首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined primary and memory isotype-specific antibody responses directed against pseudorabies virus in serum and mucosal fluids of pigs with and without passively acquired maternal antibody, and we studied the relationship between these responses and protection against virus challenge. Pigs were inoculated intranasally with the virulent NIA-3 strain or the avirulent Bartha strain, or they were inoculated IM with an inactivated vaccine containing the Phylaxia strain. Ten weeks later, all pigs were challenge-exposed intranasally with strain NIA-3. Only pigs that were without passively acquired antibody at the time they were inoculated with virulent virus appeared to have complete protective immunity against challenge exposure, as evidenced by lack of clinical signs of pseudorabies and lack of virus excretion. In contrast, pigs inoculated with strain Bartha or with the inactivated vaccine developed fever, had a period of growth arrest, and excreted virus after challenge exposure. In pigs without passively acquired antibody, intranasal inoculation with strains NIA-3 or Bartha was followed by primary IgM and IgA responses in serum and in oropharyngeal fluid as well as primary IgG1 and IgG2 responses in serum. Intramuscular inoculation with the inactivated vaccine induced primary serum IgM, IgG1, and IgG2 responses, but no mucosal responses. Challenge exposure of pigs that had been inoculated with the Bartha strain or the inactivated vaccine was followed by clear memory responses in serum and in oropharyngeal fluid. In contrast, challenge exposure of pigs that had been inoculated by the virulent NIA-3 strain was not followed by memory responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
H9N2 influenza viruses circulate in wild birds and poultry in Eurasian countries, and have been isolated from pigs and humans in China. H9N2 viruses isolated from birds, pigs and humans have been classified into three sublineages based on antigenic and genetic features. Chicken antisera to H9N2 viruses of the Korean sublineage reacted with viruses of different sublineages by the hemagglutination-inhibition test. A test vaccine prepared from a non-pathogenic A/duck/Hokkaido/49/1998 (H9N2) strain of the Korean sublineage, obtained from our influenza virus library, induced immunity in mice to reduce the impact of disease caused by the challenge with A/Hong Kong/1073/1999 (H9N2), which is of a different sublineage. The present results indicate that an inactivated whole virus vaccine prepared from a non-pathogenic influenza virus from the library could be used as an emergency vaccine during the early stage of a pandemic caused by H9N2 infection.  相似文献   

3.
An outbreak of Aujeszky's disease occurred in a flock of sheep which had been housed together with pigs. After the death of five sheep with clinical signs of Aujeszky's disease, the remaining sheep were vaccinated with the Bartha vaccine strain, and the pigs were vaccinated with the 783 vaccine strain of Aujeszky's disease virus. Despite vaccination, however, more sheep died. Brain tissues from four sheep were collected for virus isolation and for immunobistological examinations. Only vaccine virus (gE-negative) was detected in the tissue. After DNA restriction enzyme analysis of the isolated virus, DNA of one or both of the vaccine strains was detected in all sheep. In one sheep field virus DNA was also detected. However, when the polymerase chain reaction was performed on samples prepared from paraffin-embedded tissues, DNA of field virus (gE-positive) was detected in all four sheep. It was probable that the sheep had not yet mounted a sufficient immune response to the vaccine virus, or were already infected with field virus at the time of vaccination. We concluded that the sheep died from field virus infection and not from vaccine virus infection and that only the polymerase chain reaction made it possible to specifically detect even very small amounts of field virus DNA among vaccine virus DNA in all investigated sheep.  相似文献   

4.
The airborne transmission of Classical Swine Fever (CSF) virus to susceptible pigs, as well as the effect of vaccination with the CSF virus PAV-250 strain was investigated on this mode of transmission. Experiment I: four pigs were inoculated with the ALD CSFV strain (10(4.3) 50% TCID) by the intramuscular route, and at the onset of fever, they were introduced into an enclosed chamber. At the end of the experiment surviving pigs were sedated, anesthetized and euthanatized. Experiment II: four pigs were previously vaccinated with the CSF virus PAV-250 strain, and at 14 days post-vaccination they were challenged with the CSF virus ALD strain. In both experiments, four susceptible pigs were exposed to infectious aerosols by placing them in a chamber connected by a duct to the adjacent pen containing the infected animals and were kept there for 86 hs. In Experiment I, pigs exposed to contaminated air died as a result of infection with CSF virus on days 14, 21 and 28 post-inhalation. These four pigs seroconverted from day 12 post-inhalation. CSF virus was isolated from these animals, and the fluorescent antibody test on tonsils was positive. In Experiment II, a vaccinated pig exposed to contaminated air did not seroconvert, nor was CSF virus isolated from lymphoid tissues. However, mild fluorescence in tonsil sections from these pigs was observed. In conclusion, CSF virus was shown to be transmitted by air at a distance of 1 m to susceptible pigs. Vaccination with the PAV-250 CSF virus strain protected the pigs from clinical disease under the same conditions.  相似文献   

5.
6.
The vaccine efficacy of a genetically engineered deletion mutant strain of pseudorabies virus, strain 783, was compared with that of the conventionally attenuated Bartha strain. Strain 783 has deletions in the genes coding for glycoprotein I and thymidine kinase. In experiment 1, which had a 3-month interval between vaccination and challenge exposure, strain 783 protected pigs significantly (P less than 0.05) better against virulent virus challenge exposure than did the Bartha strain. The growth of pigs vaccinated with strain 783 was not arrested, whereas that of pigs vaccinated with the Bartha strain was arrested for 7 days. Of 8 pigs given strain 783, 4 were fully protected against challenge exposure; none of the pigs given strain Bartha was fully protected. In experiment 2, which had a 3-week interval between vaccination and challenge exposure, the growth of pigs vaccinated with strain 783 was arrested for 3.5 days, whereas that of pigs vaccinated with the Bartha strain was arrested for 6 days. In experiment 3, pigs with moderate titer of maternal antibodies were vaccinated twice IM or once intranasally with either strain 783 or Bartha and were challenge-exposed 3 months after vaccination. Pigs given strain 783 twice IM were significantly (P less than 0.05) better protected than were the other pigs. They had growth arrest of only 6 days, compared with 9 days for pigs of other groups, and shed less virus after challenge exposure. Results of this study indicate that the vaccine based on the deletion mutant strain 783 is more efficacious than is the Bartha strain of pseudorabies virus.  相似文献   

7.
The prevalence of tick-borne encephalitis virus (TBEV) in southern Korea was determined by collecting ticks using tick drags. A total of 4,077 of 6,788 ticks collected were pooled (649 pools) according to collection site, species, and developmental stage and assayed for TBEV. The TBEV protein E and NS5 gene fragments were detected using RT-nested PCR in six pools of nymphs collected from Jeju Island (2,491 ticks). The minimum field detection rates for TBEV were 0.17% and 0.14% for Haemaphysalis longicornis and Haemayphysalis flava nymphs, respectively. The 252 bp NS5 and 477 bp protein E gene amplicons were sequenced. Phylogenetic analysis showed that the NS5 and protein E genes of the Jeju strain were clustered with Western subtype (98.0% and 99.4% identity, respectively). The Western subtype of TBEV is endemic in Korea, including Jeju Island. The study of vector and zoonotic host susceptibility to TBEV is required to better understand its potential impact on public health.  相似文献   

8.
9.
10.
Antigenic drift of swine influenza A (H3N2) viruses away from the human A/Port Chalmers/1/73 (H3N2) strain, used in current commercial swine influenza vaccines, has been demonstrated in The Netherlands and Belgium. Therefore, replacement of this human strain by a more recent swine H3N2 isolate has to be considered. In this study, the efficacy of a current commercial swine influenza vaccine to protect pigs against a recent Dutch field strain (A/Sw/Oedenrode/96) was assessed. To evaluate the level of protection induced by the vaccine it was compared with the optimal protection induced by a previous homologous infection. Development of fever, virus excretion, and viral transmission to unchallenged group mates were determined to evaluate protection. The vaccine appeared efficacious in the experiment because it was able to prevent fever and virus transmission to the unchallenged group mates. Nevertheless, the protection conferred by the vaccine was sub-optimal because vaccinated pigs excreted influenza virus for a short period of time after challenge, whereas naturally immune pigs appeared completely protected. The immune response was monitored, to investigate why the vaccine conferred a sub-optimal protection. The haemagglutination inhibiting and virus neutralising antibody responses in sera, the nucleoprotein-specific IgM, IgG, and IgA antibody responses in sera and nasal secretions and the influenza-specific lymphoproliferation responses in the blood were studied. Vaccinated pigs developed the same or higher serum haemagglutination inhibiting, virus neutralising, and nucleoprotein-specific IgG antibody titres as infected pigs but lower nasal IgA titres and lymphoproliferation responses. The lower mucosal and cell-mediated immune responses may explain why protection after vaccination was sub-optimal.  相似文献   

11.
In Denmark, a porcine reproductive and respiratory syndrome virus (PRRSV) control programme, comprising vaccination of seropositive herds with a live American type PRRSV vaccine, was started in 1996. In several of these herds, spread of vaccine virus from vaccinated 3-18 week old pigs to non-vaccinated sows was demonstrated by the isolation of vaccine virus from fetuses and stillborn piglets. Surprisingly, sows infected with the American type vaccine strain consistently exhibited significantly stronger serological responses towards European type PRRSV than American type PRRSV. In order to elucidate whether the unexpectedly strong serological reaction towards European-type PRRSV in American type PRRSV infected sows was due to a booster reaction, or reactivation of an unrecognized, latent infection in the sows with European type PRRSV, a challenge study with the vaccine was carried out. In this study, the stronger serological response towards European type PRRSV than towards American type PRRSV was reproduced, and reactivation of the previous natural infection with European PRRSV could neither be demonstrated by virus isolation nor by RT-PCR. So, the increase in antibody titers towards European PRRSV in previously European PRRSV infected pigs after challenge with the vaccine strain seems to be the result of a boosting effect on the immune system, induced by the heterologous vaccine PRRSV strain.  相似文献   

12.
The purpose of this study was to evaluate the time-course of the immune response to a field Porcine Respiratory and Reproductive Syndrome virus (PRRSV) strain in PRRS-naïve, untreated pigs, as well as in four groups of age and breed-matched pigs injected with a live attenuated PRRS vaccine, its adjuvant, an inactivated PRRS vaccine and an irrelevant, inactivated Porcine Circovirus type 2 (PCV2) vaccine, respectively. PRRSV infection was confirmed in all groups by PCR and antibody assays. The antibody response measured by ELISA took place earlier in pigs injected with the live attenuated vaccine, which also developed a much stronger serum-neutralizing antibody response to the vaccine strain. Yet, no clear protection was evidenced in terms of viremia against the field virus strain, which showed 11.1% nucleotide divergence in ORF7 from the vaccine strain. In vitro, the interferon (IFN)-γ response to PRRSV was almost absent on PVD 60 in all groups under study, whereas the prevalence of interleukin (IL)-10 responses to PRRSV was fairly high in PCV2-vaccinated animals, only. Results indicate that distinct patterns of immune response to a field PRRSV strain can be recognized in PRRS-vaccinated and naïve pigs, which probably underlies fundamental differences in the development and differentiation of PRRSV-specific immune effector cells.  相似文献   

13.
《Veterinary microbiology》1997,54(2):113-122
Pseudorabies virus (PRV) vaccines are often compared for their capacity to reduce virus excretion after a challenge infection. Vaccines, used for the eradication of PRV, however, should reduce transmission of PRV among pigs. The purpose of this study was to investigate whether the amount of virus excreted after a challenge infection is an accurate measure of the capacity of a vaccine to reduce transmission of PRV among pigs. Two experiments were carried out, each using two groups of 10 pigs. The pigs in group one were intramuscularly vaccinated once with the glycoprotein E (gE)-negative vaccine X, the pigs in group two with the gE-negative strain 783. Eight weeks later, 5 pigs in each group were inoculated with wild-type PRV. A gE-ELISA was used to detect PRV infection. The transmission of PRV was estimated from the number of contact infections and expressed as the reproduction ratio R. The inoculated pigs vaccinated with vaccine X shed significantly more virus than the inoculated pigs vaccinated with strain 783. However, despite the difference in virus excretion, the transmission of PRV between the two groups did not differ. We conclude that virus excretion is not an accurate measure for determining vaccine effectiveness. However, R of vaccine X (R = 0.98) was not significantly below one, whereas R of vaccine 783 (R = 0) was significantly below one. Consequently, we cannot exclude the possibility that major outbreaks of PRV occur among pigs vaccinated with vaccine X.  相似文献   

14.
In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of influenza strains on a cross-border level would therefore be advisable.  相似文献   

15.
口蹄疫疫苗效检模型动物测毒及口蹄疫种毒冻干试验   总被引:4,自引:0,他引:4  
应用豚鼠作为口蹄疫疫苗效检模型动物检测口蹄疫病毒对模型动物的病原性.用体重400 g左右的豚鼠,将猪O型口蹄疫灭活疫苗效检攻毒毒株ORMF8经后肢蹠部皮内注射途径进行测毒.测毒结果表明,口蹄疫病毒可引起豚鼠出现典型发病,并产生明显病变,ORMF8种毒对豚鼠的毒价可达105.5ID50/0.2 mL.将乳鼠中和试验用种毒OMⅡ按一定比例加入5%蔗糖脱脂牛奶稳定剂进行冷冻真空干燥试验,3次冻干试验结果表明,种毒冻干后病毒含量有一定程度的下降,但下降程度不显著.  相似文献   

16.
The objective of this study was to determine the degree of protection conferred by a Lelystad-like modified live virus (MLV) vaccine against a heterologous wild-type porcine reproductive and respiratory syndrome virus (PRRSV) isolate of the same cluster. For this purpose, fourteen 3-week-old piglets were divided into three groups: Group A pigs were vaccinated with a modified live virus vaccine, Group B pigs were used as positive controls, and Group C pigs as negative controls. Twenty-eight days after the last dose of vaccine, all pigs in Groups A and B were inoculated with the Spanish PRRSV strain 5710. To evaluate efficacy, clinical signs were recorded and the presence of challenge virus was determined by virus isolation in blood samples and nasal swabs collected at various time points post-challenge (p.c.) and in tissue samples collected at necropsy 24 days p.c. After challenge, moderate clinical signs were observed in pigs from Groups A and B. In addition, all vaccinated pigs were viremic at least once, although viremia tended to be more sporadic in this group than in Group B pigs. PRRSV was detected in at least one tissue sample from four out of five pigs from Group A and in all pigs from Group B. The results indicate that the protection conferred by the MLV vaccine used in this study against a closely related virulent strain was only partial. The findings suggest that the degree of genetic homology of ORF5 between MLV vaccine and challenge isolate is not a good predictor of vaccine efficacy.  相似文献   

17.
为了解江苏省猪伪狂犬病病毒(Pseudorabies virus,PRV)野毒株的特点,本研究从2013年采自江苏省宿迁市的疑似PRV感染病料中分离纯化了一株PRV病毒,对其进行了PCR和间接免疫荧光法(IFA)鉴定,并进一步在Vero细胞上测定该分离株的病毒滴度TCID50和一步生长曲线,扩增其gB、gC、gD和gE基因进行序列比对及分子遗传进化分析,并将该分离株分别接种新西兰白兔和15日龄仔猪研究其致病性。结果显示,该病毒为一株PRV,命名为PRV JSSQ2013株,纯化后的病毒滴度为10^7.8 TCID50/ml;生长曲线测定显示在感染20h后病毒滴度即达到最高,为10^8.6 TCID50/ml。与我国近几年分离的PRV变异株序列相比,PRV JSSQ2013株的gB、gC、gD和gE基因核苷酸序列同源性分别为99.5~99.6%、99.5~99.6%、99.5~99.6%和98.7~99.7%,氨基酸序列同源性分别为98.9~99.0%、99.5~99.7%、99.0~99.2%和98.1~99.3%,均高于其与经典毒株(Ea、Fa和SC株)和欧美毒株(Becker、Kaplan、Bartha、Kolchis和NIA3)的同源性;基于gB、gC、gD和gE基因的遗传进化树分析均显示PRV JSSQ2013株与国内近几年分离的PRV变异株属同一分支。该病毒接种新西兰白兔后均出现典型的PR症状,如厌食、兴奋、啃咬或用爪挠接种部位等典型症状,且在48h内全部死亡;接种仔猪后第1天开始出现典型的PR症状,第5天全部死亡。以上结果证实,从江苏省宿迁市采集的疑似PRV感染病料中分离到一株强毒力的PRV变异株。本研究为了解江苏PRV分子流行特征、丰富我国PRV分子流行病学资料及新型疫苗的研制奠定了基础。  相似文献   

18.
OBJECTIVE: To determine the origin and clinical relevance of selected strains of porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV). ANIMALS: 38 pigs without antibodies for PRRSV. PROCEDURE: A seemingly uncommon restriction endonuclease digestion site in a commercially available vaccine strain of attenuated PRRSV was tested for its stability and prevalence under defined conditions. Selected field strains of PRRSV, with or without the restriction-site marker, were subsequently tested in pigs for virulence and for their ability to replicate competitively in pigs simultaneously given the vaccine. RESULTS: Under experimental conditions, the restriction-site marker was stable during long-term infection of pigs. It was not detected in any of the 25 field strains of PRRSV that were isolated before use of the vaccine or 21 of 25 field strains that were isolated after use of the vaccine but that, on the basis of previous testing, were believed unrelated to the vaccine strain. Conversely, it was detected in 24 of 25 field strains that were isolated after use of the vaccine and that, on the basis of previous testing, were believed to be direct-line descendants of the vaccine strain. Putative vaccine-related strains caused more pronounced pathologic changes than did the vaccine strain alone, and they predominated during replication in pigs also given the vaccine strain. CONCLUSIONS: In some swine herds, the vaccine strain may have persisted and mutated to a less attenuated form. CLINICAL RELEVANCE: The potential for persistence and mutation of specific strains of virus should be an important consideration when designing vaccination programs involving attenuated PRRSV.  相似文献   

19.
The objective of this study was to evaluate the influences of genetic and antigenic variations in field isolates of porcine reproductive and respiratory syndrome virus (PRRSV) on vaccine efficacy. Four-week-old pigs were vaccinated with a commercial modified live virus vaccine. Four weeks after vaccination, pigs in both the vaccinated group and the non-vaccinated group were challenged intranasally with 10(7) TCID(50) of PRRSV wt-11 (Experiment 1) or PRRSV wt-7 (Experiment 2). Based on genome sequencing of ORF5 and cross neutralization test results, PRRSV wt-11 is similar to the vaccine strain, whereas wt-7 is distinct from the vaccine strain. In the vaccinated challenged groups, clinical signs were less severe, the mean rate of weight gain was greater, and gross lung lesions were less severe when compared with the non-vaccinated challenged groups in both experiments. In Experiment 1, the virus was isolated from serum at 3 days post-challenge, and the mean virus titers in broncho-alveolar lavage fluids (BALF) and tissues were lower in pigs in the vaccinated challenged groups compared with those in the non-vaccinated challenged group. In Experiment 2, virus isolation from serum, BALF and tissues showed no significant differences between the groups. These results suggest that commercial PRRSV vaccine could be effective in reducing clinical disease following a challenge with field isolates of PRRSV. However, with regards to virological protection, the efficacy of the vaccine may be affected by the nature of the PRRSV isolates.  相似文献   

20.
OBJECTIVE: To determine stability of the restriction fragment length polymorphism (RFLP) pattern of a porcine reproductive and respiratory syndrome vaccine virus and patterns of other viral strains as they replicate in pigs. SAMPLE POPULATION: Field samples of porcine reproductive and respiratory syndrome virus (PRRSV) and samples from 2 weaned pigs, 2 nursery-age pigs, and 5 gilts experimentally infected with PRRSV. PROCEDURE: PRRSV was isolated from field samples, experimentally infected pigs, or pigs that were in contact with experimentally infected pigs. For each virus, RNA was isolated from infected cells, and RFLP patterns were determined. RESULTS: 61% of field samples had 2-5-2 RFLP patterns characteristic of the vaccine virus, 32% had field virus RFLP patterns, and 7% had intermediate RFLP patterns that indicated a virus with a close relationship to the vaccine virus. Viruses isolated from experimentally infected pigs had no change in RFLP patterns after up to 13 weeks of in vivo replication and transmission to contact pigs. CONCLUSIONS AND CLINICAL RELEVANCE: RFLP patterns distinguish the vaccine and field strains of PRRSV; however, as the vaccine virus spreads among a swine population, the RFLP pattern can change to a related intermediate pattern. A glycine at residue 151 of open reading frame 5 is another marker for the vaccine virus; this glycine is rapidly lost and eventually replaced with arginine as the vaccine virus replicates in pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号