共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence and hydrological effects of water repellency in different soil and land use types in Mexican volcanic highlands 总被引:1,自引:0,他引:1
Little is known on the hydrological behavior of the volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities. In this study the occurrence and hydrological effects of water repellency were investigated at a plot scale for different types of land use and volcanic soils in Mexican volcanic highlands from Michoacan, Mexico: [1] fir, pine and oak mixed forest soils developed from lavas, [2] soils developed from volcanic ashes and pyroclastic sediments under sparse fir, pine and oak forest and shrubland, [3] pine and oak forested soils developed from lavas and pyroclastic sediments, and [4] bare soils on recent ash sediments in plain surfaces. Soil water repellency was assessed using the water drop penetration time test and rainfall simulations were performed on circular plots (50 cm in diameter) during 30 min and at an intensity of 90 mm h− 1 in order to study the hydrological response of each area. The return period for storms with a similar intensity in the area is 10 years. The shape and depth of the wetting front after simulated rainfall was also analyzed. Soil water repellency showed a high variability among the different studied zones. Organic matter content, soil texture and acidity were the most important factors for developing hydrophobicity. A wide range of soil water repellency classes (hydrophilic to severely water-repellent soils) has been found in soils under dense fir, pine and oak mixed forests or shrubland, while inexistent or slight water repellency has been observed in soils under sparse forest or at bare ash-covered areas. At a plot scale, marked differences in the hydrological behavior of the studied land use and soil zones were observed after the rainfall simulations. Soil water repellency contributes to fast ponding and runoff generation during the first stages of rainstorms. Runoff was enhanced in water-repellent forested soils (average runoff coefficients between 15.7 and 19.9%), in contrast to hydrophilic or slightly water-repellent soils, where runoff rates were lower (between 1.0 and 11.7%). Shallow and irregular wetting fronts were observed at water-repellent zones, reducing the soil water storage capacity. The implications of soil water repellency in soil hydrology and erosion risk in the area shed light on the soil hydrology of the studied ecosystems, and can contribute to develop better management policies. 相似文献
2.
Effects of mulching on soil physical properties and runoff under semi-arid conditions in southern Spain 总被引:3,自引:0,他引:3
Application of crop residues to soil and reduced or no tillage are current management practices in order to achieve better water management, increase soil fertility, crop production and soil erosion control. This study was carried out to quantify the effect of wheat straw mulching in a no tilled Fluvisol under semi-arid conditions in SW Spain and to determine the optimum rate in terms of cost and soil protection. After a 3-years experiment, mulching application significantly improved physical and chemical properties of the studied soil with respect to control, and the intensity of changes was related to mulching rate. The organic matter content was generally increased, although no benefit was found beyond 10 Mg ha−1 year−1. Bulk density, porosity and aggregate stability were also improved with increasing mulching rates, which confirmed the interactions of these properties. Low mulching rates did not have a significant effect on water properties with respect to control, although the available water capacity increased greatly under high mulching rates. After simulated rainfall experiments (65 mm h−1 intensity), it was found that the mulch layer contributed to increase the roughness and the interception of raindrops, delaying runoff generation and enhancing the infiltration of rain water during storms. Mulching contributed to a reduction in runoff generation and soil losses compared to bare soil, and negligible runoff flow or sediment yield were determined under just 5 Mg ha−1 year−1 mulching rate. It was observed that during simulations, the erosive response quickly decreases with time after prolonged storms (30 min) due to the exhaustion of available erodible particles. These results suggest that the erosive consequences of intermediate intensity 5-years-recurrent storms in the studied area could be strongly diminished by using just 5 Mg ha−1 year−1 mulching rates. 相似文献
3.
4.
不同土壤坡面细沟侵蚀差异与其影响因素 总被引:11,自引:1,他引:11
采用室内纯净水人工模拟降雨试验,在坡度为10°、15°、20°、25°坡面,土槽为5 m、10 m两种规格,对两种土壤((土娄)土与黄绵土)分别进行雨强为1.5 mm min-1,的降雨实验,利用三维激光扫描仪对每一场降雨后的坡面进行监测,分析不同坡度对细沟侵蚀的影响,比较两种土壤坡面细沟侵蚀的差异,以及其差异的影响因子.结果表明:(土娄)土土壤颗粒以粉粒与黏粒为主,粉粒占总质量的64.12%,黏粒为28.42%.黄绵土的土壤颗粒以粉粒为主占总质量的67.95%,黏粒与沙粒含量较少,黏粒占14.52%,沙粒占17.53%.在相同条件下,(土娄)土降雨过程中人渗缓慢,产流时间、坡面流速均快于黄绵土,跌坎出现时间也较早,使其更容易产生细沟.(土娄)土的径流量高于黄绵土,在降雨过程中,径流稳定时间较早.(土娄)土侵蚀量高于黄绵土,(土娄)土产沙率呈增加趋势,黄绵土含沙量变化不明显.从坡面细沟发育来看,(土娄)土坡面细沟成平行状分布,黄绵土细沟为较宽树枝状. 相似文献
5.
This paper analyses the differences in soil moisture, runoff and sediment concentration resulting from land levelling works carried out before new vineyard establishment in a reference wine region of NE Spain. In low disturbed soils, low differences in soil moisture were observed, while in high disturbed soils, soil moisture and water infiltration of the surface were always lower than in the low disturbed ones, while soil sealing was higher in high disturbed than in the low disturbed soils. Differences in runoff and sediment concentrations were also observed. The most disturbed plot showed a higher sediment concentration in runoff, which together with higher runoff volumes gave higher erosion rates and soil losses than the low disturbed one. The differences within the most disturbed soils were high after high intensity rainfall events, while no significant variations were observed in the least disturbed ones. 相似文献
6.
The distribution and variation with soil depth of water repellency has been studied in fire-affected sand dunes under three different vegetation types (pine forest, shrubland and sparse herbaceous vegetation) in SW Spain. The persistence and intensity of water repellency at the exposed surface of soil was measured using the water drop penetration time test and the contact angle method, respectively, in surface samples (0–3 cm) collected at burned and unburned areas. The variation of water repellency with depth in burned areas was studied in soil profiles every 5 cm between 0 and 40 cm depth. None or slight soil water repellency was observed at unburned soil sites, whereas burned soil sites showed a high degree of repellency, especially under pines and shrubland. The spatial pattern of fire-induced soil water repellency was found to be associated to vegetation types, although it was modulated by soil acidity and the soil organic carbon content. Soil water repellency was generally higher at the soil surface, and decreased with depth. Dense pine forests and shrublands showed strong and/or severe water repellency in depth, but it was rare and limited to the first five centimeters under sparse herbaceous vegetation. The heterogeneity of moisture patterns under dense pine forests or shrublands showed the existence of wetting and water repellent three-dimensional soil patches. 相似文献
7.
Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency, reducing infiltration, and, in turn, increasing overland flow and subsequent erosion. We studied the impacts of fire on soil properties by collecting data before and after a prescribed burn conducted during Spring 2001 on the San Dimas Experimental Forest, southern California. The fire removed the litter layer and destroyed the weak surface soil structure; leaving a thin band of ash and char on top of, and mixed in with, an unstable, granular soil of loose consistency. Median litter thickness and clay content were significantly decreased after fire while soil bulk density increased. At 7 d post-fire, soil surface repellency in the watershed was significantly higher than prior to the burn. At 76 d post-fire, surface soil water repellency was returning to near pre-fire values. At the 2 and 4 cm depths, 7 d post-fire soil repellency was also significantly higher than pre-fire, however, conditions at 76 d post-fire were similar to pre-fire values. Variability in soil water repellency between replicates within a given 15 × 15 cm site was as large as the variability seen between sites over the 1.28 ha watershed. The increase in post-fire persistence of water repellency was largest beneath ceanothus (Ceanothus crassifolius) as compared to a small increase beneath chamise (Adenostoma fasciculatum). However, pre-fire persistence was higher under chamise than for ceanothus. Post-fire changes to soil properties may increase the watershed hydrologic response, however the mosaic distribution of water repellency may lead to a less severe increase in hydrologic response than might be expected for a spatially more homogenous increase in repellency. 相似文献
8.
《国际水土保持研究(英文)》2023,11(1):169-182
Despite ample literature, the influence of the individual soil properties and covers on the hydrological response of burned soils of forests has not clearly identified. A clear understanding of the surface runoff and erosion rates altered by wildfires and prescribed fires is beneficial to identify the most suitable post-fire treatment. This study has carried out a combined analysis of the hydrological response of soil and its driving factors in burned forests of Central-Eastern Spain. The pine stands of these forests were subjected to both prescribed fire and wildfire, and, in the latter case, to post-fire treatment with mulching. Moreover, simple multi-regression models are proposed to predict runoff and erosion in the experimental conditions. In the case of the prescribed burning, the fire had a limited impact on runoff and erosion compared to the unburned areas, due to the limited changes in soil parameters. In contrast, the wildfire increased many-fold the runoff and erosion rates, but the mulching reduced the hydrological response of the burned soils, particularly for the first two-three rainfalls after the fire. The increase in runoff and erosion after the wildfire was associated to the removal of the vegetation cover, soil water repellency, and ash left by fire; the changes in water infiltration played a minor role on runoff and erosion. The multi-regression models developed for the prescribed fire were accurate to predict the post-fire runoff coefficients. However, these models were less reliable for predictions of the mean erosion rates. The predictions of erosion after wildfire and mulching were excellent, while those of runoff were not satisfactory (except for the mean values). These results are useful to better understand the relations among the hydrological effects of fire on one side and the main soil properties and covers on the other side. Moreover, the proposed prediction models are useful to support the planning activities of forest managers and hydrologists towards a more effective conservation of forest soils. 相似文献
9.
The impact of vegetative cover type on runoff and soil erosion under different land uses 总被引:2,自引:0,他引:2
The effects of different vegetation types on runoff generation and soil erosion were investigated. The study was conducted at the Southern part of West Bank, about 10 Km north-west of Hebron city, during 2005, 2006 and 2007. Five treatments were implemented; forests planted with P. halepensis (F), natural vegetation dominated by S. spinosum (W.S), natural vegetation where S. spinosum was removed (W/o.S), cultivated land (C), and deforestation (Df). Three types of data were estimated in each plot: runoff after each rainfall event, sedimentation at the end of the rainy season, and chemical and physical soil properties. The obtained results indicate that there are significant and important differences in runoff generation and sediment production with respect to the different types of vegetative cover. Forest and natural vegetation dominated by S. spinosum treatments exhibited the lowest amounts of runoff, with averages of 2.02 and 1.08 mm, respectively, in comparison to other treatments. The removal of S. spinosum significantly increased the total amount of runoff and sedimentation compared to the forest and S. spinosum treatments. In addition, runoff significantly increased (4.03 mm) for the Df treatment compared to that of the forest site. The greatest amount of sedimentation was observed in cultivated land and with deforestation. 相似文献
10.
Relationships between rock fragment cover and soil hydrological response in a Mediterranean environment 总被引:1,自引:0,他引:1
Lorena M. ZAVALA Antonio JORDÁN Nicolás BELLINFANTE Juan GIL 《Soil Science and Plant Nutrition》2010,56(1):95-104
Rock fragments are a key factor for determining erosion rates, particularly in arid and semiarid environments where vegetation cover is very low. However, the effect of rock fragments in non-cultivated bare soils is still not well understood. Currently, there is a need for quantitative information on the effects of rock fragments on hydrological soil processes, in order to improve soil erosion models. The main objective of the present research was to study the influence of rock fragment cover on run-off and interrill soil erosion under simulated rainfall in Mediterranean bare soils in south-western Spain. Thirty-six rainfall simulation experiments were carried out at an intensity of 26.8 mm h−1 over 60 min under three different classes of rock fragment cover (<50%, 50–60% and >60%). Ponding and run-off flow were delayed in soils with high rock fragment cover. In addition, sediment yield and soil erosion rates were higher in soils with a low rock fragment cover. The relationship between soil loss rate and rock fragment cover was described by an exponential function. After this first set of experiments, rock fragments were removed from sites with the highest cover (>60%) and the rainfall simulation experiments were repeated. The steady-state run-off rate and soil loss increased significantly, showing that run-off and soil erosion were partly conditioned by rock fragment cover. These results have significant implications for erosion modelling and soil conservation practices in areas with the same climate and soil characteristics. 相似文献
11.
It is known that rock fragments on the surface of soils can enhance infiltration and protect the soil against rainfall erosion. However, the effect of rock fragments in natural forest soils is less well understood. In this article, we studied the influence of rock fragment cover on run‐off, infiltration and interrill soil erosion under simulated rainfall on natural bare soils in a Spanish dehesa (managed holm oak woodland). We studied 60 plots with different rock fragment cover ranging from 3% to 85% under three simulated rainfall intensities (50, 100 and 150 mm/h). Surface run‐off appeared later and sediment yield values were smaller in soils with greater rock fragment cover. Rock fragment cover also increased infiltration rates. The final infiltration rates were 54–98% at a rainfall intensity of 50 mm/h, 31–88% at 100 mm/h and 20–80% at 150 mm/h. The interrill soil loss rates were decreased by rock fragment cover and increased with rainfall intensity. The soil loss rate was always small (0.02–1 Mg ha/h) when rock fragment cover was 75% or more. Rock fragment cover was related to soil loss rate by an exponential function. 相似文献
12.
Ke Jin Wim M. Cornelis Donald Gabriels Wouter Schiettecatte Stefaan De Neve Junjie Lu Tineke Buysse Huijun Wu Dianxiong Cai Jiyun Jin Roger Harmann 《CATENA》2008
Soil erosion from agricultural lands is a serious problem on the Chinese Loess Plateau. In total, 28 field rainfall simulations were carried on loamy soils under different management practices, namely conventional tillage (CT), no till with mulch (NTM), reduced tillage (RT), subsoiling with mulch (SSM), subsoiling without mulch (SS), and two crops per year (TC), to investigate (i) the effects of different soil management practices on runoff sediment and (ii) the temporal change of runoff discharge rate and sediment concentration under different initial soil moisture conditions (i.e. initially dry soil surface, and wet surface) and rainfall intensity (85 and 170 mm h− 1) in the Chinese Loess Plateau. NTM was the best alternative in terms of soil erosion control. SSM reduced soil loss by more than 85% in 2002 compared to CT, and its effects on runoff reduction became more pronounced after 4 years consecutive implementation. SS also reduced considerably the runoff and soil loss, but not as pronounced as SSM. TC resulted in a significant runoff reduction (more than 92%) compared to CT in the initial ‘dry’ soil, but this effect was strongly reduced in the initial ‘wet’ soil. Temporal change of runoff discharge rate and sediment concentration showed a large variation between the different treatments. In conclusion, NTM is the most favorable tillage practices in terms of soil and water conservation in the Chinese Loess Plateau. SSM can be regarded as a promising measure to improve soil and water conservation considering its beneficial effect on winter wheat yield. 相似文献
13.
The effects of land uses on soil erosion in Spain: A review 总被引:4,自引:0,他引:4
Soil erosion is a key factor in Mediterranean environments, and is not only closely related to geoecological factors (lithology, topography, and climatology) but also to land-use and plant cover changes. The long history of human activity in Spain explains the development of erosion landscapes and sedimentary structures (recent alluvial plains, alluvial fans, deltas and flat valleys infilled of sediment). For example, the expansion of cereal agriculture and transhumant livestock between the 16th and 19th centuries resulted in episodes of extensive soil erosion. During the 20th century farmland abandonment prevailed in mountain areas, resulting in a reduction of soil erosion due to vegetation recolonization whereas sheet-wash erosion, piping and gullying affected abandoned fields in semi-arid environments. The EU Agrarian Policy and the strengthening of national and international markets encouraged the expansion of almond and olive orchards into marginal lands, including steep, stony hill slopes. Vineyards also expanded to steep slopes, sometimes on new unstable bench terraces, thus leading to increased soil erosion particularly during intense rainstorms. The expansion of irrigated areas, partially on salty and poorly structured soils, resulted in piping development and salinization of effluents and the fluvial network. The trend towards larger fields and farms in both dry farming and irrigated systems has resulted in a relaxation of soil conservation practices. 相似文献
14.
Abstract. To study the influence of different vegetation species and plant properties on the generation of surface runoff and soil erosion in south east Spain, a series of rainfall simulation experiments was conducted on small ( c . 1.5 m2 ) plots. These were carried out in October 1993 and May 1994 on two sites close to Murcia. Six vegetation types were studied, with some at different stages of maturity, giving a total of nine vegetation treatments and two bare soil treatments. Four replicates of each treatment were exposed to a rainstorm of 120 mm/h for 15 minutes. The results of the experiments show that there are few significant differences in the ability of the vegetation types studied to control runoff or soil erosion. Of the plant properties considered, only plant canopy cover showed a significant relationship with soil loss and runoff with the greatest reduction in soil loss taking place at canopy covers greater than 30%. The implications of this research are that future efforts should be directed at developing ecological successions and revegetation methods which promote a substantial and sustainable canopy cover. 相似文献
15.
黄河三角洲盐碱地不同利用方式土壤理化性质 总被引:8,自引:1,他引:8
为了缓解土壤盐碱性,保证土壤可持续利用,研究了黄河三角洲典型土地利用类型撂荒地、棉田、苜蓿地和梨园土壤理化性质.结果表明:棉田土壤容重较高,而孔隙度和毛管孔隙度低,由于棉田灌水压盐措施,抬高了地下水位,土壤返盐严重.苜蓿地由于管理粗放,对土壤扰动少,容重较低,孔隙度和毛管孔隙度较高,盐碱度较低;每年对苜蓿的采收显著降低了苜蓿地土壤有机质和养分含量,而豆科固氮菌的存在,使表层速效氮含量较高.梨园位于黄河三角洲土壤质地较好的区域,且有机肥料施用一定程度上缓解了土壤板结,盐碱度较低.撂荒地表层土壤理化指标均显著优于棉田,在退化土壤恢复中具有较好的效果. 相似文献
16.
Forest management policies in Mediterranean areas have traditionally encouraged land cover changes, with the establishment of tree cover (Aleppo pine) in natural or degraded ecosystems for soil conservation purposes: to reduce soil erosion and to increase the vegetation structure. In order to evaluate the usefulness of these management policies on reduced erosion in semi-arid landscapes, we compared 5 vegetation cover types (bare soil, dry grassland, shrublands, afforested dry grasslands and afforested thorn shrublands), monitored in 15 hydrological plots (8 × 2 m), in the Ventós catchment (Alicante, SE Spain), over 4 years (1996 to 1999). Each cover type represented a different dominant patch of the vegetation mosaic on the north-facing slopes of this catchment. The results showed that runoff coefficients of vegetated plots were less than 1% of the precipitation volume; whereas runoff in denuded areas was nearly 4%. Soil losses in vegetation plots averaged 0.04 Mg ha− 1 year− 1 and increased 40-fold in open-land plots. The evaluation of these forest management policies, in contrast with the natural vegetation communities, suggests that: (1) thorn shrublands and dry grassland communities with vegetation cover could control runoff and sediment yield as effectively as Aleppo pine afforestation in these communities, and (2) afforestation with a pine stratum improved the stand's vertical structure resulting in pluri-stratified communities, but reduced the species richness and plant diversity in the understorey of the plantations. 相似文献
17.
Crop production in Georgia and the Southeastern U.S. can be limited by water. Highly-weathered, drought-prone soils are susceptible to runoff and erosion. Rainfall patterns generate runoff producing storms followed by extended periods of drought during the crop growing season. Thus, supplemental irrigation is often needed to sustain profitable crop production. Increased water retention and soil conservation would efficiently improve water use and reduce irrigation amounts/costs and sedimentation, and sustain productive farm land, thus improving producer's profit margin. Soil amendments, such as flue gas desulfurization (FGD) gypsum, have been shown to retain rainfall and/or irrigation water through increased infiltration while decreasing runoff (R) and sediment (E). Objectives were to quantify rainfall partitioning and sediment delivery improvements with surface applied FGD gypsum from an Ultisol managed to conventional till (CT) and to assess the feasibility of using FGD gypsum on agricultural land in southern Georgia. A field study (Faceville loamy sand, Typic Kandiudult) was established (2006, 2007) near Dawson, GA managed to CT, irrigated cotton (Gossypium hirsutum L.). FGD gypsum application rates evaluated were 0, 1.1, 2.2, 4.5, and 9 Mg ha− 1. Gypsum treatments and simulated rainfall (50 mm h− 1 for 1 h) were applied to 2-m wide × 3-m long field plots (n = 3). Runoff and E were measured from each 6-m2 plot (slope = 1%). FGD gypsum plots averaged 26% more infiltration (INF), 40% less R, 58% less E, 27% lower maximum R rates (Rmax), and 2 times lower maximum E rates (Emax) than control plots. Values of INF and water for crop use increased, and R, E, Rmax, and Emax decreased as FGD gypsum application rate increased. Values of INF, R, E, Rmax, and Emax for 9 Mg ha− 1 plots were as much as 17% greater, 35% less, 1.9 times less, 35% less, and 1.9 times less than those from other FGD gypsum plots, respectively; and 40% greater, 40% less, 2.2 times less, 52% less, and 2.9 times less than those from control plots, respectively. Applying FGD gypsum to agricultural lands is a cost-effective management practice for producers in Georgia that beneficially impacts natural resource conservation, producer profit margins, and environmental quality. Agriculture in the Southeast provides a viable market for the electric power industry to convert disposal costs of FGD gypsum into a profitable commodity. 相似文献
18.
Gizaw Desta Lulseged Tamene Wuletawu Abera Tilahun Amede Anthony Whitbread 《国际水土保持研究(英文)》2021,9(4):544-554
Identifying land management practices (LMPs) that enhance on-site sediment management and crop productivity is crucial for the prevention, reduction, and restoration of land degradation and contributing to achieving land degradation neutrality (LDN). We reviewed studies in Ethiopia to assess the effects of LMPs on soil loss (84 studies) and crop productivity (34 studies) relative to control practice. Yield variability on conserved lands was assessed using 12,796 fixed plot data. Effects of LMP on soil loss were 0.5–55 t ha−1y−1 compared to control practices yielding 50 to 140 t ha−1y−1. More than 55% of soil loss records revealed soil loss less than the tolerable rate (10 t ha−1). Area closure, perennial vegetation cover, agronomic practices, mechanical erosion control practices, annual cropland cover, and drainage groups of practices led to 74.0 ± 18.3%, 69.0 ± 24.6%, 66.2 ± 30.5%, 66.1 ± 18.0%, 63.5 ± 20.0%, and 40 ± 11,1% soil loss reduction, respectively. A yield increase of 25.2 ± 15.0%, 37.5 ± 28.0%, and 75.4 ± 85.0% was found from drainage, agronomy, and mechanical erosion control practices, respectively. The average yield loss by erosion on fields without appropriate land management practice and on conserved fields was 26.5 ± 26.0% and 25 ± 3.7%, respectively. The findings suggest that practices that entail a continuous presence of soil cover during the rainy season, perennial vegetation, retention of moisture, and barriers for sediment transport were most effective at decreasing soil loss and increasing productivity. This review provides evidence to identify the best LMP practices for wider adoption and inform decision-making on LMP investments towards achieving sustainable solutions to reverse land degradation. 相似文献
19.
20.
Vertical distribution of soil nematodes under different land use types in an aquic brown soil 总被引:14,自引:0,他引:14
A field investigation was conducted at the Shenyang Experimental Station of Ecology to study the vertical distribution of nematode communities down to a depth of 150 cm under four land use types (paddy field, maize field, fallow field and woodland) in an aquic brown soil of Northeast China. The results showed that the numbers of total nematodes and trophic groups exhibited a gradual decrease trend with depth under different land use types. The numbers of total nematodes, bacterivores, fungivores, and plant parasites were positively correlated with the contents of TOC, total N, and alkali N in the four land use types. The majority of nematodes were present in the 0–30 cm soil layers. No significant effects were found on the number of total nematodes at all depths among the maize field, fallow field and woodland. Bacterivores were found to be the most abundant group in the paddy field, while plant parasites were observed to be the most abundant group in the maize field, fallow field and woodland. The number of fungivores at the depths of 0–5 and 5–10 cm was higher in the maize field than in the other land use types. Omnivores-predators were found in relatively low numbers under each land use type, with a higher presence in the fallow field and woodland at the depths of 0–5, 5–10, 10–20 cm compared with the paddy and maize fields. 54 genera were observed throughout the four land use types in our study. The woodland treatment supporting greater basal resource inputs tended to result in a higher diversity of nematodes. The number of genera reached a maximum at the depth of 5–10 cm under each land use type. The faunal profiles showed that soil food webs in the fallow field and woodland were structured, and those in the paddy and maize fields were stressed. The faunal analysis provided a useful tool for diagnostic interpretation of the condition of upper soil layers. 相似文献