首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A restriction fragment length polymorphism (RFLP) map constructed from 99 doubled haploid lines of a cross between two spring barley varieties (‘;Blenheim’בKym’) was used to map QTL controlling hot water extract and grain nitrogen content (predicted by analysis with near-infrared reflectance spectroscopy). Eight QTL affecting predicted hot water extract were identified by a marker-regression approach. The largest effects were found on chromosomes 3HL, associated with the denso dwarfing gene which is present in‘Blenheim’and conferred poorer predicted hot water extract quality, and 4HL. Other QTL were detected on chromosomes IHS. IHL. 2HS, 2HL. 5HL and 6HS. Analysis of single markers by analysis of variance detected an additional effect on chromosome 1H. Eight QTL affecting predicted grain nitrogen content were identified by marker-regression, on chromosomes 1HS, 1HL. 2HL. 5HS, 6H, 7HS and 7HL. There was also evidence for an additional QTL on chromosome 5HL. The positions of the grain nitrogen content QTL on 5HS and 5HL are comparable to QTL on wheat chromosomes 5A and 5D that affect grain protein content. The denso gene had no detectable effect on grain nitrogen content.  相似文献   

2.
Genetic Analysis of Chromosome 2D of Wheat   总被引:2,自引:0,他引:2  
The Yugoslavian varieties ‘Novosadska Rana 1’ and ‘Sava’ are shown by monosomic comparisons to carry weak height promoters on chromosome 2D characteristic of the ‘Akakomugi’ gene for reduced height, Rht8. Reciprocal monosomic crosses between ‘Bersee’ and ‘Sava’ demonstrate ‘Sava’ chromosome 2D reduces height by about 16 cms, accelerates ear emergence by about 9 days and increases yield through increased grain number and grain size. Recombinant lines developed for chromosome 2D suggest that this chromosome in Mediterranean wheats carries three genes, Rht8, Ppd1 and Yr16, important to their adaptation. Rht8 and Ppd1, a gene for day length insensitivity together reduce height. Ppd1 and, to a minor degree, either yr16, the susceptible allele of a gene for adult plant resistance to yellow rust or a closely linked gene, accelerate time to flowering and thereby avoid desiccating Yugoslavian summer conditions. The same genes reduce spikelets numbers but this is offset by increased floret fertility producing an overall increase in the number of grains per ear. Ppd1 also by avoiding desiccating conditions increases gram size and together with either yr16 or the closely linked fertility gene increases ear and plant yields.  相似文献   

3.
N. Saka    T. Tsuji    T. Toyama    M. Yano    T. Izawa    T. Sasaki 《Plant Breeding》2006,125(2):140-143
The chromosomal location of the resistance gene for green rice leafhopper (GRLH), an injurious insect for rice, has been determined and RFLP markers closely linked to this gene have been identified. The susceptible japonica rice variety ‘Nipponbare’ was crossed with a resistant japonica rice line ‘Aichi42’, in which green rice leaf hopper resistance had been introduced from an indica variety ‘Rantaj‐emas2’, and the 100 F2 plants obtained were used for linkage analysis. The green rice leafhopper resistance gene, Grh3(t), was mapped between RFLP markers C288B and C133A on chromosome 6 and co‐segregated with C81. Of the RFLP markers tightly linked to Grh3(t), C81 was converted to a SCAR marker and C133A to a cleaved amplified polymorphic sequence marker that could distinguish the heterozygous genotype to establish an effective marker‐aided selection system for the GRLH resistance gene.  相似文献   

4.
S. Hilbers    G. Fischbeck  A. Jahoor 《Plant Breeding》1992,109(4):335-338
RFLP markers which were previously assigned to chromosome 2 (2H) were found to detect polymorphism between the cv. ‘Pallas’ and a near isogenic line carrying the Laevigatum resistance gene MlLa. Linkage analysis carried out with two sets of DH lines derived from the crosses ‘RisøS’בSultan’ and ‘Alf’בVogelsanger Gold 2’ confirmed three DNA probes closely linked with the MlLa locus.  相似文献   

5.
A. Graner    S. Streng    A. Drescher    Y. Jin    I. Borovkova  B. J. Steffenson 《Plant Breeding》2000,119(5):389-392
Leaf rust of barley, caused by Puccinia hordei Otth, is an important foliar disease in most temperate regions of the world. Sixteen major leaf rust resistance (Rph) genes have been described from barley, but only a few have been mapped. The leaf rust resistance gene Rph7 was first described from the cultivar ‘Cebada Capa’ and has proven effective in Europe. Previously mapped restriction fragment length polymorphism (RFLP) markers have been used to determine the precise location of this gene in the barley genome. From the genetic analysis of a ‘Bow‐man’/‘Cebada Capa’ cross, Rph7 was mapped to the end of chromosome 3HS, 1.3 recombination units distal to the RFLP marker cMWG691. A codominant cleaved amplified polymorphic site (CAPS) marker was developed by exploiting allele‐specific sequence information of the cMWG691 site and adjacent fragments of genomic DNA. Based on the large amount of polymorphism present in this region, the CAPS marker may be useful for the marker‐assisted selection of Rph7 in most diverse genetic backgrounds.  相似文献   

6.
Under field conditions in Germany over three growing seasons the pleiotropic effects on yield and its components of four sets of near isogenic lines carrying the GA insensitive dwarfing alleles Rht1, Rht2, Rht3, Rht1+2, Rht2+3 or rht (tall) in four different genetical backgrounds were examined together with 24 single chromosome recombinant lines segregating for the GA sensitive dwarfing gene Rht8 and the gene for day-length insensitivity Ppd1 in a ‘Cappelle-Desprez’ background. For the GA insensitive semi-dwarfs it was shown that in all three years a higher number of grains per ear was accompanied by a lower grain weight. Depending on the climatic conditions in a particular year, the increase in grain number was sufficient to compensate for the reduction in grain size and resulted in higher yields. For the Ppd1 allele yield advantages were found for wheats grown under environmental conditions of middle Europe.  相似文献   

7.
QEet.ocs‐5A.1, a quantitative trait locus controlling ear emergence time, has been detected on wheat chromosome 5AL using single chromosome recombinant lines (SCRs) developed from a cross between ‘Chinese Spring’ (CS) (‘Cappelle‐Desprez’ 5A) and CS (Triticum spelta 5A). This locus has little influence on grain yield and its components, and thus has breeding potential for changing ear emergence time without yield reduction. To characterize the phenotypic expression of QEet.ocs.1 and to test its interaction with the Vrn‐A1 gene for vernalization response, six near‐isogenic SCRs differing for these two gene regions were grown together with the parental controls under different vernalization and photoperiod regimes. The T. spelta allele of QEet.ocs.1 accelerated heading time when vernalization and photoperiod were satisfied, demonstrating that the function of this QTL is earliness per se. There was no interaction between Vrn‐A1 and QEet.ocs.1.  相似文献   

8.
This report describes the conversion of a restriction fragment length polymorphism (RFLP) marker (the 2B12a locus). linked to the Sd1 aphid resistance gene, to a polymerase chain reaction (PCR) based marker. A section of the 2BI2 probe was sequenced and two primers were designed lo amplify this sequence in the cultivars‘Prima’and‘Fiesta’: all the amplification products were the same size. After sequencing. two specific 24-mer oligonueleotides were synthesized (DdARM-51 and DdAR.M-32) to exploit a single base-pair difference. These primers were used to screen 44 plants from the‘Prima’x‘Fiesta’family and generated a single amplification product (196bp). in approximately half of the seedlings, which was linked to the resistance gene Sd1,. The DdARM primer combination was used to evaluate a range of apple cultivars and selections, including some varieties derived from‘Cox’and alternative sources of resistance reported in the literature. In parallel with this work, the phenotypic response of the same genotypes was either confirmed or determined in replicated glasshouse tests. The sequence characterized amplified regions (.SCAR) marker was amplified in all the resistant plants, with the exception of‘Northern Spy’and 3760 (the sources of Sd2 and Sd3 resistance, respectively), but never in the susceptible plants. The possible role of this marker in a marker-assisted breeding strategy, and its compatibility with a SCAR marker linked to the I, gene for resistance to apple scab. is discussed.  相似文献   

9.
The barley (Hordeum vulgare L.) mutant erectoides‐k.32 (ert‐k.32) was isolated in 1947 from an X‐ray‐mutant population of cultivar ‘Bonus’. The mutant was released as a cultivar in 1958 with the name ‘Pallas’ – one of the first cereal crop cultivars developed from induced mutants. ‘Pallas’ is a semi‐dwarf barley cultivar known for its culm stability and resistance to lodging. In total, eight allelic ert‐k mutants are known that show different phenotypic strength concerning culm length and spike architecture. They represent alternatives to the widely used, but pleiotropic ‘Green Revolution’ alleles of the Sdw1 (semidwarf1/denso) and Uzu1 (semi‐brachytic1) genes in breeding of robust elite barley cultivars. In the present study, we locate Ert‐k to a 15.7‐cM region in the centromeric region of chromosome 6H. Although the interval is estimated to contain approximately 700 genes, the work provides a solid foundation for the identification of the underlying mutations causing the ert‐k lodging‐resistant phenotype. In addition, the linked markers could be used to follow the ert‐k mutant genotype in marker‐assisted selection of new lodging‐resistant barley cultivars.  相似文献   

10.
The inheritance of resistance to rice gall midge (Ranchi biotype) was studied in 12 resistant cultivars by crossing with susceptible cultivars. By the study of F1, F2, F3, B1 and B2 generations, it was found that resistance was governed by a single dominant gene in ‘Surekha’, ‘Phalguna’, ‘Rajendra Dhan 202’, ‘IET 7918’‘IET 6187’, ‘BG 404-1’; by duplicate dominant genes in ‘W 1263’, ‘RPW 6-17’ and ‘WGL 48684’ and a monogenic recessive gene in ‘OB 677’ and ‘BKNBR 1008-21’. The allelism test of the resistant genes in the test cultivars with already known genes Gm1 and Gm2 was carried out. A single dominant gene that conveyed the resistance in ‘RPW 6–17’, ‘IET 7918’ and ‘IET 6187’ was allelic to Gm1 and segregated independently of Gm2. The resistance in ‘Phalguna’, ‘Rajendra Dhan 202’, ‘W 1263’ and ‘RPW 6–17’, ‘IR 36’ and ‘WGL 48684’ was governed by Gm2 gene which was independent of Gm1. Two additional genes were identified and designated as Gm3 and gm4. Three test cultivars ‘BG 404-1’, ‘W 1263’ and ‘WGL 48684’ were found to have Gm3 gene for resistance which was non-allelic and segregated independently of Gm1 and Gm2. Thus the cultivars ‘W 1263’ and ‘WGL 48684’ had two resistance genes Gw2 and Gm3 together. The cultivar ‘RPW 6–17’ also had two resistance genes Gm1 and Gm2 together. The recessive gene gm4 which conditioned the resistance in ‘OB 677’ and ‘BKNBR 1008-21’ was nonallelic to and segregated independently of Gm1, Gm2 and Gm3 genes. Linkage studies of the resistance gene with pigment characters were carried out in ‘Purple gora/IR 36’ cross. The resistance gene Gm2 was found to be linked with the genes governing the pigmentation in node, apiculus and stigma with crossover values of 15.78, 31.57 and 35.78 % respectively. By the trisomic analysis, it was found that the Gm2 gene was located on chromosome 3.  相似文献   

11.
V. &#;ip    J. Chrpová    J. Vacke  J. Ovesná 《Plant Breeding》2004,123(1):24-29
The effects of the Yd2 gene on tolerance to barley yellow dwarf virus (BYDV) and other agronomically important characters in spring barley were evaluated in a set of randomly selected doubled haploid (DH) lines of an‘Igri’/‘Atlas 68’ cross and three crosses between CIMMYT Yd2 materials and the Czech malting barley ‘Akcent’. The cleaved amplified polymorphic site (CAPS) diagnostic marker Yd2 was used for identification of the Yd2 gene and this analysis showed high agreement with the results of field infection tests. Yd2 lines exhibited significantly lower symptom scores and lower reductions of some grain yield characters, but their resistance level was not consistent over the years. The presence of secondary stresses (high temperature/drought) in 2000 led to relatively higher sensitivity to BYDV infection, strengthened by the long life cycle of genotypes. In cases where secondary stresses were mild (in 2002), the longer life cycle significantly increased sensitivity to BYDV infection only in the absence of the Yd2 gene (in susceptible genotypes). The examination of different vegetative, grain yield and malting quality characters separately for groups of Yd2 and non‐ Yd2 lines did not show any evidence of adverse effect of the Yd2 gene on any character.  相似文献   

12.
The inheritance of resistance to green leafhopper, Nephotettix impicticeps Ichi, was studied in 11 cultivars of rice, Oryza saliva L. These resistant cultivars were crossed with the susceptible cultivar ‘TN1’. The materials consisted of F1, F2 and F3 populations including parents which were assessed by the bulk screening test. It was found that resistance in the cultivars TR36′, UPR254-35-3′-2′, ‘Jhingasail’, ‘Govind’, ‘RP825-45-1-3’, ‘MRC603-303’, ‘RD4’, and ‘Irat104 ’ was conditioned by a single dominant gene, whereas resistance in ‘Ptb8’ IR9805-97-1′, and ‘BG367-7’ was controlled by one recessive gene. The test on the allelic relationships of the resistance genes in the test cultivars with the known genes Glb1 and Glb2 revealed that the single dominant gene that conveyed the resistance in ‘UPR254-35-3-2’ and ‘Jhingasail’ was allelic to Glh1 and segregated independently of Glh2. The resistance in ‘Govind’ and ‘RP82S-45-1-3’ was governed by the Glh2 gene which was independent of Glh1. The test cultivars ‘IR36’;. ‘MRC603-303’, ‘RD4’. and Irat104 ’ had a dominant gene for resistance which was nonallelic to Glb1 and Glb2. The recessive gene which conditioned the resistance in ‘Ptb8’, ‘IR9805-97-1’, and ‘BG367-1’ segregated independently of Glh1 and Glh2. Eleven trisomics in an ‘TR36’ background were crossed with ‘Java’, a cultivar susceptible to green leafhopper. The segregation pattern of the F2 and backcross generations revealed that the Glb6 gene was located on chromosome 5.  相似文献   

13.
The genetics of resistance to green leafhopper, Nephotettix virescens (Distant), in rice varieties ‘IR36’ and ‘Maddai Karuppan’ and breeding line ‘IR20965‐11‐3‐3’ was studied. The reactions of F1 hybrids, F2 populations and F3 lines from the crosses of test varieties with the susceptible variety ‘TN1’ revealed that resistance in ‘IR36’ and ‘Maddai Karuppan’, is governed by single recessive genes while resistance in ‘IR20965‐11‐3‐3’ is controlled by a single dominant gene. Allele tests with the known genes for resistance to green leafhopper revealed that the recessive gene of ‘IR36’ is different from and inherited independently of Glh1, Glh2, Glh3, Glh4, Glh5, Glh8 and Glh9t. This gene is designated as glh10t. The recessive gene of ‘Maddai Karuppan’ and the dominant gene of ‘IR20965‐11‐3‐3’ are also non‐allelic to Glh1, Glh2, Glh3, Glh4, Glh5 and Glh8t. Thus, the dominant gene of IR20965‐11‐3‐3 is designated as Glh11t. The allelic relationships of the recessive gene of ‘Maddai Karuppan’ with glh8 and glh10t should be investigated.  相似文献   

14.
In the high amylose starch mutant ‘Glacier AC38’, a single recessive gene designated amo1 is responsible for an amylose content of up to 45%. A rapid technique was established in order to evaluate the amylose/amylopectin ratio in half kernels. To localize this gene, crosses with multiple marker lines and trisormes were conducted. In addition, RFLP markers were used to determine their mapping distance to amo1. Two markers are located 2 cM and 7 cM, respectively, from amo1 on chromosome 5S (1HS). The relationship between the wx and amo1 genes was also examined and the role of the amo1 gene in starch synthesis is discussed.  相似文献   

15.
J. Robinson    M. Jalli  H. Lindqvist 《Plant Breeding》1997,116(1):101-103
Six six-row Nordic spring barley genotypes (Hordeum vulgare L.) were assessed in the field in Finland (1994 and 1995) for resistance to Rhynchosporium secalis (Oud.) J.J. Davis, the causal pathogen of scald, in artificially inoculated plots. The barleys were known not to contain major genes for resistance to scald and the purpose of these experiments was to identify quantitative differences in resistance to scald which might be exploitable in a breeding programme. Disease development was monitored, grain yield and yield components were recorded, and these data were compared with measurements taken from plants in plots kept free of disease. Data, averaged over both years, for disease development on the uppermost three leaves — areas under disease progress curves, terminal severity and apparent infection rates — indicated that ‘Verner’, ‘Pohto’ and ‘Pokko’ were symptomatically significantly more resistant to scald than ‘Arve’, ‘Loviisa’ and Jo 1599. Grain yields, thousand-grain weights, test weights and proportions of plump grains were all significantly reduced in plots inoculated with scald compared with those kept free of disease; ‘Verner’ appeared to be the most useful genotype for use in crossing programmes to improve scald resistance in Finnish barleys.  相似文献   

16.
The photoperiod‐insensitive barley mutant ‘Atsel’, carrying the recessive gene ea7, was studied together with the donor variety ‘Atlas’ (wild‐type, Ea7) under different daylengths with the aim of analysing pleiotropic effects. Grown under long and short photoperiods ‘Atsel’ flowered about 10 days and 34 days, respectively, earlier than ‘Atlas’. The significantly shorter life‐cycle of the photoperiod‐insensitive mutant resulted in several changes of plant morphology. Tillering, plant height, number of leaves and number of internodes were reduced. A lower number of florets per main spike was observed for ‘Atsel’, but only in the long photoperiod experiment. Finally, photoperiod insensitivity combined with a lower grain yield per plant was most pronounced under long‐day treatment. The data are comparable with results obtained from single chromosome recombinant lines of wheat that have differences in their photoperiod response caused by the genes Ppd1 or Ppd2.  相似文献   

17.
To identify homoeologous group-3 chromosomes that carry genes for vernalization, day-length responses, and earliness per se, a series of aneuploid lines (mono-somics and tetrasomics) and chromosome-substitution lines in ‘Chinese Spring’ (CS) were surveyed under different vernalization and day-length regimes in controlled environments. The results indicated that genes on all three chromosomes of group 3 can have striking effects on ear-emergence time. The replacement of CS 3B by its homologues in ‘Lutescens 62’ and ‘Cheyenne’ produced an increased insensitivity to vernalization, while 3B homologues from ‘Ceska Presivka’ gave CS a remarkable sensitivity to vernalization. This provided evidence for multiple allelism at a new Vrn locus on chromosome 3B. A negative association between gene dosage and day-length response was found in CS 3D which was thought to carry a gene for promoting insensitivity to day-length. The behaviour of CS monosomic 3A and CS (Timstein 3A), in reducing numbers of days to heading independently of environmental stimuli, suggested the presence of earliness per se genes on this chromosome.  相似文献   

18.
A study was made of the effects of the Gli-B3/Glu-B2 encoded prolamins on durum-wheat quality. Twenty-six F3 lines from the durum wheat cross ‘Abadia’בMexicali 75’ were analysed electrophoretically for prolamin composition and for the following quality parameters: SDS sedimentation value, mixing properties, and percentage grain protein and percentage vitreous kernels. The results showed that the presence or absence of the Gli-B3/Glu-B2 encoded prolamins did not result in any significant difference in the quality characteristics of the F3 lines; however, as expected, the LMW glutenins encoded at Glu-B3 showed large differences and are therefore the major prolamins influencing durum wheat gluten quality.  相似文献   

19.
W. Tadesse    S. L. K. Hsam    F. J. Zeller 《Plant Breeding》2006,125(4):318-322
A total of 50 wheat (Triticum aestivum L.) cultivars were evaluated for resistance to tan spot, using Pyrenophora tritici‐repentis race 1 and race 5 isolates. The cultivars ‘Salamouni’, ‘Red Chief’, ‘Dashen’, ‘Empire’ and ‘Armada’ were resistant to isolate ASC1a (race 1), whereas 76% of the cultivars were susceptible. Chi‐squared analysis of the F2 segregation data of hybrids between 20 monosomic lines of the wheat cultivar ‘Chinese Spring’ and the resistant cultivar ‘Salamouni’ revealed that tan spot resistance in ‘Salamouni’ was controlled by a single recessive gene located on chromosome 3A. This gene is designated tsn4. The resistant cultivars identified in this study are recommended for use in breeding programmes to improve tan spot resistance in common wheat.  相似文献   

20.
Genetic basis of seedling-resistance to leaf rust in bread wheat 'Thatcher'   总被引:1,自引:0,他引:1  
A. N. Mishra    K. Kaushal    G. S. Shirsekar    S. R. Yadav    R. N. Brahma    H. N. Pandey 《Plant Breeding》2005,124(5):514-516
The bread wheat cultivar ‘Thatcher’ is documented to carry the gene Lr22b for adult‐plant resistance to leaf rust. Seedling‐resistance to leaf rust caused by Puccinia triticina in the bread wheat cultivar ‘Thatcher’, the background parent of the near‐isogenic lines for leaf rust resistance genes in wheat, is rare and no published information could be found on its genetic basis. The F2 and F3 analysis of the cross ‘Agra Local’ (susceptible) × ‘Thatcher’ showed that an apparently incompletely dominant gene conditioned seedling‐resistance in ‘Thatcher’ to the three ‘Thatcher’‐avirulent Indian leaf rust pathotypes – 0R8, 0R8‐1 and 0R9. Test of allelism revealed that this gene (temporarily designated LrKr1) was derived from ‘Kanred’, one of the parents of ‘Thatcher’. Absence of any susceptible F2 segregants in a ‘Thatcher’ × ‘Marquis’ cross confirmed that an additional gene (temporarily designated LrMq1) derived from ‘Marquis’, another parent of ‘Thatcher’, was effective against pathotype 0R9 alone. These two genes as well as a second gene in ‘Kanred’ (temporarily designated LrKr2), which was effective against all the three pathotypes, but has not been inherited by ‘Thatcher’, seem to be novel, undocumented leaf rust resistance genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号