首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The apparent digestibility of protein, organic matter and energy of high‐fibre and fibre‐reduced sunflower cakes, Kenya's ‘omena’ fishmeal, anchovy fishmeal and wheat bran were investigated in tilapia Oreochromis niloticus (L.) fingerlings. The feeding values and protein qualities of the above ingredients were also determined at two dietary protein levels. Fourteen diets were formulated, and each was provided to three tanks containing 12 fish in Expt 1 (digestibility study) and 25 fish in Expt 2 (feeding trial). Water temperatures and dissolved oxygen concentrations were maintained above 26 °C and 5.5 mg L?1 respectively. Anchovy and ‘omena’ fishmeals each had an apparent digestibility coefficient for protein (ADC‐P) of 90%, whereas the fibre‐reduced and high‐fibre sunflower cakes had ADC‐P values of 89% and 86%. Wheat bran had an ADC‐P value of 75%, which was significantly lower than those found for the other test ingredients. Apparent digestibility coefficients for energy (ADC‐E) and digestible energy values (DE) were 86% and 78% and 4003 kcal kg?1 and 3624 kcal kg?1 for anchovy and omena fishmeals respectively. The corresponding values for the plant protein sources were 42% and 30% and 2200 kcal kg?1 and 1400 kcal kg?1 for the fibre‐reduced and high‐fibre sunflower cakes respectively. Diets based on the fibre‐reduced cake had higher levels of all amino acids than those based on the high‐fibre cake. Fish fed diets with 30% protein gained 40 g and had a feed conversion ratio (FCR) of 1.87, whereas those fed diets with 20% protein gained 35 g and had a FCR of 2.2. The source of protein had a significant effect on weight gain.  相似文献   

2.
This study was performed to evaluate the effect of replacing fish meal with local by‐products on Clarias gariepinus growth performance, feed utilization and body composition. A control diet contained 50% of fish meal. In four other diets, fish meal was partially replaced by vegetable and animal protein blend composed of sunflower oil cake, soybean oil cake, groundnut oil cake, bean meal, chicken viscera and blood meal. The study was conducted in a recirculating water system at a mean temperature of 23.6°C. The five test diets were compared with a commercial diet developed for African catfish. All diets were balanced to be equal in gross energy (19 kJ g−1) and crude protein (40%). The experimental groups were fed in triplicate for 8 weeks, increasing fish weight from about 6.2 g at start to 52.3 g in the end. Best specific growth rate (SGR=3.4), feed efficiency (FE=1.3) and protein efficiency ratio (PER=3) were obtained with the control diet (diet 50% fish meal), although there were no significant differences between the group of fish fed the control diet and those fed diets based on groundnut oil cake or bean meal, whereas SGR (2.17), FE (0.85) and PER (1.95) were significantly (P<0.01) lower in fish fed diet containing sunflower oil cake. No significant differences (P<0.05) were found in fish fed commercial diet and diets containing bean meal or groundnut oil cake. Groundnut oil cake or bean meal can thus replace at least 50% of fish meal in the diet of Clarias fingerlings without amino acid supplementation. Because of its economic importance and its potential in animal nutrition sunflower oil cake is still an interesting feed ingredient, but its efficiency should be improved by various processing techniques. African catfish can utilize efficiently a diet with low percentage of animal protein without growth reduction.  相似文献   

3.
Essential fatty acids should be included in the diet to ensure adequate fish growth. Despite the great number of studies on fatty acid nutrition of fish, there are still several unknowns. The aim of the present study was to investigate fatty acid nutrition of jundiá, a Latin American freshwater catfish. Four diets were formulated containing (i) coconut oil (?C, negative control), (ii) coconut oil + high‐docosahexaenoic‐acid‐fish oil (+C, positive control) and coconut + sunflower + linseed oils at different ratios, producing either (iii) a diet rich in linoleic acid (LA) (HighLA) or 4) a diet low in LA (LowLA). All diets contained significant amounts of saturated fatty acids (at least 57.5% total fatty acids in HighLA) and monounsaturated fatty acids (at least 19.1% total fatty acids in ?C). Diets were fed to jundiá fingerlings (1.5 g) for 70 days; growth, body composition and liver histology were evaluated. The ?C diet, without essential fatty acids, promoted significantly lower fish growth, body fat accumulation and hepatic lipidosis. Fish fed HighLA and LowLA diets presented similar growth as fish fed +C diet. These findings suggest that diet formulations for jundiá catfish fingerlings can include only plant oils without negative effect on growth, survival, body composition, fish health or parameters of feed utilization (ingestion rate and protein utilization).  相似文献   

4.
This study evaluated the potential for manipulating the fatty acid composition of juvenile red seabream, Pagrus auratus. Prior to the start of the study, three groups of fish had been reared for 3 months on a fish oil based diet or diets where the added fish oil had been replaced with either canola or soybean oil. In the present study, fish that had previously been fed either the canola or soybean oil diets were fed a fish oil based diet. Three additional treatments included fish being maintained on their original diets of fish oil, canola oil or soybean oil. Fish were fed their respective diets twice daily to apparent satiety for 32 days. Samples of fish from each treatment were collected after 0, 1, 2, 4, 8, 16 and 32 days. Composition and growth of the fish were determined at each sample point. Most treatments showed no differences in growth performance, although fish fed a fish oil diet after previously being fed a soybean oil diet showed slightly better growth. No significant differences among treatments were observed in proximate composition of the fish, although there was a significant increase in total fat and individual fatty acid (g kg?1 live‐weight) content of the fish from all treatments over the period of the study. No significant changes in the relative fatty acid composition (% of total fatty acids) over time were observed in the three treatments where fish were maintained on their original diets. In contrast, fish that were previously fed either the canola or soybean oil diets and were then fed a fish oil diet had significant changes in both the relative (% of total fatty acids) and absolute (g kg?1 live‐weight) fatty acid content. Key changes observed included a decrease in the relative levels of polyunsaturated fatty acids (PUFA) such as 18 : 2n ? 6 and 18 : 3n ? 3. Increases in the relative levels of the long‐chain polyunsaturated fatty acids (lcPUFA) 20 : 5n ? 3 and 22 : 6n ? 3 were also observed in both treatments. The rates of absolute (g kg?1 live‐weight) change/accumulation of these fatty acids followed an exponential equation that differed for each fatty acid in each treatment. Examination of the retention efficiency of specific fatty acids also showed marked differences between fatty acids within treatments and also differences between treatments. Biologically important fatty acids such as 20 : 5n ? 3 and 22 : 6n ? 3 had only moderate retention efficiencies and these were unaffected by treatment. In contrast, the retention efficiencies of 18 : 2n ? 6 and 18 : 3n ? 3 suggested selective retention of these fatty acids when fed fish oil diets, but moderate catabolism when fed the plant oil diets. There were also high retention efficiencies of most saturated and monounsaturated fatty acids suggestive of active retention and/or active synthesis of these fatty acids by the fish. The results of this study, particularly the increases in lcPUFA, support the usefulness of a fish oil based finisher diet for fish raised predominantly on plant oil based diets.  相似文献   

5.
Aquaculture fish diets usually contain an addition of fish oil to improve their nutritional value. The effect of the replacement of dietary fish oil (FO) by sunflower oil (SfO) on growth, fatty acid composition and expression of genes implicated in somatic growth, feed intake and fatty acid metabolism was studied in pejerrey fry. Fry were fed per 45 days with diets containing FO/SfO ratios of 100% FO; 50% FO:50% SfO; 20% FO:80% SfO; and 100% SfO. No differences were detected in growth and in the total per cent of saturated and monounsaturated fatty acids. Gh, ghr‐I and ghr‐II showed a higher mRNA expression in head and trunk of fry fed with 100% SfO diet. Expression of igf‐II was higher in trunk of fry fed with 100% SfO diet compared with 100% FO diet. The Δ6‐desaturase gene expression was upregulated in head and trunk of fry fed with 100% SfO diet. The nucb2/nesfatin‐1 gene expression decreased in the trunk of fry with increasing dietary SfO. We conclude that the replacement of fish oil by sunflower oil in pejerrey fry feed does not affect growth and is a viable strategy to reduce production costs of this fish.  相似文献   

6.
Two digestibility trials were carried out to determine the apparent digestibility coefficients (ADCs) for crude protein (CP), crude lipid (CL) and energy of unprocessed and two differently processed fibre‐reduced rapeseed and sunflower seed oil cakes (sieved oilseed cakes and oilseed cakes produced from partially dehulled seeds) in rainbow trout (40 fish per tank; four tanks per diet). Each trial was followed by a 63‐day growth trial, wherein the respective oilseed cakes with the highest ADCs were evaluated as fishmeal substitutes, based on digestible CP. Oilseed cakes of rapeseeds and sunflower seeds had low nutrient ADCs (Trial 1). Nonetheless, the protein in rapeseed cake was able to replace up to 10% of the fishmeal protein in a diet without negatively affecting performance traits (Trial 2). Fibre reduction increased the ADCs of both types of oilseed cakes substantially (Trial 3). However, when fish were fed diets with 0%, 25% and 50% fishmeal protein replaced with dehulled rapeseed or dehulled sunflower seed cake protein, performance traits decreased with increasing substitution levels (Trial 4). Nonetheless, the amount of fishmeal needed per unit weight gain was lower for all fish fed the diets containing either one of the dehulled oilseed cakes than for the reference diets.  相似文献   

7.
Six iso‐nitrogenous (30% crude protein) and iso‐energetic (15 kJ g−1) diets were prepared using different oil cake sources, viz. groundnut, soybean, sunflower, sesame, mustard and mixed oil cakes as major ingredients, and protein sources along with a minimum of 5% fish meal in each diet and were fed to silver barb Puntius gonionotus fingerlings (16.20±0.11 g) ad libitum four times a day close to an apparent satiation level for a period of 60 days to determine the effect of diets on growth, nutrient utilization, apparent digestibility coefficient (ADC) of the nutrients in the diets, gut enzyme activity, muscle nucleic acid content and whole‐body chemical composition of fish. Significantly higher (P<0.05) weight gain, specific growth rate, protein efficiency ratio, nutrient retention, ADC of nutrients in the diets, DNA:RNA ratio, protease and amylase activity with lower (P<0.05) feed:gain values were recorded in fish‐fed groundnut and soybean oil cake‐based diets than other diets tested. Among the dietary treatment groups, significantly higher (P<0.05) whole‐body protein, lipid and energy were also found in groundnut oil cake‐ and soybean oil cake‐based diets. The study suggests that the groundnut and soybean oil cake‐based diets, which led to significantly higher (P<0.05) growth and nutrient utilization than the other oil cake‐based diets in P. gonionotus fingerlings, may be used for pond culture of this species.  相似文献   

8.
The effective implementation of a finishing strategy (wash‐out) following a grow‐out phase on a vegetable oil‐based diet requires a period of several weeks. However, fish performance during this final stage has received little attention. As such, in the present study the growth performance during both, the initial grow‐out and the final wash‐out phases, were evaluated in Murray cod (Maccullochella peelii peelii). Prior to finishing on a fish oil‐based diet, fish were fed one of three diets that differed in the lipid source: fish oil, a low polyunsaturated fatty acid (PUFA) vegetable oil mix, and a high PUFA vegetable oil mix. At the end of the grow‐out period the fatty acid composition of Murray cod fillets were reflective of the respective diets; whilst, during the finishing period, those differences decreased in degree and occurrence. The restoration of original fatty acid make up was more rapid in fish previously fed with the low PUFA vegetable oil diet. During the final wash‐out period, fish previously fed the vegetable oil‐based diets grew significantly (P < 0.05) faster (1.45 ± 0.03 and 1.43 ± 0.05, specific growth rate, % day−1) than fish continuously fed with the fish oil‐based diet (1.24 ± 0.04). This study suggests that the depauperated levels of highly unsaturated fatty acids in fish previously fed vegetable oil‐based diets can positively stimulate lipid metabolism and general fish metabolism, consequently promoting a growth enhancement in fish when reverted to a fish oil‐based diet. This effect could be termed ‘lipo‐compensatory growth’.  相似文献   

9.
In this study, the feasibility of using pomegranate seed oil, rich in conjugated linolenic acid and its partial replacement for fish oil in fish diet were investigated. Common carp, Cyprinus carpio, juveniles (1.8 ± 0.1 g) were fed four isonitrogenous and isolipidic diets with similar basal composition but different oil mixture containing 100% fish oil (A), 50% fish oil +50% sunflower oil (B), 50% fish oil +25% sunflower oil +25% pomegranate seed oil (C) and 50% fish oil +50% pomegranate seed oil (D) for 8 weeks. The highest weight gain was observed in fish fed diet D (p < 0.05). Test diets had no significant effect (p > 0.05) on saturated and monounsaturated fatty acid contents of fish muscle. Docosahexaenoic acid (22:6n‐3; DHA) was significantly lower in the muscle of fish fed diet B (p < 0.05) compared to those fed diet A. However, there was no significant difference in the muscle DHA content of fish fed diets A, C, or D. No specific hepatocyte damage associated to dietary pomegranate seed oil was found in this study. This study showed a 50‐50 combination of fish oil and pomegranate seed oil could be used as dietary lipid source for common carp without any adverse effect on growth performance or muscle n‐3 content while accumulated punicic acid in the muscle could be considered as added value for the final human consumer.  相似文献   

10.
An 8-week feeding trial was conducted to determine the effects of various dietary lipids on the growth, tissue proximate composition, muscle fatty acid composition and erythrocyte osmotic fragility of red hybrid tilapia, Oreochromis sp. Five isonitrogenous and isoenergetic semipurified diets were supplemented with 10% of either cod liver oil (CLO), sunflower oil (SFO), crude palm oil (CPO), crude palm kernel oil (CPKO), or a combination of 5% CLO with 5% palm fatty acid distillates (PFAD), respectively. There were no significant effects (P > 0.05) of diet on growth but fish fed the CLO diet showed a significantly (P< 0.05) poorer feed efficiency ratio compared to fish fed the CPO diet. Lipid deposition in fish muscle was mostly similar among fish fed the various diets but bone ash was significantly higher in fish fed the CPO and CPKO diets. Muscle lipids of fish fed palm oil-based diets did not increase in saturated fatty acids content but showed significantly lower polyunsaturated fatty acid (PUFA) concentrations compared to fish fed the CLO diet. The concentrations of individual PUFA in muscle lipids were strongly influenced by dietary PUFA concentrations. Dietary lipids did not markedly affect the structural integrity of erythrocyte membranes but the erythrocytes of tilapia fed the CPO diet were slightly more resistant to osmotic lysis. It was concluded that palm oil products, especially CPO, could be successfully used in the diet of hybrid tilapia based on its availability, cheaper costs and its potential ability to enhance oxidative stability due to its low PUFA content and high natural concentrations of antioxidants.  相似文献   

11.
The aim of this study was to investigate the effects of different oils on growth performance and lipid metabolism of the grouper, Epinephelus coioides. Five experimental fish meal‐based isonitrogenous and isolipidic diets were formulated containing either 5.5%‐added fish oil (FO), soybean oil (SBO), corn oil (CO), sunflower oil (SFO) or peanut oil (PO). Each diet was fed to triplicate groups of 20 fish (initial body weight 13.2±0.02 g) grown in seawater at 28.0–30.5 °C for 8 weeks. Fish were fed twice a day to visual satiety. No significant differences in the survival, weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio or hepatosomatic index were found between fish fed the FO or vegetable oils (VO) diets. Dietary lipid sources did not affect whole‐body composition among grouper fed the various diets. Muscle of fish fed the FO diet had significantly higher levels of 14:0, 16:0, 16:1n‐7, 20:5n‐3[eicosapentaenoic acid (EPA)] and docosahexaenoic acid (DHA)+EPA (except for PO fed fish) compared with those of fish fed VO diets. However, the levels of 18:1n‐9, 18:2n‐6 and DHA/EPA ratios in the muscle of fish fed FO diet were significantly lower than those of fish fed the VO diets. The liver of fish fed the FO diet had significantly higher levels of 18:0, 20:5n‐3, 22:6n‐3, n‐3 highly unsaturated fatty acids and DHA+EPA than those of fish fed the VO diets, whereas increases in 18:1n‐9, 18:2n‐6 and mono‐unsaturated fatty acid levels were observed in the liver of fish fed the VO diets.  相似文献   

12.
This study investigated the effects of varying dietary levels of decosahexaenoic acid (DHA) on growth performance, proximate composition and whole body fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Triplicate groups of fish (30.55 ± 0.08 g) were fed diets containing 5.2%, 9.31% and 13.38% DHA (% of total fatty acids) or 0.85%, 1.52% and 2.18% DHA on dry diet weight for diets 1, 2 and 3 respectively. Survival was not affected by dietary DHA levels. The growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (< 0.05) higher than those fed diet 1, although these parameters in diets 2 and 3 did not differ significantly (P > 0.05). Whole body lipid and fatty acid profiles were influenced by dietary DHA levels. Significantly higher n‐3 fatty acids particularly DHA, DHA:EPA(eicosapentaenoic acid) ratios and n‐3:n‐6 ratios were observed in fish fed diets 2 and 3 compared to those fed diet 1. Better growth performance and higher whole body DHA:EPA (2.31, 2.29) ratios and n‐3:n‐6 ratios (2.17, 2.12) observed in fish fed diets 2 and 3, respectively, suggests that silver pomfret juveniles have a higher requirement for n‐3 fatty acids, notably DHA for optimum growth and survival.  相似文献   

13.
This study was focused on the clarification of the effect of dietary sesamin on fatty acids and the composition of different lipid fractions [phospholipids (PLs), cholesterol and triacylglycerols] in the white muscle of common carp (Cyprinus carpio L.) juveniles. Two different basic diets with defatted fishmeal as a protein source and either only linseed oil or a mixture of linseed and sunflower oil as a lipid source designed to have two different n‐3/n‐6 ratios (1.21 – CL group; 0.32 – CM group) were produced. Each diet was then used with or without added sesamin (0.58 g 100g?1). One hundred and forty‐four individuals were fed in triplicated groups for 63 days until their weight had doubled. No influence of dietary sesamin on growth, mortality or on the white muscle lipid content of the fish was found. Added sesamin significantly decreased the content of PLs and increased the cholesterol content in the CM group. No effect was found in the total lipid fatty acid composition but there was found a significantly lower content of saturated fatty acids and 20:5n‐3 in PLs and of 22:6n‐3 in triacylglycerols in the sesamin supplemented CL group. These and other differences show either a tendency of lower long chain n‐3 fatty acids biosynthesis or their higher use in β‐oxidation in sesamin‐supplemented groups. We conclude that sesamin in this experiment had no substantial positive impact on the lipid metabolism of juvenile carp.  相似文献   

14.
Sixteen isocaloric diets varying only in the levels of ω3 and ω6 fatty acids were prepared. Each diet was fed to duplicate groups of coho salmon for 14 weeks. At termination, the final weight of each diet group fish was determined. The optimum level of dietary ω3 fatty acid ranged from 1% to 2.5%. Dietary ω6 fatty acid higher than 1% depressed fish growth. Fish growth, feed conversion efficiency, fish mortality and fatty acid composition of fish phospholipids were determined.  相似文献   

15.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
A 90‐day feeding trial was carried out to examine the influence of fish oil (FO) substitution with blends of vegetable oils (VOs) on reproductive efficiency of female brooders and fluctuation in fatty acid (FA) profile of embryos in Oncorhynchus mykiss. A basal diet was formulated in which 20% (80FO/20VO), 50% (50FO/50VO), 75% (25FO/75VO) and 100% (100VO) of FO were replaced by mixture of VO. Reproductive performance of brooders was not affected by drastic alternations in FA profile of diets. The level of saturated and monounsaturated FAs (MUFAs) significantly increased, whereas the levels of long‐chain polyunsaturated FAs (LC‐PUFAs), mainly docosahexaenoic acid, profoundly decreased during embryogenesis. The concentrations of MUFA and n?6 PUFA increased in the eggs with increasing the incorporation of VO mixture in diets; however, the concentration of LC‐PUFA and n?3/n?6 PUFA ratio decreased. Haematological parameters and humoral immune responses including total immunoglobulin content, lysozyme and alternative complement pathway activities in brooders fed with the experimental diets did not statically different. In summary, incorporating mixture of various VO sources especially linseed and sunflower oils as good sources of α‐linolenic and linoleic acids, respectively, along with low levels of residual fat from fish meal in diet suggested a good strategy for providing the appropriate essential FA requirements of O. mykiss brooders for their successful reproduction.  相似文献   

17.
Due to its traditionally good availability, digestibility and high content of n ? 3 HUFA, fish oil is the main lipid source in fish feeds. However, world demand for this product has grown significantly in recent years, whereas its production, based on fisheries landings, is static. The purpose of the present study was to assess the effect of partial replacement of fish oil in compound diets for gilthead seabream and seabass, by several vegetable oil sources, on growth, dietary fatty acid utilization and flesh quality. Five iso‐energetic and isoproteic experimental diets were formulated (25% lipid content). Fish oil was the only added lipid source in the control (FO) diet, and it was included in the other experimental diets at a level high enough (40% of FO diet) to keep the n ? 3 HUFA levels well over 3% in order to cover the essential fatty acid requirements of these species. Fish oil was replaced by soyabean oil (SO), rapeseed oil (RO) and linseed oil (LO) or a mixture (Mix) of them. Feed intake in all dietary groups was in the range of results obtained for commercial diets in both species, and growth and feed utilization were very good. The results show that, providing a minimum content of essential fatty acids in the diet, it is possible to replace up to 60% of the fish oil by SO, LO and RO or a mixture of them in diets for seabream and seabass, without compromising fish growth. Fatty acid composition of liver and muscle reflected that of the diet, but utilization of dietary lipids differed between these two tissues and was also different for the different fatty acids. Despite reduction in dietary saturated fatty acids by the inclusion of vegetable oils, their levels in fish liver were as high as in fish fed the fish oil diet, whereas, in muscle, levels were reduced according to that in the diet. Linoleic and linolenic acids were accumulated in the liver proportionally to their levels in the diet, suggesting a lower oxidation of these fatty acids in comparison to other 18C fatty acids. Regarding eicosapentaenoic acid (20 : 5n ? 3; EPA), docosahexaenoic acid (22 : 6n ? 3; DHA) and arachidonic acid (20 : 4n ? 6; ARA), these essential fatty acids were reduced in the liver at a similar rate, whereas DHA was preferentially retained in the muscle in comparison with the other fatty acids, denoting a higher oxidation particularly of EPA, in the muscle. Some other PUFA increased despite their low dietary levels in seabream fed LO diets and in seabass fed SO diet, suggesting the stimulation of delta‐6 and delta‐5 desaturase activity in marine fish. Despite differences in fatty acid composition, fillet of fish fed vegetable oils was very well accepted by trained judges when assessed cooked.  相似文献   

18.
Rainbow trout (186 g) were fed three test diets where the lipid source (150 g kg?1) was either menhaden oil (MO), pollock oil (PO) or canola oil (CO) for eight weeks to an average weight of 370 g. The CO group was then divided into two groups, one continuing on the CO diet and the other switched to the PO diet (CO–PO). After nine additional weeks of feeding, the average fish weight approximately doubled (719–749 g). No significant differences were found in average final weight or fillet yield among dietary treatment groups. Fatty acid profiles of fillets from trout fed MO, PO or CO‐supplemented diets reflected the fatty acid profiles of the added oils, whereas the fatty acid profile of fillet from trout in the CO–PO group exhibited values similar to those of fish fed PO. The ratio of ω3 : ω6 FA was nearly 2.5 times higher in fillets from the CO–PO group compared to the CO group. Sensory analysis showed that panelists preferred CO‐fed fillets over those fed MO, PO, or CO–PO. Phase‐feeding CO and PO reduced fish oil use and resulted in fillets with double the content of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) over CO‐fed fish, similar to levels in MO‐fed fish.  相似文献   

19.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

20.
The organoleptic quality of barramundi fed for 66 days on pelleted diets containing varying amounts of fish meal and meat meal was determined in two experiments (E1 and E2). Each compared four diets: a 430 g kg?1 crude protein (CP) control diet (containing 35% Chilean anchovy fish meal); two diets containing high inclusions (40% or more) of meat meal; and a proprietary barramundi diet. In E1, the two meat meal diets contained 10% Chilean fish meal whereas the two meat meal diets in E2 had no marine protein ingredients. Panellists identified and rated the colour of flesh, and scored odour, flavour and texture characteristics and overall liking on structured graphic line scales (0–100). Fish fed the high‐meat meal diets were sweeter and firmer than those fed the high‐fish meal control diet in E1 (P < 0.05). Scores for fishy flavour were also highest for the meat meal diets and lowest for the proprietary diet. In both E1 and E2, scores were high (> 60) for overall liking and low (< 10) for undesirable odours and tastes. Exclusion of all sources of marine protein from the diet in E2 did not detract from the sensory value of the fish. The influence of diet on the fatty acid profile of the fish was examined in E2. Compared with fish fed the control diet, the neutral lipid fraction of those fed the meat meal diets had higher proportions of saturated and short‐chain monounsaturated fatty acids at the expense of longer chain fatty acids, especially 22:6n‐3. Polar lipids showed only subtle dietary effects, which were confined to the long‐chain unsaturated fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号