首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationships between urban development, water resources management and wastewater use for irrigation have been studied in the cities of Accra in Ghana, Addis Ababa in Ethiopia and Hyderabad in India. Large volumes of water are extracted from water sources often increasingly far away from the city, while investments in wastewater management are often lagging behind. The resulting environmental degradation within and downstream of cities has multiple consequences for public health, in particular through the use of untreated wastewater in irrigated agriculture. Despite significant efforts to increase wastewater treatment, options for safeguarding public health via conventional wastewater treatment alone remain limited to smaller inner-urban watersheds. The new WHO guidelines for wastewater irrigation recognize this situation and emphasize the potential of post- or non-treatment options. Controlling potential health risks will allow urban water managers in all three cities to build on the benefits from the already existing (but largely informal) wastewater reuse, those being the contribution to food security and reduction of fresh water demands.  相似文献   

2.
The challenges of wastewater irrigation in developing countries   总被引:1,自引:0,他引:1  
The volume of wastewater generated by domestic, industrial and commercial sources has increased with population, urbanization, improved living conditions, and economic development. The productive use of wastewater has also increased, as millions of small-scale farmers in urban and peri-urban areas of developing countries depend on wastewater or wastewater polluted water sources to irrigate high-value edible crops for urban markets, often as they have no alternative sources of irrigation water. Undesirable constituents in wastewater can harm human health and the environment. Hence, wastewater irrigation is an issue of concern to public agencies responsible for maintaining public health and environmental quality. For diverse reasons, many developing countries are still unable to implement comprehensive wastewater treatment programs. Therefore in the near term, risk management and interim solutions are needed to prevent adverse impacts from wastewater irrigation. A combination of source control, and farm-level and post-harvest measures can be used to protect farm workers and consumers. The WHO guidelines revised in 2006 for wastewater use suggest measures beyond the traditional recommendations of producing only industrial or non-edible crops, as in many situations it is impossible to enforce a change in the current cash crop pattern, or provide alternative vegetable supply to urban markets.There are several opportunities for improving wastewater management via improved policies, institutional dialogues and financial mechanisms, which would reduce the risks in agriculture. Effluent standards combined with incentives or enforcement can motivate improvements in water management by household and industrial sectors discharging wastewater from point sources. Segregation of chemical pollutants from urban wastewater facilitates treatment and reduces risk. Strengthening institutional capacity and establishing links between water delivery and sanitation sectors through inter-institutional coordination leads to more efficient management of wastewater and risk reduction.  相似文献   

3.
基于系统动力学的原理和方法,将水资源承载力系统划分为工业、农业、生活、生态、水资源和污水处理回用子系统,以缺水程度为主要反馈因子,考虑缺水时人们用水决策偏好,通过各子系统之间的反馈关系,建立了咸阳市水资源承载力系统动力学模型.模拟结果表明:按趋势发展型方案,咸阳市工业发展迅速,农业和生态用水被挤占,发展缓慢,规划年内缺水程度为9%~35%,为严重缺水;按资源环境保护型方案,生态环境得到良好保护,但工农业发展受到严重制约;按经济发展型方案,工业发展十分迅速,但农业灌溉面积减少,生态环境恶化,地下水超采严重,缺水情况仍存在,为3%~5%,发展可持续性差;按协调发展型方案,工农业保持13.8%发展速度,污水处理回用量增加,农业灌溉稳步发展,生态环境情况得到改善,缺水程度严重时约为0.4%,表明该方案是咸阳市水资源承载力可持续发展的最优方案.  相似文献   

4.
The Middle East and North Africa (MENA) region is the driest region of the world with only 1% of the world’s freshwater resources. The increasing competition for good-quality water has cut into agriculture’s water share but since the use of freshwater for domestic, industrial and municipal activities generates wastewater, the volume of wastewater used in agriculture has increased. About 43% of wastewater generated in the MENA region is treated; a relatively high percentage compared to other developing-country dominated regions. This is because of the perceived importance of wastewater as a water resource and several oil-rich countries with the resources to treat wastewater. The MENA region has an opportunity for beneficial reuse of wastewater but few countries in the region have been able to implement substantial wastewater treatment and reuse programs. The major constraints leading to seemingly slow and uneven reuse of wastewater are: inadequate information on the status of reuse or disposal of wastewater and associated environmental and health impacts; incomplete economic analysis of the wastewater treatment and reuse options, usually restricted to financial feasibility analysis; high costs and low returns of developing wastewater collection networks and wastewater treatment plants; lack of wastewater treatment and reuse cost-recovery mechanisms and lack of commitment to support comprehensive wastewater treatment programs; mismatch between water pricing and regional water scarcity; preference for freshwater over wastewater; and inefficient irrigation and water management schemes undermining the potential of wastewater reuse. However, some countries such as Tunisia, Jordan, and Israel have policies in place that address wastewater treatment through a range of instruments. Policymakers in these countries consider use of treated wastewater to be an essential aspect of strategic water and wastewater planning and management. With flexible policy frameworks addressing rapid demographic changes and increasing water scarcity in the MENA region, water reuse has great potential if integrated with resource planning, environmental management and financing arrangements.  相似文献   

5.
Given current demographic trends and future growth projections, as much as 60% of the global population may suffer water scarcity by the year 2025. The water-use efficiency techniques used with conventional resources have been improved. However, water-scarce countries will have to rely more on the use of non-conventional water resources to partly alleviate water scarcity. Non-conventional water resources are either generated as a product of specialized processes such as desalination or need suitable pre-use treatment and/or appropriate soil–water–crop management strategies when used for irrigation. In water-scarce environments, such water resources are accessed through the desalination of seawater and highly brackish groundwater, the harvesting of rainwater, and the use of marginal-quality water resources for irrigation. The marginal-quality waters used for irrigation consist of wastewater, agricultural drainage water, and groundwater containing different types of salts. In many developing countries, a major part of the wastewater generated by domestic, commercial, and industrial sectors is used for crop production in an untreated or partly treated form. The protection of public health and the environment are the main concerns associated with uncontrolled wastewater irrigation. The use of saline and/or sodic drainage water and groundwater for agriculture is expected to increase. This warrants modifications in the existing soil, irrigation, and crop management practices used, in order to cope with the increases in salinity and sodicity that will occur.  相似文献   

6.
Irrigation water quality influences many aspects of agroecosystems, but less is known about how complex microbial and biological communities respond to changing water quality due to causes such as reuse irrigation. The objectives of this study are to monitor and assess the environmental impacts of reclaimed wastewater irrigation on water quality and soil that might cause potential health hazards and to assess its agro-environmental effects. Two sites, which are irrigated by filtered wastewater after UV (Ultraviolet) treatment and from an agricultural reservoir that satisfied the agricultural water quality standards of Korea, were selected as treatment and control, respectively. The environmental impacts of irrigation water quality on paddy soil, microorganisms, and arthropods were investigated. Monitoring results for water, soil, health risks, and eco-environments of the reclaimed wastewater irrigation site demonstrated no adverse effects in the paddy field. This research showed that reclaimed wastewater irrigation did not present significant environmental risks for the rice paddy agroecosystem, although long-term monitoring is needed to fully characterize its effects.  相似文献   

7.
The reuse of treated wastewater (reclaimed water) for irrigation is a valuable strategy to maximise available water resources, but the often marginal quality of the water can present agricultural challenges. Semi-structured interviews were held with Jordanian farmers to explore how they perceive the quality of reclaimed water. Of the 11 farmers interviewed who irrigate with reclaimed water directly near treatment plants, 10 described reclaimed water either positively or neutrally. In contrast, 27 of the 39 farmers who use reclaimed water indirectly, after it is blended with fresh water, viewed the resource negatively, although 23 of the indirect reuse farmers also recognised the nutrient benefits. Farmer perception of reclaimed water may be a function of its quality, but consideration should also be given to farmers’ capacity to manage the agricultural challenges associated with reclaimed water (salinity, irrigation system damage, marketing of produce), their actual and perceived capacity to control where and when reclaimed water is used, and their capacity to influence the quality of the water delivered to the farm.  相似文献   

8.
华北平原农业灌溉用水非常紧缺,水资源日益缺乏与粮食需求日益增多之间的矛盾尖锐。充分利用微咸水资源是缓解这一矛盾的重要途径之一。该文以中国农业大学曲周试验站1997-2005年冬小麦和夏玉米微咸水灌溉田间长期定位试验为基础,研究了充分淡水、充分淡咸水、关键期淡水、关键期淡咸水和不灌溉等5个处理下土壤饱和电导率和含盐量的动态变化,探讨了微咸水灌溉对冬小麦和夏玉米产量的影响。结果表明:土壤水盐动态呈受灌溉和降雨影响的短期波动和受季节更替影响的长期波动;在正常降雨年份,使用微咸水进行灌溉是可行的,不会导致土壤的次生盐渍化;微咸水灌溉虽然导致冬小麦和夏玉米产量降低10%~15%,但节约淡水资源60%~75%。如果降雨量达到多年平均水平以及微咸水灌溉制度制订合理,微咸水用于冬小麦/玉米田间灌溉前景广阔。  相似文献   

9.
世界上的淡水供给有限且受到污染的威胁,工业、农业和城市供水需求量的不断提高导致了有限淡水资源在分配上的竞争.为了避免水资源危机,各国致力于保护水资源,对供水和需水进行管理,减少污染和降低不断增长的人口对环境的影响.主要讨论如何实现水的循环再生利用及污水再生的环境效益.污水回用提高了供水的可靠性,只用较少的淡水就能满足人类更大的需求,从而减轻了人类生存对世界水环境造成的影响.列举了国内外各种水回用实例,对再生水产生的环境效益作了举例分析和讨论.  相似文献   

10.
Due to urban growth, some agricultural lands have been replaced by residential, municipal, and industrial areas. In some cases the remaining agricultural land will not have enough water because of transfers from agriculture to M&I (municipal and industrial) users. Therefore, in many places, especially in arid and semi-arid regions, the use of treated wastewater as a reliable source of irrigation water has already been, or will be, considered in the future. Due to its unique characteristics, this new resource has many challenges that cannot be ignored, such as health issues, water quality, and long- and short-term effects on soils and crops. The study described herein considered the development of a new GIS-based model for planning and managing the reuse of treated wastewater for the irrigation of agricultural and green lands, considering various factors such as population and urban growth. The model is composed of several different modules, including an urban growth model. These modules are designed to help in the decision-making process for allocations of water resources to agricultural areas, considering factors such as crop types, crop pattern, water salinity, soil characteristics, pumping and conveyance costs, and also by comparing different management scenarios. Appropriate crops that can be grown with a specific water salinity and soil characteristics, proper water resources for each farm (according to pumping and conveyance costs, and analysis of water demand, and water supply) can be determined through the application of this model. The model can also rank agricultural areas and open spaces in and near an urban area according to their suitability for irrigated agriculture.  相似文献   

11.
The disposal of untreated urban sewage in to open water bodies is common in most developing countries. This poses potential negative consequences to public health and agricultural sustainability. Hyderabad, one of India’s largest cities, disposes large amounts of its wastewater untreated into the Musi River, from where it is used, with the aid of irrigation weirs, for agricultural production. This paper presents a 14 month (December 2003 – January 2005) water quality survey which aimed to quantify spatial and temporal changes in key water quality parameters along a 40 km stretch of the Musi River. The survey found that river water quality improved dramatically with distance from the city; from untreated sewage in the city to irrigation water safe for use in agriculture 40 km downstream of the city. This improvement was contributed to by different treatment processes caused or aided by the irrigation weirs placed on the river.  相似文献   

12.
The necessity for water and the risks associated with inadequate sewage treatment have stimulated attempts to reuse domestic wastewater for diverse purposes, primarily for agricultural irrigation. This strategy has now become practical. The use of wastewater in small communities depends on a series of factors, such as community size, socio-economic aspects, relative location to other communities, and land availability for effluent reuse. Two main types of small and isolated communities can be identified. One has limited water supply and land resources, and its' main problems are associated with wastewater treatment and disposal. The second has enough land for effluent reuse, but lacks the additional amounts needed for cultivation. The extra amounts of effluent can be obtained from an adjacent municipality of the first type which, for its part, needs to solve wastewater disposal problems.  相似文献   

13.
首先在成本水价基础上,分别构建塔河流域作物和流域基于水资源费的未来农业水价,然后进一步汇总和计算了塔河流域农户对基于资源环境水价的未来农业水价的承受力分析的基本指标;在此基础上,分析了塔河流域农户对基于资源环境水价的未来农业水价的承受力,主要结果表明:除叶尔羌河、和田河流域和干流下游基于资源环境水价的未来流域和作物水价的农户承受力超过适宜经济承受力外,其它源流和干流上中游的农户水价承受力则处于适宜经济承受力范围,未来塔河流域应当实行差别水价政策;干流下游、叶尔羌河流域未来农业水价承受力很低,尤其是流域未来粮食作物水价的承受力很低,必须给予粮食作物农业水价直接补偿。而且,环境水价对农户水价承受力影响较小,能够成为未来流域生态环境保护的主要经济手段。  相似文献   

14.
The use of water for agricultural production in water scarcity regions requires innovative and sustainable research, and an appropriate transfer of technologies. This paper discusses some of these aspects, mainly relative to on-farm irrigation management including the use of treated wastewater and saline waters. First, the paper proposes some concepts relative to water scarcity, concerning aridity, drought, desertification and water shortage, as well as policies to cope with these water stressed regimes. Conceptual approaches on irrigation performances, water use and water savings are reviewed in a wide perspective. This is followed by a discussion of supply management to cope with water scarcity, giving particular attention to the use of wastewater and low-quality waters, including the respective impacts on health and the environment as water scarcity is requiring that waters of inferior quality be increasingly used for irrigation. The paper then focuses on demand management, starting with aspects relating to the improvement of irrigation methods and the respective performances, mainly the distribution uniformity (DU) as a fundamental tool to reduce the demand for water at the farm level, and to control the negative environmental impacts of over-irrigation, including salt stressed areas. Discussions are supported by recent research results. The suitability of irrigation methods for using treated wastewaters and saline waters is analysed. Supplemental irrigation (SI) and deficit irrigation strategies are also discussed, including limitations on the applicability of related practices. The paper also identifies the need to adopt emerging technologies for water management as well as to develop appropriate methodologies for the analysis of social, economic, and environmental benefits of improved irrigation management.  相似文献   

15.
The authors of the recently completed Comprehensive Assessment of Water Management in Agriculture (CA) concluded that there are sufficient water resources to produce food for a growing population but that trends in consumption, production and environmental patterns, if continued, will lead to water crises in many parts of the world. Only if we act to improve water use will we meet the acute fresh water challenge. Recent spikes in food prices, partially caused by the increasing demand for agricultural products in non-food uses, underline the urgent need to invest in agricultural production, of which water management is a crucial part. The world experienced similar pressure on per capita food supplies and food prices in the 1960s and 1970s, but the challenges now are different than those we experienced 50 years ago. The world's population is substantially larger, there are many more people living in poverty, and the costs of many agricultural inputs are much higher. The current situation and the long-term outlook require a fresh look at approaches that combine different elements such as the importance of access to water for the poor, providing multiple ecosystem services, rainwater management, adapting irrigation to new needs, enhancing water productivity, and promoting the use of low-quality water in agriculture. This special issue highlights the analysis behind a number of policy options identified by the CA, a five-year multi-disciplinary research program involving 700 scientists. This introductory article sets the background and context of this special issue, introduces the key recommendations from the CA and summarizes the papers in this issue.  相似文献   

16.
Many perceive the implementation of environmental regulatory policy, especially concerning non-point source pollution from irrigated agriculture, as being less efficient in the United States than in many other countries. This is partly a result of the stakeholder involvement process but is also a reflection of the inability to make effective use of Environmental Decision Support Systems (EDSS) to facilitate technical information exchange with stakeholders and to provide a forum for innovative ideas for controlling non-point source pollutant loading. This paper describes one of the success stories where a standardized Environmental Protection Agency (EPA) methodology was modified to better suit regulation of a trace element in agricultural subsurface drainage and information technology was developed to help guide stakeholders, provide assurances to the public and encourage innovation while improving compliance with State water quality objectives. The geographic focus of the paper is the western San Joaquin Valley where, in 1985, evapo-concentration of selenium in agricultural subsurface drainage water, diverted into large ponds within a federal wildlife refuge, caused teratogenecity in waterfowl embryos and in other sensitive wildlife species. The fallout from this environmental disaster was a concerted attempt by State and Federal water agencies to regulate non-point source loads of the trace element selenium. The complexity of selenium hydrogeochemistry, the difficulty and expense of selenium concentration monitoring and political discord between agricultural and environmental interests created challenges to the regulation process. Innovative policy and institutional constructs, supported by environmental monitoring and the web-based data management and dissemination systems, provided essential decision support, created opportunities for adaptive management and ultimately contributed to project success. The paper provides a retrospective on the contentious planning process and offers suggestions as to how the technical and institutional issues could have been resolved faster through early adoption of some of the core principles of sound EDSS design.  相似文献   

17.
The premise of this paper is that the key to effective water resources management is understanding that the water cycle and land management are inextricably linked: that every land use decision is a water use decision. Gains in agricultural water productivity, therefore, will only be obtained alongside improvements in land use management. Expected increases in food demands by 2050 insist that agricultural production - and agricultural water use - must increase. At the same time, competition for water between agricultural and urban sectors will also increase; and the problem is further compounded by land degradation. A global survey suggests that 40% of agricultural land is already degraded to the point that yields are greatly reduced, and a further 9% is degraded to the point that it cannot be reclaimed for productive use by farm level measures. Soil erosion, nutrient depletion and other forms of land degradation reduce water productivity and affect water availability, quality, and storage. Reversing these trends entails tackling the underlying social, economic, political and institutional drivers of unsustainable land use. This paper is based on a review of global experiences, and its recommendations for improving water management by addressing land degradation include focusing on small scale agriculture; investing in rehabilitating degraded land to increase water productivity; and enhancing the multifunctionality of agricultural landscapes. These options can improve water management and water productivity, while also improving the livelihoods of the rural poor.  相似文献   

18.
Agriculture is the main user of water in Italy, as in most regions of the world. Particularly in Mediterranean regions, where it is more difficult to meet the agricultural water demand with conventional resources, wastewater reuse represents a viable option. Drip irrigation is particularly suitable for wastewater reuse because it minimises the health risks to farmers and product consumers due to contact with the wastewater. The performance of drip irrigation systems using wastewater is mainly limited by emitter clogging, and this discourages farmers from introducing it. The paper gives the results of experimental trials on the behaviour of six kinds of filters (gravel media, disk and screen) and four types of drip emitters (vortex and labyrinth) using five kinds of municipal wastewater that have not undergone previous advanced treatment. The performance of the emitters and filters tested depends on the quality of the wastewater: total suspended solids and organic matter content influence the percentage of totally clogged emitters, the mean discharge emitted, the emission uniformity coefficient, and the operating time of the filter between cleaning operations. Vortex emitters were more sensitive to clogging than labyrinth emitters. The gravel media filter guaranteed the best performance, but the disk filter, which is cheaper and simpler to manage, assured performance similar to that of the gavel media filter. The test showed the importance of the technology used in manufacturing disk filters. Screen filters were shown to be unsuitable for use with wastewater, with the exception of diluted and settled wastewater. The theoretical discharge of filters, suggested by the manufacturers for clean water, is not adequate for wastewater of the kind used in the trials (suspended solids greater than 78 mg/l and BOD5 more than 25 mg/l of O2). The operating times of the filters between cleaning operations, less than 1 h in most trials, suggest the use of automatic cleaning systems. The existing clogging risk classifications proposed for clean water can only be considered reliable for wastewater when labyrinth emitters and gravel or good quality disk filters (such as Arkal) are used; they are not adequate for vortex emitters or screen filters.  相似文献   

19.
鉴于中国水资源短缺且农业灌溉用水有效利用率低的现状,为提高农业灌溉用水效率与效能,加快高科技智慧型农业设备研发与推广,降低农业投入以及农业用水的比例,采用数值模拟与模型试验相结合的方法,制定四因素三水平的正交试验优化方案,对9种不同方案在设计流量点处的新型微型管道水轮机性能进行计算,并进行物理模型试验验证.研究结果表明:水轮机内的压力脉动主要受到叶片通过频率和导叶通过频率的影响;在设计流量点处,优化后的水轮机出力为6.30 W,效率为85.13%,与初步设计方案相比,分别提高了32.35%和2.58%.同时研发了智慧农业物联网前端与终端系统,建立一个集自发电、环境监测、远程控制、情况预警、生长状况分析于一体的综合性农业物联网智能管理系统,极大地方便了用户,为实现智能化种植、养殖技术提供了一种切实可行的方案.  相似文献   

20.
Australia is the driest inhabited continent on earth, and pressure on its water resources is already high and increasing. Environmental, social, and economic drivers are forcing horticultural industries in Australia to reassess their use of freshwater resources. Reclaimed water is potentially a major resource for the horticultural industry. In general, however, there has been some apprehension towards using reclaimed water for irrigation, owing primarily to uncertainties related to agricultural sustainability and human health. Here, we consider the current standing of the Australian horticultural industry in terms of its preparedness to use reclaimed water for irrigation. We address issues related to policy, economics, market access, pragmatic directives (such as state and federal guidelines), environmental impact, agronomic sustainability, and public health. From these appraisals, we have attempted to summarise the major impediments to the use of reclaimed water by the Australian horticultural industry. These are: insufficient knowledge of impacts on market access; commitment to provide continuity of quality and supply to markets; implications of substitution of alternative water sources on security of supply; insufficient knowledge of food safety issues; inadequate understanding of consumer perceptions; and uncertainty about pricing of reclaimed water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号