首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
粮食安全、资源环境保护以及绿色发展是农业产业发展面临的重大问题。水稻作为我国主要粮食作物之一,在保障粮食安全中发挥着重要作用。“绿色超级稻”的理念要求水稻新品种在高产优质的基础上兼有多种病虫害抗性、养分高效吸收利用、以及较强的抗旱性和抗逆性特性,实现水稻生产“少打农药、少施化肥、节水抗旱、优质高产”的目标。“绿色超级稻”的理念与实践推动了绿色农业的发展。本文简要介绍了“绿色超级稻”理念及其形成的历史背景、研究进展及未来的发展趋势。  相似文献   

2.
超级稻研究和生产中几个问题之浅见   总被引:3,自引:2,他引:3  
全永明 《作物研究》2005,19(2):73-75
我国超级稻研究已取得举世瞩目的成就.在总结我国超级稻研究推广所取得成就的基础上,就研究和开发过程中存在的一些问题,如超级稻产量形成、区试与品种审定、栽培技术配套等,提出了几点设想.  相似文献   

3.
香蕉是一种重要的果树,在热带地区几乎都有种植和分布.除了有限的自然变异可能性外,已知可食香蕉品种大约有200个栽培种(De Langhe,1969).任何育种项目的进展取决于现存种群中遗传变异程度,因此,研究这些基本种群的变异性是迫切需要的.由于经济上重要的大多数植物性状是数量遗传,并且受环境条件的影响很大,因此,判断所观察到的变异性是遗传的还是由于环境条件引起的是很困难的.适用于生  相似文献   

4.
为探明高产条件下不同超级稻品种对种植密度的反应特性,选用两优培九、Y两优1号、Y两优2号、Y两优900、超优1000等5个超级稻品种,以常规稻品种黄华占为对照,于2016年在湖南省郴州市桂东县进行小区试验。结果表明,两优培九、Y两优1号、Y两优900、超优1000均以高密度(24万丛/hm^2)处理产量最高,分别为11 469.33、13 438.75、11 125.56和11 969.35 kg/hm^2,比低密度处理(12万丛/hm^2)增产11.71%、9.41%、25.80%和9.90%,增产原因在于这4个品种在高密度种植下单位面积有效穗数较低密度和中密度处理分别高出40.76%和33.24%。Y两优2号在插植密度为12万丛/hm^2时,有效穗数较高并且千粒重显著高于其他两种种植密度,因而有着较高的实际产量,达到11 172.44 kg/hm^2。24万丛/hm^2处理时所有超级稻品种齐穗期与成熟期干物质生产总量均较高;黄华占则在低密度下(12万丛/hm^2)有着最高产量和干物质生产量。  相似文献   

5.
中国超级稻研究:背景,目标和有关问题的思考   总被引:61,自引:3,他引:61  
  相似文献   

6.
水稻品种T984和Pecos的广亲和性及其利用价值   总被引:5,自引:0,他引:5  
 通过广泛测交筛选,发现浙江台州地区农科所的籼粳复交后代T984和美国粳型品种Pecos具有亚种间杂交的广亲和性。T984与8个籼型和7个粳型测验种的测交F1杂种的平均结实率分别为75.8% 和76.8%,表现广谱型的亲和性。Pecos与2个籼型和2个粳型测验种测交F1杂种的平均结实率分别为66.4%和77.9%, 属偏粳型的广亲和性品种。T984对籼、粳型测验种杂交F1和Pecos对籼型测验种杂交F1在单株生产力、单株穗数、株高等性状上存在着较强的正向超亲优势。Pecos对粳型测验种杂交F1除了株高和穗长外,其余性状投有超亲或表现负向优势。  相似文献   

7.
通过对生产上推广的10个晚籼品种(组合)的株叶形态、穗部性状和产量等72个性状的测定和分析。得到:(1)单株干谷重可作为综合性状好的晚籼高产品种的首要选择指标,其次是穗曲角要大;(2)剑叶直立可作为多穗型晚籼高产品种的首要选择指标,其次是倒3~4节间要短;(3)剑叶叶面积大可作为大穗型晚籼高产品种的首要选择指标,其次是剑叶要厚;(4)单株干谷重可作为大粒型晚籼高产品种的首要选择指标,其次是田间自然状态下穗子要长,倒三叶体积要小。  相似文献   

8.
以北方粳型超级稻沈农265为试材,对不同氮肥运筹模式的产量形成及氮素利用率进行比较分析,结果表明,在低氮水平下(12.5kg/667m^2),穗数与产量的相关系数最大,为正相关显著水平,穗粒数与产量的相关系数为正相关但不显著;在高氮水平下(14.5kg/667m^2),穗数、穗粒数与产量的相关系数均达到正相关显著水平,但与低氮水平相比,穗数与产量的相关系数绝对值有所下降。相同施氮水平条件下,按不同生育时期施用氮肥的“三段五次”、“稳前、攻中、优后”模式产量均显著高于前期集中施用的“一头轰”和“长效一次性”。深入分析表明,“三段五次”施氮模式充分发挥了沈农265的穗数优势,特别是在低氮水平下产量优势更为明显;“稳前、攻中、优后”施氮模式则具有高穗内因素(穗粒数、千粒重、结实率)优势,穗粒数与产量的相关系数明显提高。此外,这两种施氮模式在施氮总量为14.5kg/667m^2时均实现了超高产量(〉11thm^2)。从氮肥利用率上看,“稳前、攻中、优后”施氮模式的吸氮量、氮肥表观利用率较高,但氮肥农学利用率、氮肥生理利用率和施氮物质生产力(施氮颖花生产力、施氮物质生产力、施氮表观生产力)低于“三段五次”施氮模式。“一头轰”和“长效一次性”施氮模式由于施氮时期过于集中,氮素流失严重,氮素供需矛盾突出,尽管技术轻简,但由于不利于水稻产量的提高,因而不适于高产品种的集约强化栽培。  相似文献   

9.
13a来,通过籼粳亚亚种间杂交,育成了满仓515和世纪137等,经省区试结果,分别比杂交水稻的汕优桂32增产8.2%和13.6%。满仓515已获省科技进步二等奖,推广20多万hm^2。世纪137正在示范推广,其米质9项指标达部颁优质米二级以上。论述了利用优异种质和改进选育技术对培育优质高产新品种的作用。  相似文献   

10.
水稻灌浆期耐热害的数量性状基因位点分析   总被引:14,自引:1,他引:14  
 利用由98个家系组成的Nipponbare / Kasalath // Nipponbare回交重组自交系群体及其分子连锁图谱,以粒重感热指数\[(适温粒重-高温粒重)/适温粒重×100\]为评价指标,采用混合线性模型的QTL定位方法,对水稻灌浆期耐热性的主效、上位性数量性状基因位点及其与环境的互作进行分析。共检测到3个灌浆期耐热性主效QTL,分别位于第1、4和7染色体上,LOD值为8.16、11.08和12.86,贡献率8.94%、17.25%和13.50%。其中位于第4染色体标记C1100-R1783之间的QTL,没有显著的上位性和环境互作效应,表明在不同环境和遗传背景中的表达较为稳定,在水稻耐热性育种中可能具有较大的利用价值,其耐热性等位基因来自亲本Kasalath,高温热害时可减少粒重损失3.31%。位于第1染色体标记R1613-C970之间的QTL和第7染色体标记C1226-R1440之间的QTL,耐热性等位基因来自亲本Nipponbare,分别可减少粒重损失2.38%和2.92%。这两个QTL均具有与环境的互作效应,其中第7染色体上的QTL还和其他基因位点有互作。检测到8对加性×加性上位性互作QTL,分布于第1、2、3、5、7、8、10和12染色体上。没有检测到上位性QTL与环境的互作效应。  相似文献   

11.
多环境下粳稻产量及其相关性状的条件和非条件QTL定位   总被引:1,自引:0,他引:1  
 为了剖析粳稻产量及其相关性状的遗传基础,利用粳稻品种秀水79×C堡衍生的重组自交系群体,在3个环境下对全生育期、株高、单株穗数、每穗粒数、百粒重、籽粒产量和生物产量进行了非条件和条件QTL定位。共检测到43个主效QTL和29对上位性QTL。利用非条件QTL定位方法检测到37个主效QTL和26对上位性QTL。其中,籽粒产量定位到3个主效QTL qGY1.2、qGY7.1和qGY9,未检测到上位性QTL。利用条件QTL方法分别将全生育期、株高、穗数、每穗粒数、百粒重和生物产量各自调整到同一水平后,籽粒产量共检测到9个主效条件QTL和3对上位性QTL,其中3个主效QTL与非条件下定位到的相同。位于第9染色体长臂区间RM6570-RM5652的qGY9在非条件及全生育期、株高、穗数、粒数和百粒重调整到同一水平后均可检测到,但加性效应、贡献率并不相同,显示该区间来自C堡的片段能够增加株高、穗数和百粒重从而增加产量。通过条件方法在第3染色体长臂区间RM7097-RM448及第6染色体长臂区间RM162-RM5753上定位到的产量QTL增加籽粒产量的等位基因可以降低株高,缩短生育期。  相似文献   

12.
选取我国当前生产上大面积推广应用的籼稻恢复系明恢86和蜀恢527作为轮回亲本,以籼稻品种爷驼崽为供体亲本构建了2个BC2F4群体,在河北廊坊田间正常土壤正常施肥(对照)、贫瘠土壤正常施肥和贫瘠土壤低磷胁迫这三种处理下进行产量及相关性状的表型评价。同时,在北京温室采用水培法进行苗期耐低磷鉴定。在廊坊检测到49个产量及相关性状主效QTL,这些QTL对表型变异的贡献率为6.7%~16.5%;其中有25个(51.0%)QTL的有利等位基因来自供体亲本爷驼崽。在北京检测到影响耐低磷相关性状(根长、根系干质量、根冠比、地上部分干质量和总干质量)的主效QTL 48个,这些QTL对表型变异的贡献率为7.7%~16.6%;其中有21个(43.8%)QTL的有利等位基因来自供体亲本爷驼崽。多达79.6%的QTL能在廊坊环境两个或两个以上处理下被检测到,特别是与每穗总粒数、结实率和千粒重有关的QTL,不仅能稳定的表达,并且它们在不同处理下具有比较一致的效应。在检测到的所有QTL中,有8个染色体区段在两种环境的低磷胁迫条件下被同时检测到,其中与第12染色体RM511(Bin12.4)紧密连锁的位点,同时控制每穗实粒数、每穗总粒数、根长、根系干质量、地上部分干质量和总干质量等6个性状。  相似文献   

13.
14.
To dissect the genetic basis of low phosphorus tolerance(LPT), 114 BC2F4 introgression lines(ILs) were developed from Shuhui 527 and Minghui 86(recurrent parents), and Yetuozai(donor parent). The progenies were tested for 11 quantitative traits under three treatments including normal fertilization in normal soil(as control), normal fertilization in barren soil and low phosphorus stress in barren soil in Langfang, Hebei Province, China. Moreover, the ILs were investigated at the seedling stage using nutrient solution culture method in greenhouse in Beijing, China. A total of 49 main-effect quantitative trait loci(QTLs) underlying yield related traits were identified in Langfang, and their contributions to phenotypic variations ranged from 6.7% to 16.5%. Among them, 25(51.0%) QTLs had favorable alleles from donor parent. A total of 48 main-effect QTLs were identified for LPT-related traits in Beijing, and their contributions to phenotypic variations ranged from 7.7% to 16.6%. Among them, 21(43.8%) QTLs had favorable alleles from donor parent. About 79.6% of the QTLs can be detected repeatedly under two or more treatments, especially QTLs associated with spikelet number per panicle, spikelet fertility and 1000-grain weight, displaying consistent phenotypic effects. Among all the detected QTLs, eight QTLs were simultaneously identified under low phosphorus stress across two environments. These results can provide useful information for the genetic dissection of LPT in rice.  相似文献   

15.
楚粳37号是云南楚雄州农科所育成的云南省第3个高原超级稻新品种。2014年通过云南省农作物品种审定委员会审定,2017年获国家植物新品种权,2017年3月6日被农业部确认为超级稻品种,具有高产、优质、抗病、适应性广等突出特点,适宜在云南省海拔1 500~1 850 m稻区种植。本文总结了其选育技术、农艺特性和栽培技术要点。  相似文献   

16.
超级杂交稻协优9308重组自交系群体的穗部性状QTL分析   总被引:4,自引:0,他引:4  
 将281个株系组成的超级杂交稻协优9308重组自交系群体种植在海南陵水(2006年和2007年)和浙江富阳(2006年),采用Windows QTL Cartographer 2.5的复合区间作图法进行QTL检测。共检测到控制7个穗部性状的52个QTL,其中包括7个控制穗长的QTL,8个控制一次枝梗数的QTL,9个控制二次枝梗数的QTL,6个控制着粒密度的QTL, 7个控制每穗总粒数的QTL,11个控制每穗实粒数的QTL,4个控制结实率的QTL。单个QTL对群体性状表型变异的贡献率为23%~312%。控制穗部性状的QTL基本上以加性效应为主,上位性效应和环境互作效应不大。在3组试验中都检测到控制3个穗部性状的8个QTL:qPL-1,qPL-6-1;qTNSP-1,qTNSP-2,qTNSP-3;qNFGP-1,qNFGP-3-2,qNFGP-6-2。这些QTL,尤其是第3染色体RM168-RM143区间控制每穗总粒数的qTNSP-3和控制每穗实粒数的qNFGP-3-2,其加性效应值和贡献率均较大,可以考虑下一步进行QTL精细定位和克隆。研究发现多个重要QTL聚集区间,在同一QTL聚集区间,控制相关性状的QTL效应方向基本上相同,利用这些QTL紧密连锁的分子标记进行辅助选择,可望同时针对多个性状进行遗传改良。  相似文献   

17.
粳型亲籼系的选育及其在杂交水稻超高产育种上的利用   总被引:17,自引:0,他引:17  
张桂权  卢永根 《杂交水稻》1999,14(6):3-5,11
杂交水稻超高产育种的关键是籼粳亚种间杂种优势的利用。粳型亲籼系的选育和利用是籼粳亚种间杂种优势利用的重要途径,作为超高产杂交水稻的强优恢复系,粳型亲灿系的育种目标是:1)对籼稻具有很高的亲和性;2)基因组属于粳型或偏粳型;3)与籼稻具有遗传协调性;4)具有良好的农艺性状;5)带有一些重要基因,对通过利用粳型亲灿系建立超高产要交水稻的育种体系进行了讨论。  相似文献   

18.
粳稻垩白性状的QTL检测   总被引:1,自引:0,他引:1  
 利用大粒粳稻DL115与小粒粳稻XL005杂交获得的F2群体200个单株为作图群体,采用复合区间作图方法,利用SSR标记对稻米垩白性状进行了数量性状基因座(QTL)检测。研究结果表明,稻米垩白粒率、垩白大小和垩白度在F3株系均呈连续分布,表现为由多基因控制的数量性状。检测到与稻米垩白性状相关的QTL 8个,分别位于第3(5个)、第5(2个)和第6(1个)染色体上,包括与垩白粒率有关的QTL 3个,与垩白大小相关的QTL 2个,与垩白度有关的QTL 3个。其中位于第3染色体RM6832-RM411、RM15456-RM6832和RM6266-RM15456区间的qPGWC3、qACE3b和qDEC3b,分别解释垩白粒率、垩白大小和垩白度表型变异的43.89%、18.83%和19.57%,为主效QTL。上述3个主效QTL所在染色体上的位置与前人研究结果均不一致,认为是新的QTL。所检测到的8个QTL中,除qPGWC6的增效等位基因来自无垩白亲本XL005外,其他7个QTL的增效等位基因均来自垩白性状值较大的亲本DL115。垩白粒率和垩白大小基因作用表现为部分显性,垩白度基因作用表现为加性。  相似文献   

19.
 以粳粳交组合秀水79/C堡衍生的254个重组自交系为材料,利用基于混合线性模型的QTLMapper 2.0软件的复合区间作图法(MCIM)、基于逐步回归线性模型的QTL IciMapping 3.0软件的完备复合区间作图法(ICIM)和基于多元回归分析的Windows QTL Cartographer 2.5软件的多区间作图回归前进选择法(MIMR)等3种定位方法,对整精米的粒长、长宽比、垩白粒率、垩白度、直链淀粉含量、糊化温度和胶稠度等7个米质性状进行了QTL分析。结果表明,3种方法同时检测到的具有加性效应的QTL (A QTL)有5个,2种方法同时检测到的A QTL有2个,仅能在1种方法中检测到的A QTL有23个。MCIM、ICIM和MIMR检测到的A QTL个数分别为5、9和28,单个A QTL贡献率为0.89%~38.07%。MIMR检测到的具有上位性效应的QTL (E QTL)在另2种方法中都未被检测到。MCIM 和ICIM同时检测到的E QTL有14对,仅能在1种方法中检测到的E QTL有142对。MCIM、ICIM和MIMR检测到的E QTL对数分别为25、141和4,单对E QTL贡献率为2.60%~23.78%。在秀堡RIL群体中,粒长和垩白度的变异以上位性效应为主,长宽比则以加性效应为主,而垩白粒率、直链淀粉含量、糊化温度和胶稠度为加性效应和上位性效应同等重要。两种及以上方法同时检测到的QTL可靠性高,可用于改良杂交粳稻米质。  相似文献   

20.
D0 91是四川省原子核应用技术研究所用广亲和中粳株系 0 2 42 8作母本 ,含育性恢复基因的籼型中间材料作父本杂交而成的籼粳交恢复系。该恢复系株型好 ,穗大 ,杂种优势强 ,米质优 ,花粉量足 ,与不育系N2 A配组育成的糯优 2号于 1999年通过四川省品种审定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号