with karanjin at a rate of 20% of applied urea-N (100?mg?kg???1 soil) and incubated at 35°C for a period of 7 weeks, during which urea [CO(NH2)2], ammonium (NH4 ?+?), nitrite (NO2 ???) and nitrate (NO3 ???) content in the soils was measured periodically and nitrification inhibition at different stages was calculated. Urea hydrolysis was almost complete within 72?h of application in all the soils and was not affected by karanjin. Karanjin had conserved ammonium in all the soils at all stages and nitrate formation was effectively minimized. Nitrite in soils was short-lived and low. Nitrification inhibition by karanjin remained high for a period of approximately 6 weeks, decreased with time and ranged from 9?–?76% for all the soils. The study shows that this plant product can be an effective nitrification inhibitor in several types of soil.  相似文献   

3.
The chars in the natural environment can affect the migration of polybrominated diphenyl ethers(PBDEs). However, there is insufficient research relating to the adsorption behavior and mechanisms of PBDEs on biochars. This study examined the adsorption kinetics of 2,2′,4,4′-tetrabromodiphenyl ether(BDE-47) on maize straw-derived biochars(MSBCs) pyrolyzed at four different temperatures via batch experiments. The biochar samples were characterized using Fourier transform infrared(FTIR) spectroscopy,Raman spectra, and elemental analysis. A two-compartment first-order model and pseudo-second-order model exhibited a better fit compared to a pseudo-first-order model in describing the BDE-47 adsorption on biochars, which was dominated by a slow adsorption compartment and chemisorption. The MSBC pyrolyzed at 600 °C had the highest BDE-47 adsorption capacity owing to its relatively large specific surface area and relatively high aromaticity compared with the other three MSBCs pyrolyzed at 300, 400, and 500 ℃.However, there was no significant difference in adsorption capacity among the other three biochars. The organic functional groups coupled with the graphene structures of biochars and the hydrophobic effect of the functional groups promoted the adsorption of BDE-47. Pore diffusion was not the sole rate-limiting step; film diffusion was also involved in the adsorption process of BDE-47 on biochars. The overall results demonstrate the transport and potential treatment of PBDEs using biochars.  相似文献   

4.
5.
To test whether manure amendment in soil reduces plant uptake of persistent organic pollutants, carrot (Daucus carota L.) was used as a model plant and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) was selected as a model persistent organic pollutant to conduct a pot experiment with contaminated soil amended by composted pig manure. The results showed that the concentration and bioconcentration factors (BCFs) of BDE-47 in the edible part of carrot significantly decreased from 229.7?±?28.2 to 43.4?±?20.4 ng g?1 and from 1.86?±?0.5 to 0.15?±?0.03, respectively, with increasing composted pig manure dose from 0 to 4%. Organic matter (OM) derived from composted pig manure played a dominant role in reducing persistent organic pollutant bioavailability in soil. Composted pig manure amendment and carrot cultivation jointly altered the bacterial community composition in soil, especially the rhizosphere. Rhizodegradation of BDE-47 was enhanced from 8.6 to 28.5% with increasing composted pig manure dose from 0 to 4%, corresponding to increased soil microbe diversity and polybrominated diphenyl ether-degrading bacteria (Sphingomonas, etc.) abundance in the rhizosphere. This study is the first, to the best of our knowledge, to provide an effective agronomic strategy of manure amendment to reduce plant uptake and simultaneously enhance rhizodegradation of persistent organic pollutants in soil, and thus potentially reduce human health risks through dietary intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号