首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This paper describes a dosimeter system for measuring both the PAP (photosynthetically active photons) (400–700 nm) and ultraviolet-B (UVB) (280–320 nm) exposures in the supplemental UVB irradiation of field grown soybean (Glycine max [L.] Merr.) plants. At the V2 growth stage, the dosimeters positioned at the same position and orientation as the trifoliate leaves of the plants that were measured received 12–38% more PAP and 5–82% more UVB than the unifoliate leaves. For the crop maturity stage, the plants exposed to high levels of UV irradiance (high UV treatment) received approximately 40% more UVB on a horizontal plane at the top of the plant canopy compared to the control group of plants (control treatments). For the other measurement sites over the plants that were orientated at 45° to the vertical in the north, south, east and west directions, the additional amount of UVB for the supplemental treatment compared to the corresponding sites for the plants in the control treatments varied between −39 and 37%, due predominantly to the shading provided by the other plants. Furthermore, the supplemental UVB changed the natural partitioning of UVB and PAP and the ratio of PAP to UVB over the plants. All these variations to the UVB and PAP over the plant canopy cannot be predicted by exposure measurement in the wavebands on a horizontal plane. Consequently, for the case of the complex topography of plants, the dosimeters described in this paper have the advantage of allowing the exposures to be measured simultaneously at multiple sites that are at any orientation.  相似文献   

3.
A set-up with 161 photosynthetically active radiation (PAR) sensors was used to investigate spatio-temporal variations of irradiance for five horizontal arrays within a Scots pine canopy. The measured PAR was converted to CO2 exchange using of a shoot-scale photosynthetic response curve and the vertical distribution of the needle area. The net ecosystem exchange was simultaneously measured by the eddy covariance technique. The effect of spatial and temporal averaging of the PAR values and the number of sensors were analysed under different conditions as regards cloudiness and the shading by the foliage. In 1/2 h CO2 exchange values for the entire canopy, a maximum overestimation of 30% resulted from a spatial averaging over horizontal arrays of 2–5 m and occurred under clear-sky conditions and significant foliage shading. Under partly cloudy conditions, the largest overestimation occurred for a case of little shading and the inaccuracy resulting from 1/2 h temporal averaging exceeded that of spatial averaging.  相似文献   

4.
Inconsistencies in reported sensitivities of soybean cultivars [Glycine max (L.) Merr.] to enhanced ultraviolet-B (UVB) irradiance may in part be due to differences in the radiative environment of the experimental conditions or differences in exposure due to heliotropic response. In order to examine the impact of heliotropic movement on UVB exposure of the soybean upper trifoliate, leaf position was electronically recorded and inclination and azimuthal position of the leaves calculated for three soybean cultivars—Bay, York, and Williams 82—under greenhouse and field conditions. The UVB exposures of the top trifoliate of three soybean cultivars were modeled using anisotropic and isotropic sky radiance distributions. The Williams 82 cv. produced the greatest variation in leaf angle with solar zenith angle of the three cultivars, averaging between 19 and 47°, compared with a lower 10–27° range for York and Bay cultivars. The incidence angle data for the upper trifoliates of the field plants were not significantly different from the greenhouse plants. For clear sky conditions, overall exposure differences indicated that the Bay cultivar receives more UVB than the York or Williams 82 cultivars, in large part due to the higher variation in heliotropic movement shown by the Bay cultivar in response to the sun location.  相似文献   

5.
The vertical and horizontal variability of solar radiation within a mature European beech (Fagus sylvatica L.)-Norway spruce (Picea abies [L.] Karst) mixed stand in Southern Germany is investigated. A large dataset with more than one million spectral measurements of photon fluence rates at six vertical levels within the stand is analyzed with respect to tree species, meteorological sky conditions, and the influence of solar elevation angle on canopy penetration. Irradiance probability density functions of the photosynthetically active waveband are used to describe the three-dimensional radiation field. For a quantification of umbra, penumbra, and sunfleck frequencies, in-canopy fractions of photon fluence rates within the photosynthetically active waveband are investigated. Different phenological stages of beech and their effects on the in-canopy light climate are compared. The results show that during overcast conditions (OVC) fractions of photosynthetically active radiation (PAR) are higher at all canopy levels than during clear sky (CS) conditions due to their exclusively diffuse character. The lowest median PAR level of less than 1% of above-canopy PAR can be observed in the shade crown of beech and at ground level. More PAR can penetrate the canopy at a higher solar elevation under CS conditions. This effect is more pronounced for spruce than for beech due to the conical crown shape of the conifers that allows photons from higher angles to enter the gaps inbetween trees in contrast to the more homogeneously closed beech canopy. Solar elevation is not an important factor at uniformly overcast conditions. Differences in the vertical distribution of umbra and penumbra can be detected when comparing species or different sky conditions. The frequency of sunflecks differs more by species and by the vertical position within the canopy than by sky condition.  相似文献   

6.
Distillery effluent, a waste by-product of distillery industries, is usually applied to arable land near the distilleries as irrigation water or as a soil amendment. To evaluate the effect of distillery effluent, both spent wash (SW) and post-methanated effluent (PME), on soil organic carbon and aggregate stability, a field experiment on a soybean (Glysine max L.)–wheat (Triticum aestivum L.) system was conducted for five years on a Vertisol of central India. The treatments were control (no fertilizer or manure or SW or PME, T1), 100% NPK + farmyard manure (FYM) @ 4 Mg ha−1 to soybean (T2), four graded levels of SW, viz., 2.5 cm SW to soybean and none to wheat (T3), 2.5 cm SW to soybean and 1.25 cm to wheat (T4), 5 cm SW to soybean and none to wheat (T5), 5 cm SW to soybean and 2.5 cm to wheat (T6), and four graded levels of PME, viz., 2.5 cm PME to soybean and none to wheat (T7), 2.5 cm PME to soybean and 1.25 cm to wheat (T8), 5 cm PME to soybean and none to wheat (T9), 5 cm PME to soybean and 2.5 cm to wheat (T10). The organic carbon of the surface (0–15 cm) soil that received either PME or SW (treatments T3–T10), was significantly (P < 0.05) higher than in treatments T1 and T2. The mean weight diameter (MWD) of water stable aggregates in this soil layer was also significantly higher in treatments T3–T10, compared with T1 and T2. The MWD showed a positive linear relationship with the organic carbon content of the soil (R2 = 0.54**). The proportion of macro-aggregates was higher in SW treated plots than PME, no distillery effluents and NPK + FYM treatments. However, the micro-aggregates showed the reverse trend. The macro-aggregate-associated carbon was higher in SW treated plots. It was highest in T6 and lowest in T1. The plots receiving the PME and SW showed increased soil organic carbon, MWD, percentage macro- and micro-aggregate-associated carbon than T1 and T2. Application of distillery effluents increased the aggregate stability of the Vertisol through enhanced soil organic carbon as well as the aggregate-associated carbon. So application of SW or PME could be a viable option for soil aggregate stability and enhanced productivity.  相似文献   

7.
8.
In central India, four populations of groundnut were grown to assess the interaction between population and water stress.Transpiration was calculated from measurements or estimates of stomatal resistance, rs, boundary layer resistance, ra, vapour concentration difference between leaf and air, δχ, and leaf area index, L.The frequency distributions of rs, ra, δχ and seasonal changes in L were plotted to analyse the dependence of transpiration rate on each variable, both per unit area of leaf surface, El, and per unit land surface, Ee. For estimates of El, both rs and δχ were of similar importance, exerting a far greater influence than changes in ra. However, in terms of Ee, changes in L were far more important than in any other variable, particularly late in the season when water was scarce.This study provides further experimental support for estimates of evaporation based on stomatal resistance and allied measurements and confirms similar estimates obtained earlier for crops of pearl millet maintained on stored water. The ability of the technique to describe temporal and spatial variations as well as the dominant environmental and physiological influences on transpiration may outweigh any small loss in accuracy of estimates thus obtained.  相似文献   

9.
以强烈干扰马尾松林分为对照,不同修复措施(封育、竹节沟、种草竹节沟、谷坊与无谷坊马尾松和竹节沟湿地松)林分为研究对象,对严重侵蚀红壤地实施生态修复27a后的群落组成和各物种的重要值(IV)特征进行了研究。结果表明:(1)5种坡面林分中,乔木层物种组成单一,均为马尾松或湿地松;灌木层物种种类丰富,重要值分布不均匀,竹节沟湿地松林分修复的效果最为明显。其中,耐半荫常绿野栀子的优势度最大(IV=0.12),喜光落叶的白檀次之(IV=0.11),湿地松的幼苗优势度最小(IV=0.02)。草本层结构较为简单,封育马尾松林分草本盖度最高(40%)。(2)在沟道林分中,谷坊林分乔木层和灌木层植物群落组成种类明显多于无谷坊,各种类重要值差异悬殊,谷坊林分常绿、荫生性物种显著多于无谷坊;而草本层受乔木层、灌木层的影响,总盖度差异悬殊,无谷坊的总盖度达到90%,谷坊的总盖度仅为10%。说明通过改良土壤水肥和光照等小生境,可以明显改善红壤严重侵蚀地植物群落物种组成,加速侵蚀退化地植物群落的演替。  相似文献   

10.
Abstract

The Cushman and Barber mechanistic model was used to help elucidate the mechanisms that govern the uptake of sulfur (S) by plants. Sulfur uptake predicted by the model was compared to measured S uptake by cotton, (Gossypium hirsutum [L]) grown on Mhoon silty clay loam (Typic Fluvaquent) and a Norwood silt loam (Typic Udifluvent) under glasshouse conditions. Predicted S uptake was significantly correlated with observed uptake r2=0.71. However, the model overpredicted S uptake by a factor of 3.5. The assumption that the maximun ion Influx rate (I max) for roots growing in soils is the same as the Imax measured in solution cultures experiments may not be appropriate. Better agreement between observed and predicted S uptake values was achieved by using an estimated Imax obtained from soil studies (Is) with the method of Warncke and Barber. Using I, predicted vs observed S uptake had a slope of 1.00 and r2=0.93. The model predicted that S concentration in soil solution (Clo) at the root surface (ro) increased with time for soils with initial S concentration in solution of lmM or higher. This high Clo, will trigger a higher Is of about 4 nmol/m2sec, while plants grown on soils with low S content will show a lower Is, suggesting that S uptake by cotton plants is biphasic and depends on Clo at ro.  相似文献   

11.
Tillage-induced changes in soil quality are important to understanding soil strength and water retention and transmission properties. Thus, this study was conducted to assess the effects of two tillage systems under un-drained and drained conditions on tensile strength (TS) of 5–8 mm aggregates, soil water characteristics (SWC), plant available water (PAW), and the water infiltration rate (i). Soil properties were determined mainly in the surface (0–10 cm) layer on a Crosby (fine, mixed, mesic, Aeric Ochraqualf) silt loam soil at the Waterman Farm of the Ohio State University, Columbus, OH on a 14-year-old field study. Effect of two tillage treatments comprising no-tillage (NT) and conventional tillage (CT) were studied for two levels of drainage: un-drained (UD) and tile drained (D). The TS for 0–10 cm depth was significantly (P ≤ 0.01) affected by tillage and drainage treatments, and was higher in CT than NT by 61% in UD and by 48% in D soil. In comparison, TS increased by 13% in NT and 4% in CT in D compared with the UD treatments. Soil organic carbon (SOC) in 0–10 cm depth of NT–UD treatment was 23% higher than CT–UD treatment and 38% more than NT–D treatments. Tillage and drainage impact on SWC was non-significant at 0 kPa suction, but significant (P ≤ 0.1) at −3, −6, −10, −30, −100 and −300 kPa suctions indicating that water was retained more in NT–UD than CT–UD soil. The PAW was significantly influenced by drainage (P ≤ 0.01) but not by tillage treatments. Yet, there existed a general trend of about 8% more PAW in NT–UD than CT–UD treatments. In contrast, PAW was 48% more in soil from NT–UD than NT–D treatments. PAW increased with increase in the SOC concentration (R2 = 0.89; P ≤ 0.01). There were also differences in soil water sorptivity (S), and equilibrium infiltration rate (ic) in NT–UD compared with CT–UD treatments. A positive and significant correlation (r = 0.57, P ≤ 0.05) occurred between ic and SOC concentration. The value of S was more in NT–UD by 70% than CT–UD, and 46% in NT–D than CT–D. Similarly, the ic was more in NT than CT by 119% in UD compared with 82% in D soil. The value of A in NT was higher than that in CT by 39% and 12% in UD and D treatments, respectively. The mean cumulative infiltration (I) in 3 h was 71.4 cm in NT versus 44.0 cm in CT in UD compared with 62.1 cm in NT and 48.4 cm in CT for the D treatment. The I was positively and significantly correlated with SOC concentration (r = 0.32, n = 12, P ≤ 0.1) indicating improvement of I with increase in SOC concentration. Results of this study suggest that conversion from CT to NT management system may reduce the risk of surface runoff, increase soil aggregation, and improve soil hydrological properties.  相似文献   

12.
Abstract

The Cushman and Barber mechanistic model was used to help elucidate the mechanisms that govern the uptake of sulfur (S) by plants. Sulfur uptake predicted by the model was compared to measured S uptake by wheat (Triticum aestivum [L]) grown on Gallion very fine sandy loam (Typic Hapludalf), Mhoon silty clay loam (Typic Fluvaquenf), and a Norwood silt loam (Typic Udifluvent) under glasshouse conditions. Predicted S uptake was significantly correlated with observed uptake r2=0.85. However, the model over predicted S uptake by a factor of 10.4. The assumption that the maximum ion Influx rate (Imax ) for roots growing in soils is the same as the Imax measured in solution cultures experiments may not be appropriate. Better agreement between observed and predicted S uptake values was achieved by using an estimated Imax obtained from soil studies (Is ). Using Is , predicted vs observed S uptake had a slope of 1.5 and r2=0.93. The model predicted that when S concentration in soil solution (Clo ) at the root surface (ro ) was about 2mM or higher, this high Clo will trigger a higher ion Influx rate of about 2.6 nmol/m2sec. Plants grown on soils with Clo less than 1 mM at ro will show a lower ion Influx rate of about 0.8 nmol/m2sec, suggesting that S uptake by wheat plants is biphasic and depends on Clo at ro .  相似文献   

13.
Allozyme polymorphism at seven loci (TPI, G6PD-2,IDH-1, SKD-2, MDH-1, GOT-1, andGOT-2) was employed to detect the level of geneticdiversity in C.alismatifolia populations from both cultivatedand wild habitats in Thailand. High diversity was observed in allpopulations with relatively lower values in cultivated populations.Percentage of polymorphic loci (P)varied from 85.7–100% in cultivated populations comparedwith 100% in all natural populations. Allele number per locus(A L) was 3.14 in cultivatedpopulations, and from 2.86–4 in natural populations. Allelenumber per polymorphic locus(A P) of cultivated andnatural populations ranged from 3.14–3.5 and 2.86–4,respectively. Genetic diversity within populations(H S) varied from0.586–0.611 in cultivated and from 0.621–0.653 in naturalpopulations. The genetic identity(I SP) for the species was0.833. The cultivated populations yielded higher value of geneticidentity with highland populations(I C /H =0.776) than with the lowland ones(I C /L =0.754). The analysis of genetic similarities with theNeighbor-Joining algorithm results in the separation ofcultivated populations from all wild populations. One highlandpopulation from the tourist spot, H2, was placed in a separatecluster between the cultivated and other wild populations. It isconsidered as the possible origin of the cultivatedpopulations.  相似文献   

14.
Jiongxin Xu 《CATENA》2006,65(3):279-284
The occurrence of sand-dust storms induced by wind erosion is a process that accelerates land degradation and can also be considered as an indicator of desertification. Thus, it is of significance both in theory and in practice to reveal the interaction between these two phenomena. Based on data from the Ordos Plateau and its surrounding areas, a study has been made of the effect of land degradation and land use changes on sand-dust storms. In this study, we report a non-linear relationship between sand-dust storm frequency and the index of land degradation (Id), which is defined as the percentage of the area of total land that is desertified. Using this non-linear relationship, a threshold at Id = 30% is established such that, when Id < 30% sand-dust storm frequency does not change with increasing Id but when Id > 30%, sand-dust storm frequency increases rapidly. This existence of such a threshold means that sand-dust storm frequency would increase abruptly when the human-induced Id exceeds 30%. The time series of annual number of sand-dust storm days in the neighbouring area has been compared to the time series in the annual number of strong wind days and the time series in the area of cultivated land in Yikezhao Meng, and a multi-regression equation has been established. Based on the equation, the relative contributions of the variations in land use and in annual number of strong wind days to the variation in annual number of sand-dust storm days have been estimated as 59.7% and 40.3%, respectively, indicating that the frequency of sand-dust storms may be effectively decreased by reducing the area of cultivated land and restoring the natural steppe vegetation in ecologically fragile areas in arid and semi-arid climates.  相似文献   

15.
本研究以黄淮海平原地区重要的农林复合经营模式泡桐-小麦林网复合生态系统为对象,通过对2013—2015年系统内光合有效辐射(PAR)的连续定位观测及小麦产量的调查,结合对小麦不同生育期内的PAR与小麦产量、千粒重、粒数的相关性分析,研究了系统内PAR的分布状况及小麦产量对其的响应。结果表明:PAR、透光率均随着与林带距离的增加而增加,且在10 m(约1倍树高)范围内变化显著,10 m之后增加缓慢。在所有生育期、所有测点中,透光率的最小值出现在灌浆成熟期2 m处观测点。单位面积小麦产量与小麦全生育期内的PAR、粒数和小麦扬花期内的PAR、千粒重及小麦灌浆成熟期内的PAR的相关关系均达极显著水平(r=0.918,P=0.000;r=0.926,P=0.000;r=0.922,P=0.000)。扬花期林带对小麦的遮荫直接影响小麦的粒数,灌浆成熟期林带对小麦的遮荫直接影响小麦的千粒重,系统内小麦产量的空间差异性可以通过小麦粒数和千粒重的差异来解释。小麦产量(y)与全生育期内PAR(x)的线性回归方程为:y=0.121 3x+95.117(R2=0.842)。经检验,方程的模拟值和实测值无显著差异(P=0.609),预测精度达91.8%。可以根据此方程,结合PAR观测值对系统内各点的小麦产量进行预测。本研究结果为建立泡桐-小麦林网复合生态系统整体生产力的预测模型奠定了基础,为优化泡桐林网复合生态系统结构提供理论依据。  相似文献   

16.
Rhizosphere soil microbial index of tree species in a coal mining ecosystem   总被引:1,自引:0,他引:1  
Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Among the tree species studied, Aegle marmelos recorded the highest value for MBC (590 mg kg−1), urease (190.5 μg NH4+-N g−1 h−1), catalase (513 μg H2O2 g−1 h−1), dehydrogenase (92.3 μg TPF g−1 h−1), phenol oxidase (0.057 μM g−1 h−1) and BSR/AMBC (0.498 mg CO2-C mg biomass−1 day−1); Tamarindus indica for mineralizable N (69.5 mg kg−1); Morus alba for catalase (513 μg H2O2 g−1 h−1) and phenol oxidase (0.058 μM g−1 h−1); Tectona grandis for peroxidase (0.276 μM g−1 h−1), AMBC/MBC (99.4%), and BSR/MBC (0.108 mg CO2-C mg biomass−1 day−1); Ficus religiosa for AMBC (128.4 mg kg−1) and BSR (12.85 mg CO2-C kg−1 day−1); Eugenia jambolana for MBC/SOC (8.03%); Butea monosoperma for AMBC/SOC (1.32%) and Azadirachta indica for BSR/AMBC (0.1134 mg CO2-C mg biomass−1 day−1). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0–1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T. indica (0.488), Morus alba (0.415), F. religiosa (0.291), Eucalyptus sp. (0.232) and T. grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.  相似文献   

17.
Light use efficiency (LUE) is used widely in scaling and modeling contexts. However, the variation and biophysical controls on LUE remain poorly documented. Networks of eddy covariance (EC) towers offer an opportunity to quantify g, the ratio of P, gross primary productivity, to Qa, absorbed photosynthetically active radiation (PAR), across climate zones and vegetation types. Using data from the Fluxnet Canada Research Network (n = 24 sites) in 2004, we examined the relationship between daily and yearly g, driving variables, and site characteristics on a site-specific and plant functional type (PFT) basis using tree regression and linear regression. Data were available for three biomes: grassland, forest, and wetland. Yearly g values ranged from 0.1 to 3.6 g C MJ−1 Qa overall. Daily g was highest in the grassland (daily median ± interquartile range: 3.68 ± 1.98 g C MJ−1 Qa), intermediate in the forested biome (0.84 ± 0.82 g C MJ−1 Qa), and lowest for the wetlands (0.65 ± 0.54 g C MJ−1 Qa). The most important biophysical controls were light and temperature, to the exclusion of water-related variables: a homogeneity of slopes model explained c. 75% of the variation in daily g. For a subset of sites with diffuse PAR data, the ratio of diffuse to total PAR, a proxy for cloudiness, was a key predictor. On the yearly time scale, g was related to leaf area index and mean annual temperature. Aggregating to PFTs did not show functional convergence within any PFT except for the three wetland sites and the Picea mariana toposequence at the daily time step, and when using the Köppen climate classification on a yearly time step. The general lack of conservative daily g behavior within PFTs suggests that PFT-based parameterizations are inappropriate, especially when applied on shorter temporal scales.  相似文献   

18.
Organic matter accumulation and increased microbial activity under no-till can affect the dynamics of some essential micronutrients for plants. The main purpose of this work was to study the long-term effect of tillage on the availability of Fe, Mn, Cu, and Zn in a calcareous soil from Southern Spain. To this end, nutrient availability in surface soil (0–5-cm depth) subjected to a long-term tillage experiment (21 years) was evaluated via pot experiments and chemical tests involving DTPA extraction (as availability index) and sequential chemical fractionation of Mn and Fe.Soil organic matter (SOM) content and microbial activity (estimated by the β-glucosidase method) were found to be significantly higher under no-till (NT) than under conventional (CT) or minimum tillage (MT). Also, DTPA extractable Mn, Cu, and Zn, and citrate–bicarbonate extractable Mn (Mncb), were all higher under NT than under CT and MT, the differences being related to the increase in SOM as revealed by the correlation of Mn, Cu, and Zn extractable with DTPA and SOM (r = 0.87, P < 0.001; r = 0.8, P < 0.01, and r = 0.86, P < 0.001, respectively), and that between Mncb and SOM (r = 0.87, P < 0.001). However, the increased extractability resulted in no increased concentrations of these nutrients in plants. Moreover, the Mn concentration in the last expanded leaf was significantly lower with NT than with CT, which can be ascribed at least partly to an increased microbial activity under NT as revealed by the negative correlation between Mn in plants and β-glucosidase activity in soil (r = −0.71, P < 0.01). The Fe concentration in plants was not affected by soil tillage; also, it was only related to citrate–ascorbate extractable Fe (r = 0.69, P < 0.05), which exposes the contribution of poorly crystalline Fe oxides in soil to Fe nutrition in plants.  相似文献   

19.
玉米/大豆间作具有一定的养分利用优势,但是不同供氮水平对玉米/大豆间作体系干物质累积和氮素吸收的调控作用不同。本试验采用田间裂区设计,运用Logistic模型分析,模拟了4个氮水平下玉米/大豆间作作物干物质积累和氮素吸收的动态变化。结果表明,玉米、大豆干物质累积和氮素吸收动态符合Logistic模型,相关系数R2均在0.9以上。在N0(不施氮肥)、N1(180 kg·hm-2)、N2(240 kg·hm-2)和N3(300 kg·hm-2)供氮水平时,间作玉米最大生长速率(Imax-B)分别比单作提高34.2%、46.7%、25.9%和25.1%,而相应的供氮水平下,大豆的Imax-B分别降低27.7%、30.3%、16.5%和23.7%,但整个间作系统的Imax-B平均增加32.1%;玉米和大豆干物质的其他模拟参数与Imax-B规律一致。氮素吸收动态与干物质积累表现出同步的变化特点,在N1水平下,单位面积间作玉米的氮素最大吸收量(K-N)、最大吸收速率(Imax-N)和瞬时吸收速率(r-N)比相应单作分别提高18.4%、48.9%和25.8%,而间作大豆的K-NImax-Nr-N值比单作处理分别降低15.9%、29.9%和16.69%,整个间作系统氮素分别提高0.4%、13.7%和7.8%;施氮水平对大豆r-N无显著性影响。间作显著地提高了氮素当量比(LERN>1),其中N0水平下LERN值最高,随着施氮量的增加,LERN有下降趋势。在本试验条件下,N2供氮水平下玉米/大豆间作体系干物质积累量和氮素吸收量最高,间作优势最明显。  相似文献   

20.
In order to develop a new formula for assessing interrill erosion rate by incorporating the soil aggregate instability index, β, erosion plots at seven sites in central Greece were used to measure interrill erosion rate under natural rainfall conditions during a 39-month period. Soils classified as Alfisols, Inceptisols and Entisols with slopes 7–21%, moderately well to excessively drained, clay to loamy textured, were studied. Runoff and total sediment were collected after each ponding rainfall event. The equation Ei=0.628 β St1.3 e0.0967I30 was finally proposed (R2=0.939,P<0.001) to describe interrill erosion rate. The term, St represents the tangent of the slope angle, and I30 represents the maximum rainfall intensity in 30 min. The addition of the aggregate instability index to improve existing methodologies provide was considered to provide an easy to determine and reliable measure of soil erodibility. Validation with independent data showed that the model predicted interrill erosion well (R2=0.766, P<0.001). Therefore, the proposed model based on the aggregate instability index, β, has the potential to improved methodology for assessing interrill erosion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号