首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A greenhouse study was conducted to assess the effects of soil-applied beryllium (Be) on the growth and Be content of soybeans [Glycine max (L.) Merr.], grown on acid southeastern soils under limed and unlimed conditions. This study was conducted using a factorial design, with two soil types varying in clay content (Blanton sand, a loamy, siliceous, thermic Grossarenic Paleudult; and Orangeburg loamy sand, a loamy, siliceous, thermic Typic Paleudult), two soil treatments (limed and unlimed) and five Be concentrations (0, 25, 50, 100, and 150 mg Be kg?1 t soil). Addition of Be to unlimed Blanton soil had the most toxic effects of all treatment combinations; at the 150 mg Be kg?1 treatment plant biomass was reduced as much as 90% and plant Be concentration was as high as 226 mg Be kg?1. Beryllium concentrations were greater in plants grown in a soil low in clay (Blanton soil). Liming of soils treated with Be resulted in lowered tissue Be concentrations in plants grown on either soil type.  相似文献   

2.
The toxicity of U to Daphnia magna was determined in acute and chronic tests. The 48-hr LC50 of U (VI) in Columbia River water was 6 mg L?1. Acute toxicity diminished by a factor of 7.5 as mean water hardness and alkalinity values increased from 70 mg L?1. and 57 mg L?1. to 195 mg L?1. and 130 mg L?1. respectively. This effect was most likely the result of complexation of uranyl ion with carbonate ions. D. magna reproduction was suppressed in Columbia River water at U concentrations between 0.5 and 3.5 mg L?1. Potential hazards of U to aquatic life are discussed as they relate to mining practices.  相似文献   

3.
The toxicity of organophosphate insecticides, mainly phosphamidon, monocrotophos and dichlorvos to the blood clamAnadara granosa, occurring in Kakinada Bay of the Godavari estuarine system was measured. The LC50 values of three insecticides for 24,48,72 and 96 hr exposure ranged from 4.26 to 11.53 mg L?1 for phosphamidon, 3.50 to 9.31 mg L?1 for monocrotophos and 1.79 to 6.20 mg L?1 for dichlorvos. Dichlorvos proved highly toxic even at low concentrations compared to either phosphamidon or monocrotophos. The animals showed decreasing activity with increasing insecticide concentrations and duration of exposure. However, there was no marked difference in the toxicity between phosphamidon and monocrotophos.  相似文献   

4.
This nutrient solution experiment investigated the effects of zinc (Zn) and cadmium (Cd) on winter wheat growth and enzymatic activity. Twelve nutrient solution treatments were prepared of four zinc levels (0, 0.5, 5 and 50 mg L?1) and three cadmium levels (0, 5 and 50 mg L?1). Cadmium concentrations ≥5 mg L?1 decreased plant growth, superoxide dismutase activity, and leaf and stem zinc concentrations, but increased plant cadmium concentrations, proline content, and peroxidase and catalase activities. Root activity and zinc concentration were highest in the 5 mg L?1 treatment and lowest in the 50 mg L?1 treatment. Zinc concentrations ≥5 mg L?1 inhibited plant growth, but increased proline content and cadmium concentration in stems and leaves. Low levels of zinc (0.5 mg L?1) increased cadmium-induced toxicity in wheat plants but high levels of zinc (50 mg L?1) reduced. In conclusion, these results indicated that the addition of zinc alleviated cadmium toxicity if the zinc/cadmium ratio was >10/1. Additional study needs to be done to quantify zinc content before zinc is supplied to alleviate cadmium toxicity.  相似文献   

5.
□ Effects of different arsenic (As) concentration (0–30 mg L?1) on seed germination, root tolerance index, relative shoot height, root and shoot biomass, photosynthetic pigments and arsenic accumulation in two wheat varieties were investigated. Low concentrations of arsenic (0–2.5 mg L?1) stimulated germination percentage, shoot and root elongation, plant biomass as well as chlorophyll content as compared with control, however, these factors all decreased gradually at high concentrations of arsenic (5–30 mg L?1). ‘Zarin’ variety had a significantly higher tolerance to arsenic than ‘Sardari.’ Arsenic accumulation by plants root and shoot increased with the increasing arsenic concentrations in medium, which ‘Zarin’ had a higher ability to absorb and translocate arsenic to the shoots. Root accumulated more arsenic than shoot. The similar trend of chlorophyll content and wheat growth under different arsenic concentration suggesting that arsenic toxicity affects the photosynthesis which ultimately results in the reduction of wheat growth and yield.  相似文献   

6.
The toxic effects and accumulation of the heavy metals, Cd, Cu, and Zn by the sheath forming blue-green alga Chroococcus paris were investigated. All three of the metals were bound rapidly. Approximately 90% of the total amount of the added metal was bound within 1 min. Further significant binding occurred at a slower rate. The maximum metal binding capacity, as determined by filtration studies, was determined to be 53, 120, and 65 mg g?1 dry algal weight for Cd, Cu, and Zn, respectively. Binding curves for the metals followed the Langmuir adsorption isotherm model. The amount of metal bound increased with increasing pH. Metal binding increased significantly when pH was increased from 4 to 7. Nearly all of the metal was found to be rapidly EDTA extractable. Metals were found to be increasingly toxic to growing cultures in the order, Zn, Cd, and Cu. All of the metals studied exhibited toxic effects at concentrations greater than 1.0 mg L?1. The lowest concentrations used which showed detectable toxicity were 0.1 mg L?1 for Cu and >0.4 mg L?1 for Cd and Zn.  相似文献   

7.
Engineered plant growth media must support plant growth while minimizing environmental impact. The objective of this research was to determine how different growth media influence nutrient leaching. Plant growth media contained varied amounts of soil, sand, compost that did or did not contain manure, and possible sorbents for phosphorus. If the plant growth media included compost derived partly from manure, leaching losses of nutrients were excessive due to the high nutrient load in the compost. Layering compost over the plant media mix resulted in lower nitrate concentrations in effluent (87 mg L?1) compared with mixing compost into the media (343 mg L?1); however, growth of prairie grasses was reduced because of dense media below the compost blanket (0.09 versus 0.31 g). Using lower amounts of compost that did not contain manure resulted in lower mean nitrate concentrations in effluent (101 versus 468 mg L?1). Media that had no soil (13.3 mg L?1) had greater loss of phosphorus after harvest for unsaturated drainage than media with soil (1.8 mg L?1). To reduce nitrate leaching, only small amounts of low-nutrient compost (higher C:N ratio) should be incorporated into the media. If compost is applied as a surface blanket without incorporation, then soil should be added to the sand to reduce density of the media and increase plant growth.  相似文献   

8.
Our contribution to Zr environmental hazard, arrived at by means of bioassays on bacteria, microscopic algae and fish, confirms the hypothesis that Zr has low toxicity. Toxic effects revealed with the Microtox test may be attributed to pH rather than specifically to Zr (5 min. EC50 > 4.3 mg L?1). Fish assays also confirmed the low toxicity of Zr (96-hr LC50 > 20 mg L?1; 96 hr minimal stress concentration > 20 mg L?1; Mutagenicity (Fluctuation test) and genotoxicity (S.O.S. Chromotest) assays failed to show any DNA-related effects linked to this metal. Only the algal assays (ATP energy stress) demonstrated genuine toxicity at Zr concentrations between 1.3 and 2.5 mg L?1.  相似文献   

9.
《Journal of plant nutrition》2013,36(9):1377-1386
Wheat (Triticum aestivum L.) cv. Sonalika was grown in refined sand at variable molybdenum (Mo) supply ranging from acute deficiency (0.00002 mg L?1) to excess (10 mg L?1). Deficiency as well as excess of Mo decreased significantly the biomass, grain yield, Mo content in leaves and seeds and activity of nitrate reductase in leaves. The effect of high (>0.02 mg L?1) Mo was more marked than its deficiency on wheat. Low and excess Mo deteriorated the quality of grains by lowering the content of starch, sugars, protein, non-protein, and total nitrogen (N) as well as that of prolamin, glutelin, and globulin fractions of seed proteins and increasing the content of albumin and electrical conductivity (EC) of seed leachate. Molybdenum deficiency and excess both resulted in production of lightweight immature seeds, poor in vigor and germination potential. The post fertilization developmental stages required one tenth of the adequate Mo supply for normal bold seed production in wheat. The values of sufficiency and threshold of toxicity in leaves were 0.13 and 1.15 μ Mo g?1 dry matter of wheat.  相似文献   

10.
Ammonium toxicity in hydroponically grown crops can affect tomato development. However, it has been shown that the silicon (Si) attenuates ammonium toxicity in plants depending on the plant species, the stage of development and the ammonium concentration in the nutrient solution. Thus, in order to investigate how Si attenuates stress caused by ammonium in tomato, a study was carried out involving plants cultivated up to 40 days after seed germination using nutrient solutions containing ammonium concentrations (1, 2, 4, 6 and 8?mmol?L?1), in the absence or presence of Si (1?mmol?L?1). The accumulation and efficiency of nitrogen and Si use, as well as the concentrations of chlorophyll, carotenoids, malondialdehyde, hydrogen peroxide and growth parameters was assessed. At a concentration of 1?mmol?L?1 ammonium, Si increases the accumulation of nitrogen and Si, the nitrogen use efficiency, the root area and dry biomass of the shoot. At concentrations of 1 and 2?mmol?L?1 ammonium, Si increases the leaf area and root dry biomass, and in higher concentrations, there was no effect of Si after the supply of ammonium. It was observed that the addition of Si mitigates ammonium toxicity by 1?mmol?L?1 ammonium, and we can recommend its use in the nutrient solution (Si?=?1?mmol?L?1) to grow tomato cropsthat employs ammonium concentration of 1?mmol?L?1.  相似文献   

11.
Numerous studies have attempted to relate the ability of microorganisms to tolerate heavy metals added to artificial media to metal concentrations found in the environment from which the microbes were originally isolated. Organic and inorganic components of artificial media, however, may bind and chelate metals, thus reducing the biological activity/potency of these metals. We varied the concentration of various components of HM (HEPES — MES) medium and determined their effects on Cd toxicity to Rhizobium leguminosarum biovar trifolii. Varying the concentrations of Ca, Mg and agar in the medium had no effect on Cd toxicity. Increasing additions of HEPES, MES, phosphate, and yeast extract significantly reduced the observed severity of Cd toxicity. When 3 mg L?1 phosphate was added to the medium, the Cd maximum resistance level (MRL) was 2 gmg mL?1. When, however, the addition of phosphate was increased to 660 mg mL?1, the MRL to Cd was 18 μg mL?1. These results clearly demonstrate that Cd toxicity to microorganisms is significantly influenced by the composition of the media used in toxicity testing.  相似文献   

12.
The effect of oil and oil products on the 5 species of crustaceans in the Caspian sea was investigated. Two species of shrimp (Palaemon elegans, P. adspersus), crab (Thithropanopeus harrisii tridentatus), amphipoda (Pontogammarus maeoticus), and cirripeda crayfish (Balanus improvisus) are classified among them. Various oil products (oil, phenol, fuel oil, xerosene, gasoline, solar oil) were used in the experiments. The influence of oil on the respiration and mass increase, quality of generation, and larval stages of the crustaceans was studied. Minimal critical concentrations for the crustaceans are 0.001 mg L?1 of fenol, 0.4 mg L?1 of oil, 0.1 mg L?1 of solar oil, 0.01 mg L?1 of gasoline and fuel oil.  相似文献   

13.
We analyzed surface waters from 30 Wisconsin lakes and rivers for total mercury ([Hg]T) and total suspended particulates (TSP) on a state-wide basis with trace-metal ‘ultraclean’ techniques. Mercury concentrations ranged from 0.3 to 2.9 ng L?1 in lakes and from 0.7 to 8.9 ng L?1 in rivers. TSP concentrations ranged from 0.9 to 6.6 mg L?1 in lakes and from 3.1 to 31.4 mg L?1 in rivers. Spatial trends were weak; however, [Hg] T was generally higher in the spring than in the autumn of 1991. Total mercury concentration was weakly dependent on TSP with the coefficient of determination (r 2) ranging 0.06 to 0.49 across seasonal and geophysical differences.  相似文献   

14.
Algal bioassay studies on the effect of F concentrations on diatoms Nitzschia palea (freshwater) and Amphora coffeaeformis (brackishwater) were conducted in the laboratory. Significant enhancement of growth occurred in N. palea at F concentrations between 10 and 110 mg L?1. In A. coffeaeformis statistically significant stimulation occurred at 70 mg L?1 F and above 90 mg L?1 F the growth declined. The results indicate that the diatom N. palea and A. coffeaeformis can tolerate high F concentration.  相似文献   

15.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

16.
In this study, interactions of nickel sulfate and urea sprays on vegetative growth, yield and leaf mineral contents in strawberry were investigated. Rooted Pajaro strawberry plants were potted in 3 liter pots filled with soil, leaf mold and sand (1:1:1, v/v/v). Established plants were foliar sprayed with nickel sulfate at 0, 150, 300 and 450 mg L?1 and urea 0 and 2 g L?1 concentrations. Results indicated that nickel (Ni; 300 mg L?1) plus urea (2 g L?1) significantly increased the yield and runner numbers. Nickel sulfate at the rate of 300 and 150 mg L?1and urea (2 g L?1) significantly increased the crown numbers. The greatest root fresh and dry weights were obtained from untreated plants. Urea at 2 g L?1 without nickel significantly increased shoot fresh and dry weights. Nickel at 450 mg L?1 without urea significantly increased Ni concentration in leaves. Overall, nickel sulfate at 150 and 300 mg L?1 along with urea at 2 g L?1 were the best treatments.  相似文献   

17.
Chromium occurs naturally at trace levels in most soils and water, but disposal of industrial waste and sewage sludge containing chromium compounds has created a number of contaminated sites, which could pose a major environmental threat. This study was conducted to enumerate and isolate chromium-resistant microorganisms from sediments of evaporation ponds of a metal processing plant and determine their tolerance to other metals, metalloids and antibiotics. Enumeration of the microbiota of Cr-contaminated sediments and a clean background sample was conducted by means of the dilution-plate count method using media spiked with Cr(VI) at concentrations ranging from 10 to 1000 mg L?1. Twenty Cr(VI) tolerant bacterial isolates were selected and their resistance to other metals and metalloids, and to antibiotics was assessed using a plate diffusion technique. The number of colony-forming units (cfu) of the contaminated sediments declined with increasing concentrations from 10 to 100 mg L?1 Cr(VI), and more severely from 100 to 1000 mg L?1 Cr(VI). The background sample behaved similarly to 100 mg L?1 Cr(VI), but the cfu declined more rapidly thereafter, and no cfu were observed at 1000 mg L?1 Cr(VI). Metals and metalloids that inhibited growth (from the most to least inhibitory) were: Hg > Cd > Ag > Mo = As(III) at 50 μg mL?1. All 20 isolates were resistant to Co, Cu, Fe, Ni, Se(IV), Se(VI), Zn, Sn, As(V), Te and Sb at 50 μg mL?1 and Pb at 100 μg mL?1. Eighty-five percent of the isolates had multiple antibiotic resistance. In general, the more metal-tolerant bacteria were among the more resistant to antibiotics. It appears that the Cr-contaminated sediments may have enriched for bacterial strains with increased Cr(VI) tolerance.  相似文献   

18.
Polybrominated diphenyl ethers (PBDEs) are highly persistent anthropogenic contaminants found in trace amounts in many environmental compartments far from their source areas, posing a risk to aquatic ecosystems. Our objective was to determine the relative toxicities of three BDEs, BDE-47, BDE-99 and BDE-154 on marine phytoplankton algae Isochrysis galbana. For a highly sensitive endpoint: the 72-h inhibition of autotrophic growth rate was calculated according to standards methods. Actual PBDE concentration was measured by GC-MS and toxicity parameters were calculated on the basis of time-weighted mean actual concentrations. No observable effect concentration (NOEC) values were 2.53???g?L?1 for BDE-47, 3.48???g?L?1 for BDE-99 and 12.3???g?L?1 for BDE-154, and LOEC values were 5.06, 6.96 and 24.60???g?L?1 for BDE-47, BDE-99 and BDE-154, respectively. The calculated IC10 (the concentration inhibiting growth rate by 10?%) corresponded to 9.3, 12.78 and 54.6???g?L?1 for BDE-47, BDE-99 and BDE-154, respectively. The 50?% inhibitions of growth rate (IC50) values were: 25.7???g?L?1 BDE-47, 30.0???g?L?1 BDE-99 and 243.7???g?L?1 BDE-154. Therefore, the acute toxicity of PBDEs decreases as the degree of bromination increases, the order of toxicity is BDE-47?>?BDE-99?>?BDE-154. Significant (p?<?0.05) adverse effects were observed for all compounds at concentrations >15???g?L?1. Our results indicated that under laboratory conditions PBDEs inhibited the growth of marine phytoplankton at concentrations near 10???g?L?1. However, further work is required to investigate long-term effects in these and other aquatic organisms.  相似文献   

19.
Chicory (Cichorium intybus L.) and dandelion (Taraxacum officinale Web.) were demonstrated to be potential indicator plants for heavy metal contaminated sites. Chicory, grown with 0.5–50 μM cadmium (Cd) in nutrient solution, accumulated 10–300 μM Cd g?1 in shoots and 10–890 μg Cd μg?1 in roots and rhizomes. With dandelion, 20–410 μg Cd μg?1 was found in shoots and 20–1360 μg Cd μg?1 in roots and rhizomes. An inverse correlation existed between chlorophyll and Cd concentrations in shoots of both species. Accumulation of Cd from nutrient solution was similar with the counter-anions SO4 2?, Cl1? and NO3 ? in chicory. In chicory grown in Cd-amended (11.2 kg Cd ha?1 applied five years previously) soils, Cd concentrations were substantially higher than in controls in all plant parts following the order: leaf > caudex > stem > root and rhizome. The above trend was the opposite of that observed in solution culture, where Cd accumulation was higher in roots and rhizomes than in shoots. Higher cadmium accumulation was found from a Cd-treated sand (Grossarenic Paleudult) than from a loamy sand (Typic Kandiudult) soil type. Chicory and dandelion are proposed indicator plants of cadmium contamination, and both have the potential to be an international standard heavy phytomonitor species of heavy metal contaminantion.  相似文献   

20.
Chronic tributyltin toxicity experiments were conducted with the following Chesapeake Bay organisms: amphipod, Gammarus sp.; juvenile Atlantic menhaden, Brevoortia tyrannus and larval inland silverside, Menidia beryllina. TBT concentrations ranging from 29 to 579 ng L?1 did not significantly affect survival of the benthic amphipod, Gammarus sp. after 24-d exposures. The weight of Gammarus exposed to control conditions was 2.8 times greater than the weight of these test organisms exposed to 579 ng L?1 TBT. Twenty-eight day exposures to TBT concentrations of 93 and 490 ng L?1 did not significantly affect survival of juvenile B. tyrannus or larval M. beryllina. Histological examinations of B. tyrannus did not demonstrate absolute effects resulting from TBT exposure due to extensive variation between individuals. Various morphometric measurements of M. beryllina after TBT exposure did not demonstrate significant effects. However, significant reductions in growth were reported for M. beryllina at both TBT concentrations. Environmental concentrations of TBT in Chesapeake Bay and possible effects on the above biota are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号