首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histocompatible B13/B13 white specific-pathogen-free leghorn chickens were used to investigate the effect of coinfection with Cryptosporidium baileyi and the HPRS 16 strain of Marek's disease virus (MDV) in chickens and to assess the pathogenicity of C. baileyi when MDV is given before or after the parasite. Groups of chickens concurrently infected with C. baileyi orally inoculated at day (D)4 and MDV inoculated at hatching (C4M0 group) or at D8 (C4M8 group) were compared with relevant control groups inoculated with only C. baileyi at D4 (C4 group), only MDV at hatching (M0 group) or at D8 (M8 group), and an uninoculated control group (UC group). The chickens were kept in isolator units until the end of the experiment at D62. Our results showed a considerable synergistic effect in concurrently infected chickens and more severe consequences when chickens received MDV before C. baileyi infection. In fact, except for a slight transitory weakness, the chickens in C4 group remained free of overt clinical signs and there was no mortality. However, coinfection with both pathogens induced more lasting or permanent oocyst shedding. Severe clinical cryptosporidiosis with weakness, anorexia, depression, growth retardation, and chronic and severe respiratory disease causing death occurred in all chickens in the C4M0 group between D12 and D43 and in 67% of the chickens in the C4M8 group between D17 and D57. Eighty-two percent and 33%, respectively, died before the development of specific Marek's disease lesions. Mortality rates were 27% and 33% in the M0 and M8 groups, respectively. The presence of MDV enhanced the establishment of more lasting cryptosporidial infection in the respiratory tract, esophagus, crop, proventriculus, and kidneys (only in C4M0 group) as well as in bursa of Fabricius, ceca, and cloaca. Serologic analysis showed that chickens with chronic cryptosporidiosis in the C4M8 group had an increased level of C. baileyi-specific immunoglobulin A. Our results may explain some cases of mortality in chickens naturally infected with MDV and Cryptosporidium.  相似文献   

2.
Both Marek's disease virus (MDV) and chicken infectious anemia virus (CIAV) infections are prevalent in chickens throughout the world. In the past decade, MDV strains with increased virulence (very virulent plus MDV pathotype [vv+MDV]) have been isolated. The purpose of this experiment was to determine the effects of coinfection of chickens with CIAV and a vv+MDV isolate. Specific-pathogen-free chickens were inoculated at 1 day posthatch with RB1B (very virulent MDV pathotype [vvMDV]) only, 584A (vv+MDV) only, CIAV only, RB1B + CIAV, 584A + CIAV, or nothing. Samples of spleen, thymus, and bursa of Fabricius were collected at 4, 7, 10, and 13 days postinoculation (DPI). Thymic and bursal atrophy at 13 DPI and final mortality at 30 DPI were significantly greater in chickens inoculated with 584A with or without added CIAV, or with RB1B plus CIAV, compared with birds inoculated with RB1B alone. Both amounts of virus reisolated and levels of virus detected by quantitative-competitive polymerase chain reaction were greater at 4 DPI in 584A inoculates compared with RB1B inoculates. To monitor the early cytolytic infection, northern analysis was done with a probe for the MDV immediate early gene ICP4 (infected cell protein 4). In the absence of CIAV, ICP4 expression was more apparent in chickens inoculated with 584A than in those inoculated with RB1B. CIAV coinfection increased ICP4 expression in the spleens of chickens infected with RB1B. These results indicated that inoculation of chickens with the 584A isolate caused a more robust early cytolytic infection compared with inoculation with RB1B alone and support the classification of 584A as a vv+MDV strain. Coinfection with CIAV exacerbated vvMDV strain RB1B infection. The extent of this exacerbation was less evident when birds were coinfected with 584A and CIAV.  相似文献   

3.
Zhang Y  Sharma JM 《Avian diseases》2001,45(3):639-645
CVI988, a serotype 1 Marek's disease virus (MDV), was used as an in ovo vaccine in specific-pathogen-free chickens to determine if this virus induces early posthatch protection against Marek's disease as has been shown previously for turkey herpesvirus. MDV CVI988 was injected at embryonation day (ED) 17 (group 1) or at hatch (group 2). A third group (group 3) was left unvaccinated. At 1, 2, 3, 4, 5, and 7 days of age, chickens from each group were sampled and examined as follows: a) single-cell suspensions of spleen were inoculated onto chicken embryo fibroblast monolayers to isolate the virus; b) sections of bursal tissues were stained by indirect immunofluorescence assays with anti-pp38 monoclonal antibody to identify viral antigen expression; and c) chickens were exposed intra-abdominally to MDV RB1B, a virulent serotype 1 MDV. Results revealed that in chickens given MDV CVI988 at ED 17, virus and virus-encoded protein were not detected until chickens were 3 and 2 days old after hatching, respectively. Results also indicated that during the first 4 days after hatch, the chickens given MDV CVI988 at ED 17 were better protected against virulent MDV than those given MDV CVI988 at hatch (P < or = 0.001). These results suggested that MDV CVI988 proteins were adequately expressed in the embryo to initiate prehatch immunologic response. Additional efforts with more sensitive techniques than used in this study are needed to identify the nature of viral expression in embryos.  相似文献   

4.
Marek's disease virus (MDV) causes immunosuppression and tumors in chickens. As sporadic cases of Marek's disease (MD) were recorded in turkeys, the antigenic and genomic characteristics of the MDV glycoprotein B (gB) gene and antigen of turkeys were compared to the chicken MDV gB. The whole chicken and turkey gB genes were sequenced and found identical. By immunoblotting of infected-cell culture lysates using chicken convalescent and gB monoclonal antibodies, the antigenic epitopes of the chicken and turkey viruses were found to differ. The turkey MDV had a unique epitope, compared to the chicken MDV and compared with our previous findings. While the chicken MDV had two epitope types, heat-labile but dithiothreitol (DTT)-stable and heat-stable but DTT-labile, the turkey MDV gB epitope is both heat and DTT-labile.  相似文献   

5.
用禽网状内皮组织增生病病毒(REV)和马立克氏病病毒(MDV)共感染肉鸡,研究这2种病毒对鸡的致瘤作用,结果表明肉鸡共感染MDV和REV后13d即可发生死亡.接种后100d死亡率达84%。死亡鸡的肝脏、脾脏、肾脏和心脏等可以形成2种外观明显不同的散在的大肿瘤结节和弥漫性的小肿瘤结节。取发病鸡的肝脏、脾脏、肾脏、心脏和腺胃等组织样品做连续石蜡切片,HE染色后发现这些脏器均存在2种不同类型的肿瘤细胞增生。对这些连续切片分别用MDV和REV的单克隆抗体进行间接荧光试验,则同1份样品存在可以与REV和MDV分别呈现阳性反应的肿瘤细胞团,结果表明REV和MDV可以在感染鸡的体内分别诱发形成肿瘤。在接种后14、21、28和42d随机采集3只鸡的全血分离MDV和REV,均可以同时分离到MDV和REV。表明REV和MDV的共感染延长了病毒血症的时间。  相似文献   

6.
Two experiments were conducted to study the cell-mediated cytotoxicity of peripheral blood leukocytes (PBL) from chickens inoculated with Marek's disease virus (MDV) against a Marek's disease-derived lymphoblastoid cell line (MSB-1) and to associate the cytotoxicity with incidence of disease. In experiment I, moderately susceptible random-bred, specific-pathogen-free chickens were inoculated with MDV (group 1), vaccinated with a herpesvirus of turkeys (HVT) and inoculated with MDV (group 2), vaccinated with HVT and inoculated with chicken kidney cells (CKC; group 3), and inoculated with CKC only (group 4). Cytotoxic activity in the PBL was detected initially during the first week after MDV inoculation and periodically throughout the observation period (groups 1, 2, and 3). Throughout the observation period, the magnitude of cytotoxic activity was similar in PBL from groups 1 and 2 chickens. The PBL from both surviving and fatally infected chickens (groups 1 and 2) were similarly cytotoxic when sampled during the first 16 days after MDV inoculation. In experiment II, inbred genetically susceptible (line 7) and resistant (line 6) chickens were used. Cytotoxic activity of PBL of significantly greater magnitude was associated with a lower mortality or incidence of gross lesions (or both) in MDV-inoculated line 6 (group B) and HVT-vaccinated and MDV-inoculated line 7 (group C) chickens compared with activity of PBL from MDV-inoculated line 7 (group A) chickens. The cytotoxic activity of PBL from individual inbred chickens did not correlate with the outcome of the infection.  相似文献   

7.
Marek's disease (MD) is a lymphoproliferative disease of domestic chickens caused by a highly infectious, oncogenic alpha-herpesvirus known as Marek's disease virus (MDV). MD is presently controlled by vaccination. Current MD vaccines include attenuated serotype 1 strains (e.g., CVI988/Rispens), avirulent serotype 2 (SB-1), and serotype 3 (HVT) MDV strains. In addition, recombinant MDV strains have been developed as potential new and more efficient vaccines to sustain the success of MD control in poultry. One of the candidate recombinant MDV strains, named rMd5deltaMeq, was derived from Md5, a very virulent strain of MDV lacking the MDV oncogene Meq. Our earlier reports suggest that rMd5deltaMeq provided protection equally well or better than commonly used MD vaccines in experimental and commercial lines of chickens challenged with very virulent plus (vv+) strains of MDV. In this study, maternal antibody-positive (trial 1) and negative (trial 2) chickens from a series of relatively MD resistant lines were either vaccinated with the rMd5deltaMeq or CVI988/Rispens followed by infection of a vv+ strain of MDV, 648A, passage 10. This report presents experimental evidence that the rMd5deltaMeq protected significantly better than the CVI988/Rispens (P < 0.01) in the relatively resistant experimental lines of chickens challenged with the vv+ strain of MDV. Together with early reports, the rMd5deltaMeq appeared to provide better protection, comparing with the most efficacious commercially available vaccine, CVI988/Rispens, for control of MD in lines of chickens regardless of their genetic background.  相似文献   

8.
The metabolic NO pathway, catalyzed by the enzyme NO synthase in macrophages, is a key defense element against viruses and tumors. However, arginase is an other enzyme able to metabolize the substrate L-arginine, and the two enzymes are alternatively regulated by Th1 and Th2 cytokines in murine macrophages. Marek's disease is characterized by strong immunosuppression and development of T-cell lymphomas in chickens. Inoculation of the very virulent strain of MDV RB-1B induced strong and long-lasting arginase macrophage-dependent activity, which was inhibited by L-norvaline in vitro, but induced low NO production in monocytes and splenocytes from highly susceptible B(13)/B(13) chickens. By contrast, in B(21)/B(21) chickens genetically resistant to tumor development, RB-1B induced a weak and transient increase in arginase activity and strong NO production. The vaccinal HVT strain did not induce any arginase activity in monocytes or splenocytes. Moreover, vaccination with HVT prevented tumor appearance after RB-1B challenge and increase in arginase activity, but favored NO production in susceptible chickens. Differential expression of NO synthase and arginase was modulated in chicken macrophages, with IFN-gamma and LPS being strong inducers of both, depending on the type of macrophage, and TGF-beta 1 and PGE(2) stimulating only arginase activity. This increase in arginase activity in macrophages from chickens inoculated with Marek's disease virus might thus be due to a direct effect of the virus on macrophages, possibly through viral products, or to indirect effects on the cytokine balance.  相似文献   

9.
Marek's disease virus (MDV) causes immunosuppression and tumors in chickens, but the turkey is an unusual host for the virus, and tumors caused by MDV in turkeys are unique. We describe the prevalence of turkey tumors in Israel between 1993 and 2000, their molecular diagnosis by polymerase chain reaction (PCR), and the natural distribution of herpesvirus of turkeys (HVT). Most clinical cases with tumors in commercial turkeys were diagnosed as MDV. The reproduction of Marek's disease (MD) in turkeys by two turkey MDV strains, Ar and La, was analyzed, and it was shown that these strains can induce tumors in experimental trials. The severity of experimental disease differed from those features of the original outbreak, since a less severe disease was recorded.  相似文献   

10.
Bursa- and thymus-dependent functions were examined in Marek's disease (MD)-susceptible normal chickens and in chickens treated with 5 and 16 mg of cyclophosphamide (CY) at the time of hatching. Chickens not exposed to Marek's disease virus (MDV) and treated with CY temporarily lost mitogenic response to concanavalin A but regained full response after 5 weeks. Bursa-dependent functions, such as presence of germinal centers in spleen and cecal tonsils, morphologic features of bursa, and sheep red blood cell antibody response were completely lost in chickens treated with 16 mg of CY and only partly retained in chickens treated with 5 mg of CY. In chickens exposed to MDV, the degree of thymus-dependent spleen cell mitogenic response was directly related to frequency and severity of MD. Chickens treated with 16 mg of CY had a mild mitogenic depression and low frequency and severity of MD lesions, whereas those treated with 5 mg of CY and those not treated had marked mitogenic depression and high frequency and severity of MD. Suppressions of bursa- and thymus-dependent functions by MDV alone were also evident when comparing MDV-exposed and nonexposed chickens. The results also indicate that presence of small, residual amounts of humoral factor(s) may enhance MDV oncogenesis.  相似文献   

11.
NO is produced by macrophages through activation of the inducible enzyme NOS and its production is triggered as an antiviral and antitumoral immune mechanism. Replication of Marek's disease herpes virus (MDV) is inhibited by NO in vitro. MDV induces T-lymphomas in the chicken and a genetic resistance to tumor development has been linked to the B21 major histocompatibility complex. During the first initial week of viral replication after inoculation of the highly virulent RB-1B MDV strain, histocompatible B21/B21 chickens developed strong iNOS expression and NO production capacity in the spleen, in parallel with strong systemic NO production in the serum. Comparable NO response was not seen with the vaccinal strain HVT. In contrast, reduction in spleen macrophage number and delay in iNOS gene expression was observed in genetically susceptible B13/B13 chickens after MDV infection, in addition to suppression of IFN-gamma-inducible NO production. However, vaccination with HVT 3 days before RB-1B inoculation restored strong iNOS gene expression in the spleen 1 week later and inducible NO production 3 weeks later. Following the pattern of iNOS gene expression, early strong expression of cytokines with powerful iNOS-inducing activity such as IFN-gamma and CC chemokines from the MIP family (MIP-1beta, K203) was observed in genetic resistance and resistance acquired after vaccination with HVT. In conclusion, resistance to MDV appeared preferentially linked in both types of resistance to the early establishment of cytokine induction characteristic of a Th1 immune response, thus favoring the development of an early and strong NO response.  相似文献   

12.
The effect of passive immunization with immunoglobulin Y (IgY) antibody against Marek's disease virus (MDV) was examined in MDV-susceptible chickens. The production of IgY, immunoglobulin M, and probably also immunoglobulin A was depressed in passively immunized chickens when compared with that in MDV-exposed chickens which had not been given IgY anti-MDV antibody. In passively immunized chickens, the synthesis of immunoglobulin M and IgY anti-MDV antibodies in response to MDV infection also was delayed as determined by agar gel precipitin and indirect fluorescence antibody tests.  相似文献   

13.
14.
马立克氏病(MD)是由马立克氏病病毒(MDV)引起的T淋巴细胞增生性疾病.为了研究MDV编码的miRNA与致瘤性的关系,通过对缺失部分miRNA的MDV-MS毒株进行动物感染试验,并将其结果与MDV-MS强毒株的致病性的试验结果进行比较.结果表明:缺失miRNA的重组MDV对无特定病原体(SPF)鸡无致病性,而接种MDV-MS毒株的SPF鸡却显示出很强的MD典型症状.此结果证实MD V编码的miRNA对MDV的致瘤性起到重要的作用.另外,通过对重组MDV感染鸡的羽髓病毒载量的动态检测,发现此处编码MDV-miRNA的基因为复制非必须区,但重组病毒rMS△miR9-12比亲本病毒MDV-MS的体内复制能力有所下降.  相似文献   

15.
16.
Marek's disease (MD) remains a serious problem in the production of poultry. The disease is caused by Marek's disease virus (MDV), and despite the ubiquitous use of vaccination to control losses, MD still affects poultry farming worldwide. The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) method for the simple and inexpensive detection of MDV in feather tips of chickens. Two pairs of specific primers complementary to the meq oncogene of MDV were designed, targeting the sequence of the very virulent MDV strain, RB1B. Bst polymerase was used for the isothermal amplification of viral DNA at 65 C for 90 min in a water bath. The fluorescence signal was identified in MDV-positive samples after the addition of SYBR Green and ultraviolet (UV) illumination. The sensitivity of LAMP was 2 log 10 plaque-forming units (PFU)/ml of HPRS16 and 10(3) copies/il of plasmid containing the target gene (meq) and was equal in sensitivity to PCR amplification. Due to the use of three sets of primers, LAMP was highly specific for MDV-1 DNA. The developed LAMP technique is a rapid and simple tool for the specific detection of MDV in samples of feathers taken from live chickens. Since the use of thermocyclers is not necessary for LAMP assay, it can be conducted by small laboratories and even field veterinarians.  相似文献   

17.
Antibody directed against Marek's disease-associated tumor surface antigen (MATSA) was eluted from tumor cells of lymphomas and peripheral blood lymphocytes that were isolated from Marek's disease virus-infected chickens. Feather follicular Marek's disease virus (MDV) antigen could not be demonstrated with this antibody by indirect immunofluorescent (IF) staining. Monoclonal antibody directed against MATSA could completely block the activity of eluted antibody and vice versa. By indirect IF staining using eluted antibody and fluorescein isothiocyanate (FITC) labelled antichicken globulin conjugate. MATSA-bearing cells were detected in MDV infected and herpes virus of turkey (HVT) vaccinated birds. Blocking of immunoglobulin molecules present on B-cells by anti-chicken globulin is critical in this test.  相似文献   

18.
19.
Marek's disease virus (MDV) vaccines of serotypes 1 and 2 administered in 18-day-old embryonated eggs induced better protection against post-hatch challenge at 3 days with virulent MDV than vaccines given at hatch. Embryonal vaccination with a polyvalent vaccine containing equal quantities of serotypes 1 and 2 of MDV and serotype 3 virus (turkey herpesvirus, HVT) was also significantly more effective than post-hatch vaccination. These and earlier results indicate that protective efficacy of single or combined Marek's disease vaccine serotypes against post-hatch challenge at 3 days can be substantially improved if the vaccines are injected into 18-day embryos rather than at hatch. Injection of vaccines of serotypes 1 or 2 into embryonated eggs or hatched chicks did not cause detectable gross or microscopic lesions in chickens. Vaccine viruses of serotypes 1 and 2 could be isolated from spleen cells of chickens 1 week post-vaccination, and the titer of recoverable viruses was higher in chickens that received the vaccines at the 18th day of embryonation than in chickens vaccinated at hatch. Although embryo vaccination with HVT usually provided better protection than post-hatch vaccination against early post-hatch challenge with variant pathotypes of MDV, the protection was poor regardless of vaccination protocol. If challenge with variant pathotypes of MDV was delayed until embryonally or post-hatch HVT-vaccinated chickens were 21 days of age, protection of chickens by HVT was not enhanced. Thus, resistance induced by embryonal vaccination with HVT was qualitatively similar to that induced by post-hatch vaccination with this virus.  相似文献   

20.
Glycoproteins gB of Marek's disease virus (MDV) and herpesvirus of turkeys (HVT) related to virus neutralization were purified from HVT-infected cells by affinity chromatography. Immunization of chickens with purified glycoproteins gB resulted in partial protection against MD. Neutralizing antibodies were detected in chickens immunized with HVT-gB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号