首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine changes in the level of and pattern in variability in 197 Nordic and Baltic spring barley cultivars over time we used 21 mapped barley simple sequence repeats (SSRs). A total number of 191 alleles were found from 22 SSR loci. The number of alleles per locus ranged from 2 to 23, with average of 8.63 107 alleles were rare (frequency <0.05) among the cultivars and only one allele was frequently observed (frequency >0.95). The gene diversity between loci in Nordic and Baltic material varied between 0.033 and 0.891. Average gene diversity was 0.623. The SSR data separated two-rowed and six-rowed cultivars. According to analysis of molecular variance (AMOVA) differentiation in two-rowed vs six-rowed accounted for 23.6% of the total variation. Overall no significant decrease of average gene diversity over time could be found. However, differences were observed when spring barleys from northern (north of ∼58°) and southern (south of ∼58°) parts of the Nordic and Baltic area were compared. For the southern ecogeographical region significant decrease of genetic diversity was observed in the middle of the 20th century, whereas no significant changes in the northern part were found. We found larger differentiation between modern and old cultivars in the South compared to the ones in North parts of the region. The magnitude of changes in genetic diversity differed also with the country of origin. Danish cultivars had a significant decrease in diversity in the middle of century, whereas changes in Finland, Norway and Sweden were not significant.  相似文献   

2.
Genetic diversity, population structure and genome-wide linkage disequilibrium (LD) was estimated in Nordic spring barley (Hordeum vulgare L. subsp. vulgare) by genotyping 180 breeding lines with 48 SSR markers and 7842 high-confidence SNPs using the Illumina Infinium 9K assay. In total 6208 SNPs were polymorphic and selected for further statistical analysis. A Mantel test revealed a strong positive correlation with a Pearson’s correlation coefficient (r) of 0.86, between the estimates of genetic distances based on SSR and SNP data. Population structure analysis identified two groups with a clear ancestry and one group with an admixed ancestry. The groups were primarily separated based on row-type and geographical origin. Average LD for the whole population decayed below a critical level of r2 = 0.20 within a range of 0–4 cM. To avoid confounding effects of the strong population structure, LD decay for the different groups was analysed separately and ranged from 0 to 12 cM. A slower LD decay was found within the two-rowed lines compared to the six-rowed lines and the two-rowed lines originating from the northern part, which could be the result of strong selection for malting quality and yield in the southern part. No large difference in genetic diversity was observed between population sub-groups, but differences at certain chromosomal regions were evident.  相似文献   

3.
To assess the genetic diversity among China’s cultivated barley, sequence tagged site (STS) marker analysis was carried out to characterize 109 morphologically distinctive accessions originating from five Chinese eco-geographical zones. Fourteen polymorphic STS markers representing at least one in each chromosome were chosen for the analysis. The 14 STS markers revealed a total of 47 alleles, with an average of 3.36 alleles per locus (range 2–8). The proportion of polymorphic loci per population averaged 0.84 (range 0.71–1.00); the mean gene diversity averaged 0.39 (range 0.28–0.49). The means of P and He were highest in the Yangtze reaches and Southern zone (P = 1.00; He = 0.46) and lowest (P = 0.71 He = 0.28) in the Yellow river reaches zone. The STS diversity in different zones is quite different from the morphology diversity. The STS variation was partitioned into 17% among the zone and 83% within the zone. Both cluster and principal coordinate analyses clearly separated the accessions into a dispersed group (mostly two-rowed barley with a lower mean GS value) and a concentrated group (mostly six-rowed barley with a higher mean GS value) according to the spike characteristic with only a few exceptions. The accessions from the Qinghai-Tibet plateau formed a distinctive subgroup and can be distinguished from the concentrated group. The role of Tibet in the origin and evolution of cultivated barley has been discussed.  相似文献   

4.
Dioscorea trifida L. (Dioscoreaceae) is among the economically most important cultivated Amerindian yam species, whose origin and domestication are still unresolved issues. In order to estimate the genetic diversity maintained by traditional farmers in Brazil, 53 accessions of D. trifida from 11 municipalities in the states of São Paulo, Santa Catarina, Mato Grosso and Amazonas were characterized on the basis of eight Simple Sequence Repeats (SSR) and 16 Inter Simple Sequence Repeats (ISSR) markers. The level of polymorphism among the accessions was high, 95 % for SSR and 75.8 % for ISSR. The SSR marker showed higher discrimination power among accessions compared to ISSR, with D parameter values of 0.79 and 0.44, respectively. Although SSR and ISSR markers led to dendrograms with different topologies, both separated the accessions into three main groups: I—Ubatuba-SP; II—Iguape-SP and Santa Catarina; and III—Mato Grosso. The accessions from Amazonas State were classified in group II with SSR and in a separate group with ISSR. Bayesian and principal coordinate analyzes conducted with both molecular markers corroborated the classification into three main groups. Higher variation was found within groups in the AMOVA analysis for both markers (66.5 and 60.6 % for ISSR and SSR, respectively), and higher Shannon diversity index was found for group II with SSR. Significant but low correlations were found between genetic and geographic distances (r = 0.08; p = 0.0007 for SSR and r = 0.16; p = 0.0002 for ISSR). Therefore, results from both markers showed a slight spatially structured genetic diversity in D. trifida accessions maintained by small traditional farmers in Brazil.  相似文献   

5.
Local patterns of seed regeneration and trade that occur outside the formal breeding sector (seed exchange networks) can have a strong influence on the genetic diversity and evolution of traditional crop varieties. Despite this, little is known about the extent to which seed exchange networks influence gene flow and genetic structure in traditional crop varieties. Here we study barley (Hordeum vulgare subsp. vulgare) in rural communes of Northern Morocco in 2008 and 2009. We quantified seed regeneration and exchange by farmers within the seed exchange network using structured interviews. Using SSR markers, we also quantified the neutral genetic diversity and structure of a complex of traditional varieties referred to as Beldi that is managed in this exchange network. The majority of farmers (>88 %) report cultivating Beldi. Most seeds of Beldi (70–90 %) are maintained on-farm, while the remainder of seeds are obtained from local markets within the commune. Beldi has high genetic diversity and there is weak but significant genetic structure between communes (FST = 0.031). From SSR marker data there is evidence of a high level of gene flow between communes not reported in interviews. Seeds purchased in local markets likely represent seeds from a larger geographic region, leading to lower genetic structure among communes than expected based on the reported level of on-farm seed regeneration and local sourcing of seed. We discuss the implications of this seed exchange network for the conservation of traditional barley varieties in the study region.  相似文献   

6.
Summary In Bhutan, barley is usually grown in mountainous regions over 2,000 m elevation. The barleys investigated were six-rowed naked, and classified into three groups by spike and awn characters; lax spike and long awn, dense spike and long awn, and dense spike and elevated hood. They also varied in spike color; yellow, purple and black. For isozymes, there was no variation at Aat2 and Aat3 loci for aspartate aminotransferase in the Bhutanese barley.However, allelic variations at Est1, Est2 and Est4 loci for esterase were detected, and three genotypes consisting of their allelic combinations were found. Most of the collections were heterogeneous for these features. Combinations between spike-awn types and esterase genotypes were not at random, indicating that genetic diversities resulted from mechanical mixtures of different types. These types were distributed with geographical regularity in Bhutan. In comparing the spike-awn type and esterase genotype in barley collections from other regions of the Himalayas, the Bhutanese barleys were s-imilar to the Tibetan ones, but were much different from the Nepalese barleys. This suggests that the Bhutanese barleys had been introduced from Tibet.  相似文献   

7.
During a national Swedish collection mission of vegetable varieties conserved ‘on farm’ more than 70 pea accessions were obtained, many of which had been grown locally for more than 100 years. In spite of a likely origin in the multitude of obsolete commercial pea varieties available on the Swedish seed market in the nineteenth century, the rediscovered local cultivars have lost their original names and cultivar identity while being maintained ‘on farm’. To analyze genetic diversity in the repatriated material, 20 accessions were genotyped with twelve SSR markers and compared with 15 obsolete cultivars kept in genebanks and 13 cultivars preserved as non-viable seeds collected in 1877–1918. Most of the local cultivars were genetically distinct from each other, and in only a few cases could a possible origin in a tested obsolete cultivar be suggested. These results reflect the wide diversity of pea cultivars present in Sweden during the nineteenth century. Both between and within accession genetic diversity was larger among the historical samples of obsolete cultivars compared to local cultivars and cultivars preserved in genebanks, indicating genetic erosion over time both in genebanks and during conservation ‘on farm’. The constraints on identifying and verifying historical cultivars using genetic markers are discussed.  相似文献   

8.
Chinese Cherry, generally referring to Prunus pseudocerasus Lindl. species, is one of the most economically important domestic fruit tree in China. To effectively preserve and sustainably utilize this species, a study in genetic diversity and population structure was carried out by the sequence variation of chloroplast DNA trnQ-rps16 intergenic spacers. Polymorphism was calculated among the 200 individuals from 7 local and 10 wild populations across its geographical range in China. The results showed that (1) Total genetic variation in species level was poor (h = 0.478, π = 0.0018). But in the wild populations, it was much higher than that in the local populations (h = 0.565, π = 0.0021 vs. h = 0.152, π = 0.0006). (2) Low levels of genetic differentiation (FSC = 0.19595, P = 0.000), genetic distance (0.00000–0.00297), as well as pairwise Fst value among populations were detected. These results, combined with the insignificant gene genealogy pattern and neutrality tests indicate that Chinese Cherry has relatively low levels of genetic diversity and insignificant population structure. Coancestry might be a combined effect of the reduction in effective population size with the recent demographic bottlenecks and mating systems. The pronounced seed dispersal abilities and relatively high rates of gene exchange are supported by the limited genetic differentiation among populations.  相似文献   

9.
Ruthenia Medic is tolerant to drought, cold, high salinity, resistance to trampling and high quality features. Inter-simple sequence repeat (ISSR) and simple sequence repeat (SSR) molecular markers were employed for the first time to access the genetic diversity and relationships of 30 wild Ruthenia Medic accessions obtained from Inner Mongolia in the present study. A total of 94 bands were amplified by ten ISSR primers, of which 83 (88.5 %) were polymorphic, and 57 polymorphic bands (80.4 %) were observed in 69 bands amplified by ten SSR primers. Shannon’s information index (I = 0.487), and average expected heterozygosis (He = 0.329) generated by ISSR primer were higher than that of SSR analysis (I = 0.372, He = 0.231). The study indicated that ISSR were more effective than SSR markers for assessing the degree of genetic variation of Ruthenia Medic. UPGMA cluster analysis revealed inconsistencies in the clustering patterns, as the Mantel’s test between the dendrograms for ISSR and SSR data indicated a poor fit for the ISSR and SSR data types (r = 0.0970). Whereas the pattern of clustering of the genotypes remained relatively the same in ISSR and combined data of ISSR and SSR. The results of principal components analysis also supports their UPGMA clustering. These results have an important implication for Ruthenia Medic germplasm characterization, improvement, and conservation.  相似文献   

10.
A barley core collection can be studied extensively and the derived information can be used to identify loci/genes for the genetic improvement of quantitative and qualitative traits. To assess genetic diversity, allelic variation and population structure of Egyptian barley, 134 barley genotypes collected from a different region along with 19 cultivated genotypes obtained from of the Egyptian Agricultural Research Center. All genotypes were analyzed with 261 polymorphic SSR and SNP alleles. The mean number of alleles per locus was 4 and PIC was 0.49, while the level of genetic diversity was 0.55 ranging from 0.03 to 0.82. The genotypes were assigned to three subpopulations that were consistent with their origins. The genetic variation within population was higher (51%) than among population at the molecular levels (FST =?0.491 when P?<?0.10). The level of polymorphic variation was highest in subpopulations-II, due to collected from different regions with different ear-types thus, expected to contain more diversity than local genotypes in subpopulations-I and subpopulations-III. The structured study found that the 153 barley genotypes are in harmony with clustering approaches using the SSR and SNP genotypic data in a neighbor-joining tree and principal components analysis, which identified three subpopulations. These results demonstrated genetic diversity among the Egyptian barley genotypes can be applied to suggest approaches, such as association analysis, classical mapping population development, and parental line selection in breeding programs. Therefore, it is necessary to use the exotic genotypes as the genetic resources for developing new barley cultivars in Egypt.  相似文献   

11.
Remarkable morphological variation has been found within small Eritrean barley fields. Barley was collected from fields approximately 50 m2 in size. Spike shape, type, and colour were observed to vary both between and within fields. A set of 39 Simple Sequence Repeats (SSR) markers were used to explore the genetic diversity of the Eritrean barley collected from small-scale farmer’s fields. Significant genetic diversity was found within the barley fields. Out of 240 spikes collected from 24 fields (10 spikes per field), only two spikes from geographically distant fields were genetically similar. Based on the SSR data, individual farmers’ fields were found to possess 97.3% of the genetic variation present in the Eritrean barley. We discuss a strategy to improve the barley yield in Eritrea, and to facilitate the in situ conservation of barley genetic diversity. Gunter Backes and Jihad Orabi contributed equally to this work.  相似文献   

12.
13.
The high cost and supply shortage of seed yam propagules for planting are major constraints in yam production. In the water yam (Dioscorea alata L.), aerial tubers have potential as alternative sources of planting material. In this study, we investigated morphological, molecular and ploidy variation across multiple aerial tuber producing accessions of Dioscorea alata. Initial screening of over 800 accessions from the International Institute of Tropical Agriculture germplasm collection for aerial tuber production identified a subset (15 %) of accessions, which produced aerial tubers. The aerial tuber producing accessions (along with 18 non-aerial tuber accessions) were further characterized for phenotypic and ploidy variation. In addition, using SSR markers we characterized the genetic diversity amongst all of the aerial tuber producing accessions, along with six non-aerial tuber producing accessions. Multiple Correspondence Analysis (MCA) using morphological data grouped the accessions according to their aerial tuber production. The aerial tuber production characteristics of accessions were associated with phenotypic variables and ploidy levels. The MCA analysis revealed three main groups consisting of; Group 1) all non aerial tuber producing accessions (n = 15), hastate leaf shape, less or no anthocyanin pigmentation and diploid (2n = 2x = 40), Group 2) group with some aerial tuber producing accessions, different extent of anthocyanin pigmentation, sagittate leaf shape, mainly diploid (n = 44) and three triploid (2n = 3x = 60) and 3) a group where all individuals bear aerial tuber, cordate leaf shape, intermediate anthocyanin pigmentation and majority (n = 74) tetraploid (2n = 4x = 80) and three triploid individuals. Aerial tuber production may be subject to a genome dosage effect as an increase in aerial tuber production was associated with increased ploidy level. For instance, tetraploid plants produce more aerial tubers per sprout than either triploids or diploids. Principal coordinate analysis based on SSR markers using Jaccard’s coefficient also revealed distinct groups associated with the pattern of aerial tuber formation, leaf shape and anthocyanin pigmentation. Overall our study indicates the usefulness of combining SSR markers, ploidy level and phenotypic data for identification and classification of Dioscorea alata accessions according to their extent of aerial tuber production.  相似文献   

14.
In the present study, analyses of SSR molecular markers were performed to investigate the genetic diversity of 133 tuber mustard cultivars. Eighty-one pairs of SSR primers from a total of 600 in Brassica produced stable amplified bands. In addition, 810 bands were detected among the cultivars, and 724 of those were polymorphic (89.38 %). The average number of bands per locus was 10.0 with a range from 5 to 16. Shannon’s information index for each SSR locus varied from 0.52 to 3.72, with an average of 2.74. The coefficients of genetic similarity in the SSR marker patterns among the 133 cultivars ranged from 0.77 to 0.91, with an average of 0.85. The cluster analysis showed that the cultivars could be classified into six clusters when the genetic similarity was 0.83, with 90.23 % of the cultivars included in Clusters 5 and 6. Principal component analysis was carried based on the SSR data. The results showed that the first three principal components could explain the genetic variation with 85.47, 0.67, and 0.61 %, and the 133 cultivars could be divided into six clusters according to the nearest phylogenetic relationship. It was indicated that the similarity was high and the genetic diversity was narrow among the 133 mustard tuber cultivars. 360 individuals from 24 cultivars were analyzed to reveal the genetic structure and genetic diversity within cultivars. A total of 925 alleles were detected in the 24 cultivars. Estimates of the mean number of alleles ‘A’, the effective allelic number ‘Ae’, the observed heterozygosity ‘Ho’, and expected heterozygosity ‘He’ were 6.0, 3.6, 0.64, and 0.37, respectively. An obvious genetic deviation from Hardy–Weinberg expectation was observed both among and within cultivars and a considerable genetic variation was revealed within rather than among cultivars. It is necessary to broaden the genetic basis of the breeding germplasm in tuber mustard. Based on their geographical distributions, the tuber mustard cultivars in this study can be divided into up-Yangtze river, mid-Yangtze river, and down-Yangtze river groups. Genetic diversity was highest in mid-Yangtze river group, followed by up-Yangtze river group, and then down-Yangtze river group. It was presumed that the origin center or genetic diversity center of tuber mustard was mid-Yangtze river, and the crop was transmitted along the Yangtze river in both directions.  相似文献   

15.
The genetic variability of 14 wild Prunus armeniaca populations was investigated using morphological analysis and inter-simple sequence repeat markers. 10 morphological characters revealed a high level variation, especially Fruit number, Fruit weight, Seed weight and Tree height. Totally, 15 selected primers generated 155 loci, with an average of 10.3 bands per primer. Nei’s gene diversity (H e ) and Shannon’s index of diversity (I) were fairly high at the species level (H e  = 0.2741, I = 0.4220). High molecular and morphological variability indicated that wild apricots in the Ili Valley still maintained a relatively high level of diversity. The G ST of 0.2275 revealed a low level of genetic differentiation among populations, and genetic variation mainly resided within populations (81.51 %), which was identified with the moderate gene flow value (N m  = 1.6974). The relatively high intraspecific genetic diversity and low inter-population genetic differentiation was largely attributed to long-distance dispersal of pollen, continuous distribution of populations and the self-incompatible breeding system.  相似文献   

16.
Labile-barleys (Hordeum vulgare convar. labile (Schiem.) Mansf.) are found in the highlands of Ethiopia, Eretria and North India-Pakistan districts. They represent a distinct spike form showing row-type alterations even within individual spikes of the same genotypes. Variation at the six-rowed spike 1 (vrs1) locus is sufficient to control barley lateral spikelet fertility, which is also modified by alleles at the intermedium-c (int-c) locus. This study aimed at re-sequencing these two loci to investigate whether labile-barleys have a two-rowed genetic background, resulting in increased lateral spikelet fertility, or show reduced lateral spikelet fertility if they possess a six-rowed genetic background. The Vrs1 re-sequencing results of 221 supposedly labile-barley accessions from Ethiopia revealed 13 accessions with two novel vrs1.a1 haplotypes. Following the current nomenclature of vrs1 haplotypes, the new haplotypes were named as haplotypes 66 and 67. Re-sequencing at the int-c locus showed that 118 of the labile-barleys possessed the previously described Int-c.a allele but only one accession was found having a novel Int-c.a haplotype in the homozygous state (termed Int-c.a haplotype1; Hap_1). Interestingly, 101 labile-barleys carried the Int-c.a allele and Int-c.a haplotype1 simultaneously, suggesting maintained heterozygosity or recent gene duplication at this locus. Only one accession had a two-rowed haplotype (Vrs1.b3, int-c.b1) and one accession possessed the Vrs1.t (deficiens) and Int-c.a alleles (six-rowed). These two accessions were considered as misclassified labile genotypes and not included in further analysis. Thus, these results confirmed that all of the 219 labile accessions studied in this work showed six-rowed alleles at vrs1 but reduced lateral spikelet fertility. This reduction is most likely caused by the recessive labile (lab) locus which we are in the process to characterize further.  相似文献   

17.
Plant breeders are interested in using diverse genotypes in hybridization that can segregate for traits of importance with possibility of selection and genetic gain. Information on molecular and agro-morphological diversity helps the breeders reduce the effort for parental selection and helps the advancement of generations. A phenotypic and molecular diversity study, using 24 traits (agronomic and disease) and 6519 SNPs in a diverse collection of 336 spring barley genotypes, was carried out at Marchouch and Jemma Shiam research stations in Morocco. Based on structure and multivariate analyses, strong differentiation between the two- and six-row types were observed. The linkage disequilibrium (LD) decay of the current collection (for the combined population) was up to 3.58 cM (r 2 = 0.15) while LD decay were estimated 3.91 and 2.36 cM for two- and six-row barley, respectively. PCA of agro-morphological traits revealed grain per spike, net form of net blotch (NFNB), spot form of net blotch (SFNB), and 1000 kernel weight were the most discriminatory traits in the current collection. Association mapping in the two independent populations will be ideal for identification of markers, and QTL related to traits. The generated information on relatedness between individuals will help identify diverse genotypes for breeding programs.  相似文献   

18.
Maintaining seed viability and germplasm integrity is a challenging task in conservation of plant genetic resources, as seeds under storage will lose viability and genetic changes will occur. Attempt was made to analyze the patterns of genetic changes in wheat germplasm under ex situ genebank storage and accelerated ageing treatments. A set of 16 naturally aged wheat accessions under ex situ genebank storage since 1994 were sampled. Four recently regenerated wheat accessions were selected, four random seed samples were chosen from each accession, and three of them were exposed to three different accelerated ageing treatments. These 32 seed samples in two germplasm sets displayed a range of germination rates from 4 to 98 %. Thirty-seven microsatellite markers representing 21 wheat chromosomes were applied to screen 12 seeds of each sample and 449 SSR alleles were scored. Large SSR variation was found in each germplasm set. There was 73.1 % of the total SSR variation present among the naturally aged samples and 78.2 % present among the accelerated ageing samples. Several analyses for genetic association consistently revealed no clear genetic separations among samples of high or low germination rates in both germplasm sets. Samples under different accelerated ageing treatments did not show much genetic differentiations from the original sample of each accession. Mantel tests revealed non-significant associations between SSR variability and sample germination rates for both germplasm sets. These findings are useful for understanding seed deterioration under different ageing conditions and suggest that genome-wide SSR variability may not provide sensitive markers for the monitoring of wheat seed viability.  相似文献   

19.
Cultivated sorghum [Sorghum bicolor (L.) Moench] is an important food security crop in the semi-arid regions of the world including Asia and Africa. Its genetic diversity is contained mostly in traditional varieties and modern cultivars used by farmers. In this study, agro-morphological traits and molecular markers were used to assess genetic diversity in 22 accessions of cultivated sorghum from five countries (Botswana, Namibia, Swaziland, Zambia and Zimbabwe) in the Southern African Development Community (SADC) region. The study revealed a significant variation among 22 accessions in both qualitative and quantitative morphological traits, indicating the accessions’ promising potential as breeding material. For molecular analysis, 11 microsatellite primer-pairs were used, and generated a total of 70 alleles across 20 accessions. Analysis of molecular variance revealed a high level of genetic variation; 67 % among the accessions and 10 % among the five countries. The patterns of genetic diversity and the relationships observed in this study should provide insights for genetic resource conservation and utilization of sorghum germplasm in the SADC region.  相似文献   

20.
Field experiments were conducted to investigate the effects of irrigation regimes and N levels on assimilate remobilization of two barley cultivars (Yousefsix-rowed and Nimrouztwo-rowed) in 2011 and 2012. There were three levels of water regimes (full irrigation (I100), 75% and 50% of I100: I75 and I50, respectively) in 2011. Rain-fed treatment (I0) was included in 2012. Three N levels (0, 60, and 120 kg ha?1) were used. Grain yield and assimilate remobilization decreased by severe water stress (I0), however, the reduction of them were intensified by N fertilizer application. The N remobilization was negatively affected by N fertilization and water stress. The two-rowed showed higher N remobilization (10.7%) and contribution of N remobilized to N content of grain (5.8%) than the six-rowed. The two-rowed cultivar showed significantly higher assimilate remobilization and grain yield than the six-rowed under I50 (26.3% and 6.5%, respectively) and I0 (48.7% and 17.1%, respectively), while the six-rowed had similar or higher performances in terms of these traits under I100 and I75. This study showed that optimizing irrigation and N rates (decrease N level with increasing water stress) and selection of the suitable cultivars (Nimrouztwo-rowed) might increase assimilate remobilization and consequently grain yield under drought stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号