首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three grazing experiments were carried out in late spring (early lactation), summer (mid‐lactation) and autumn (late lactation) to compare the effects of perennial ryegrass cultivar or grass species, sown in binary or multispecies mixtures, on milk yield and nitrogen excretion of dairy cows. Replicated groups of multiparous Holstein Friesian × Jersey cows were offered either a control or high‐sugar perennial ryegrass (Lolium perenne) or tall fescue (Festuca arundinacea) base grass in a binary mixture with white clover (Trifolium repens) or in a multispecies mixture with additional legumes, bromegrass (Bromus willdenowii) and forbs. During each 9‐day experiment, botanical composition, milk production and faecal and urine composition were measured. Milk solid (MS) yield for the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 1.53, 1.64 and 1.70 kg MS cow?1 day?1 for a binary mixture sward, compared with 1.65, 1.54 and 1.53 kg MS cow?1 day?1 for a multispecies sward. Legume content influenced milk production more than the number of species present in a mixture. There was lower urine N concentration from a multispecies sward compared with a binary mixture. Urine N concentration of cows grazing the control ryegrass, high‐sugar ryegrass and tall fescue grass types averaged, respectively, 4.6, 5.3 and 6.8 g N L?1 for a binary mixture, compared with 4.1, 3.9 and 3.9 g N L?1 for a multispecies mixture. Feeding dairy cows on multispecies swards containing forbs presents an opportunity to reduce N losses without compromising milk yield.  相似文献   

2.
An experiment was carried out to examine the effect of supplementation on the performance of spring-calving dairy cows grazing swards of differing perennial ryegrass and white clover content. Seventeen heifers and sixty-four Friesian cows in their third to ninth week of lactation were turned out onto one of three pastures with different proportions of perennial ryegrass and white clover. Nine animals on each pasture received either 0, 2 or 4 kg d−1 of a concentrate with a crude protein concentration of 180 g kg−1 dry matter (DM). Prior to grazing, swards contained proportionately 0·01 (L), 0·15 (M) and 0·20 (H) of total DM as clover. During the experiment, grazing pressures were adjusted by movement of buffer fences to maintain compressed sward heights at 6 cm. Samples taken 26 and 68 d after the start of grazing showed little change in the proportion of clover in sward L (< 0·01 and 0·02 respectively), but convergence in the proportion of clover in swards M and L (0·08-0·16 and 0·10-0·15 respectively). Mean daily yields of milk, fat, protein and lactose increased significantly with increased clover content and, even without supplementation, daily yields were 25·4, 0·98, 0·73 and 1·09 kg respectively on sward H. Of the milk components, only protein was significantly increased by increasing sward clover content. The response in milk yield to supplementation was greater on sward L than on swards M and H.  相似文献   

3.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

4.
Management of beef cows grazing extensively grazed semi-natural pastures in temperate regions in late autumn can require supplements to be offered. The effects of supplementation with soya bean meal on the diet selected by Charolais cows and on their subsequent performance were examined for an 8-week period in late autumn in 2 years. Three groups of eight cows were compared: non-supplemented dry cows (D), non-supplemented (L) and supplemented (LS) lactating cows. The amount of soya bean meal supplement offered per cow was 250 g d−1 in year 1 and 800 g d−1 in year 2. Dietary choices were measured by direct observations and herbage intake was estimated in year 2. Supplementation affected neither diet selection (L: 0·42 vs. LS: 0·43 for the proportion of bites on green patches in year 1; 0·24 vs. 0·22 in year 2) nor daily organic matter intake of herbage (L: 15·6 vs. LS: 15·9 kg d−1), which may have resulted from an adequate crude protein concentration of herbage. The higher total dry matter intake by cows offered the supplement reduced losses in live weight (L: −1212 vs. LS: −828 g d−1; P  < 0·01) rather than increased milk production (L: 5·1 vs. LS: 5·0 kg d−1). This may be linked to the low milk yield potential of the Charolais cows. The use of lactating cows rather than dry cows for pasture management in late autumn would increase the utilization of herbage but a reduction in liveweight losses of cows by supplementation is unlikely to be economic.  相似文献   

5.
Enhancing pasture persistence is crucial to achieve more sustainable grass‐based animal production systems. Although it is known that persistence of perennial ryegrass is based on a high turnover of tillers during late spring and summer, little is known about other forage species, particularly in subtropical climates. To address this question, this study evaluated survival of grazed tall fescue tillers growing in a subtropical climate. We hypothesized that hard tactical grazing during winter to remove reproductive stems (designated as ‘flowering control’), and nitrogen fertilization in spring, would both improve tiller survival over summer, and thus enhance tiller density. This was assessed in two experiments. In both experiments, few tillers appeared during late spring and summer and so tiller density depended on the dynamics of vegetative tillers present in the sward in spring. In Experiment 2, flowering control and nitrogen fertilization both enhanced the survival of that critical tiller cohort, but the effects were not additive. Responses were similar but not statistically significant in Experiment 1, which had a warmer, drier summer and lower overall survival rates. Unlike grasses in temperate environments, persistence of tall fescue in this subtropical site appeared to follow a ‘vegetative pathway’; i.e., new tillers were produced largely in autumn, from vegetative tillers that survived the summer.  相似文献   

6.
The contribution of four classes of sward height to daily herbage growth rates of a heterogeneous sward in eight periods throughout a grazing season was investigated in two continuous cattle-grazing systems differing in intensity (moderate stocking rate: MC; lenient stocking rate: LC). At the beginning and end of periods of 12 to 28 d, the compressed sward height (CSH) was measured in exclusion cages at eighteen fixed points per cage to derive daily growth rates for the four classes of sward height. Stratified calibrations were made to relate sward height to herbage mass for each treatment in each period. Quadratic regressions described the relationship between herbage growth rate and initial CSH for each treatment in each period. For scaling up to the scale of the plot, CSH was measured monthly at 100 points per plot. Daily herbage growth rates declined from more than 100 kg dry matter (DM) ha−1 d−1 on both treatments at the beginning of the grazing season to 20 kg DM ha−1 d−1 or less, especially on treatment LC. This was due to the larger area covered by tall herbage on treatment LC than on treatment MC. On treatment MC, daily herbage growth rate was predominantly derived from short sward areas of up to 12 cm in height while sward areas taller than 12 cm contributed most to daily growth rates on treatment LC in early summer. The method used is considered suitable for estimating daily herbage growth rates of different classes of sward height in extensively managed pastures and can easily be adapted to deal with more heterogeneous swards than used in this study.  相似文献   

7.
Changes in the crude protein (CP) concentration of white clover and perennial ryegrass herbage from a mixed sward were determined on six sampling dates from May to October in each of 2 years. The swards were grown without fertilizer N in an organic farming system and continuously grazed by dairy cows during the grazing season. The annual mean contents of white clover in the dry matter (DM) of the sward were 272·3 and 307·0 g kg−1 in Years 1 and 2. The mean CP concentrations of the white clover and perennial ryegrass herbage were 251·6 and 151·9 g kg−1 DM in Year 1 and 271·9 and 174·0 g kg−1 DM in Year 2 respectively. The CP concentration of the white clover increased significantly during the grazing season from 220·0 to 284·1 g kg−1 DM in Year 1 and from 269·0 to 315·5 g kg−1 DM in Year 2. In the perennial ryegrass herbage the CP concentration increased from 112·2 to 172·6 g kg−1 DM in Year 1 and from 142·7 to 239·5 g kg−1 DM in Year 2. The rate of increase during the season in the CP concentration of the perennial ryegrass herbage was similar to the rate of increase recorded in the white clover herbage.  相似文献   

8.
Leafy strains of five grasses were grown for seed and subjected to various cattle grazing treatments between October and April for three harvest years. The grasses were: S.143 cocksfoot, S.215 meadow fescue, S.170 tall fescue, S.59 red fescue and S.23 perennial ryegrass. All but S.59 red fescue (row crop) were studied as row and broadcast crops. The plots were sown under an arable silage crop and received top dressings of nitrogenous fertiliser every year. Yield of seed, and also quantity of herbage in winter, were measured.
October grazing in the seeding year reduced the first crop of seed in all species except ryegrass. Grazing in December improved the yield of meadow fescue throughout the experiment, and of cocksfoot, tall fescue and red fescue after the first year. Several factors might operate to bring about this effect; suggestions are made for further investigation. Repeated grazing from December to March tended to reduce vigour, and so to offset the advantage of removing autumn-grown herbage. Grazing at intervals from December to late April seriously reduced yield in all species. Tall fescue and red fescue, early flowering species, were most seriously affected, meadow fescue and perennial ryegrass least. Cocksfoot and tall fescue yielded more seed when grown in 2-ft. rows than when broadcast. Meadow fescue and perennial ryegrass did not. The yield of meadow fescue was less affected by adverse conditions than cocksfoot.  相似文献   

9.
Field indicators of forage nutritive value could help farmers with rapid management decisions to optimize timing and intensity of grazing and meet objectives regarding animal nutrition. The objective of this research was to evaluate the likely relationships among leaf blade nutritive value, herbage mass and leaf stage of pasture regrowth under different growing seasons and residual sward heights. Experiments were performed on perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) pastures during spring and summer of 2016. In both pastures, three residual sward height treatments (3, 6 and 12 cm) were imposed on plots arranged in a split plot design, replicated in three blocks. Sward plots were harvested 5–6 times at intervals spaced 7–10 days apart to measure herbage mass, plant morphology, neutral detergent fibre (NDF), and the 24-hr in vitro digestibility of NDF (NDFD) and dry matter (DMD) of leaf blades. Pastures showed strong (R2: .62 to .70), but variable, negative relationships between NDFD and herbage mass that varied with the rate at which pasture grew in each season of experimentation. Although there was a consistent NDFD decline as leaf stage of regrowth progressed (R2: .75 to .97), the NDFD also decreased as residual sward height increased, most notably in tall fescue. Additionally, findings indicate that the greater leaf length plasticity of tall fescue compared to residual sward heights may offer opportunities to manage both post- and pre-grazing targets to achieve tall fescue forages with a similar high nutritive value as perennial ryegrass. However, the evaluation of this hypothesis at the farm level and its impacts on animal intake and performance warrants further careful investigations.  相似文献   

10.
The objective of this study was to investigate the effects of an early (February; F) or delayed (April; A) primary spring grazing date and two stocking rates, high (H) and medium (M), on the grazing management, dry matter (DM) intake of grass herbage and milk production of spring‐calving dairy cows grazing a perennial ryegrass sward in the subsequent summer. Sixty‐four Holstein‐Friesian dairy cows (mean of 58 d in milk) were assigned to one of four grazing treatments (n = 16) which were imposed from 12 April to 3 July 2004. Cows on the early spring‐grazing treatment were grazed at 5·5 cows ha?1 (treatment FH) and 4·5 cows ha?1 (treatment FM) while cows on the late‐grazing treatment were grazed at 6·4 cows ha?1 (treatment AH) and 5·5 cows ha?1 (treatment AM). The organic matter digestibility and crude protein concentration of the grass herbage were higher on the early‐grazing treatment than on the late‐grazing treatment. The cows on the FM treatment had significantly (P < 0·001) higher milk (24·5 kg), solids‐corrected milk (22·5 kg), fat (P < 0·01, 918 g) and protein (831 g) yields than the other three treatments. Cows on the FM treatment had a higher (P < 0·001) DM intake of grass herbage by 2·3 kg DM per cow per day than cows on the AH treatment, which had a DM intake significantly lower than all other treatments (15·2 kg DM per cow per day). The results of the present study showed that grazing in early spring has a positive effect on herbage quality in subsequent grazing rotations. The study also concluded that early spring‐grazed swards stocked at a medium stocking rate (4·5 cows ha?1; FM) resulted in the highest DM intake of grass herbage and milk production.  相似文献   

11.
A straw/concentrate mixture was offered to set-stocked dairy cows over a 24-week period. The cows were offered grazed herbage only (G), or grazed herbage with a straw/concentrate supplement offered either for 45 min after each milking (B), or overnight (P). The overnight treatment involved housing the cows between afternoon and morning milking. The straw/concentrate mixture contained 0·33 long barley straw, 0·28 barley, 0·12 soya bean meal, 0·25 molaferm and 0·02 minerals. During the first 8 weeks of the experiment an average of 2·25 kg of concentrate were fed, and from weeks 9–24, 2·0 kg of concentrate were fed.
The feeding of the straw/concentrate mixture led to a decrease in estimated herbage dry matter (DM) intake, particularly for treatment P. Estimated total DM intakes were increased throughout the experiment by offering the straw/concentrate mixture. However, total metabolizable energy (ME) intakes were only increased in mid-and late season.
Milk yield was higher in early season for treatment G; 28·1 kg d−1 compared to 26·8 kg d−1 and 25·5 kg d−1 for treatments B and P respectively. In late season the cows in treatment G had lower milk yields; 13·3 kg d−1 compared to 15·5 kg d−1 and 16·8 kg d−1 for treatments B and P respectively. Milk fat content was increased in early season in treatment P, and milk protein content tended to be reduced throughout the experiment for cows offered the straw/concentrate mixture overnight. Over the whole experiment there were no differences in yield of milk solids.  相似文献   

12.
The content of ergot alkaloids (ergovaline and chanoclavine), and their production in October 1996 and during the period May–September 1997, were investigated in seventeen ecotypes of perennial ryegrass ( Lolium perenne L.) and in nineteen ecotypes of meadow fescue ( Festuca pratensis Huds.), naturally infected with Neotyphodium spp. The ecotypes were collected in the north-eastern part of the Czech Republic. In 1996 the content of ergovaline in the ecotypes of perennial ryegrass ranged from 0·00 to 2·73 μg g–1 dry matter (DM) (one cut), and in 1997 from 0·00 to 4·65 μg g–1 DM (five cuts). In meadow fescue the content of ergovaline varied from 0·00 to 0·61 μg g–1 DM (one cut) in 1996, and in 1997 from 0·00 to 2·31 μg g–1 DM (five cuts). The content of chanoclavine (investigated in 1997 in four cuts only) in perennial ryegrass ranged between 0·00 and 3·39 μg g–1 DM, and in meadow fescue between 0·00 and 2·26 μg g–1 DM. Most ecotypes of L. perenne reacted to the high temperature and heavy rainfall in June and July of 1997 with an enhanced production of ergovaline, whereas the content of chanoclavine was not changed. Such reaction to stress conditions was not observed in the ecotypes of F. pratensis. Large differences in the production of both ergot alkaloids between different ecotypes of both plant species were observed.  相似文献   

13.
Swards based on a mixture of SI 70 tall fescue and S215 meadow fescue were very early in spring, gave high yields for conservation in mid-season and, rested from mid-August, gave good grazing in November-December. Under this treatment, the tall fescue assumed dominance, and the swards were persistent and remained productive. The digestibility of the tall fescue swards was always higher than that of swards based on cocksfoot with which they were compared. During spring and autumn the former sward was better grazed by stock, but the position was reversed in mid-summer. Cattle grazing tall-fescue-dominant swards made better liveweight gains than those grazing cocksfoot swards during November-December.  相似文献   

14.
The effects of severity of grazing on the herbage intake and milk production of continuously stocked British Friesian cows calving in February–March were examined in three experiments conducted in the years 1976–78 (experiments 1–3 respectively) using a put-and-take technique. In experiment 1 four grazing severities were imposed by maintaining swards with different herbage masses (2500, 3000, 3500, 4000 kg OM ha-1); in experiments 2 and 3 there were two severities of grazing maintained by keeping swards canopies at constant heights of 5 and 7 cm (experiment 2) and 5 and 7·2 cm (experiment 3). Cows were reallocated to treatment every 8 weeks in experiments 1 and 2 and there were three periods, whereas they all grazed throughout a 23-week period on the same treatment in the final trial.
A decrease in the quantity of herbage on offer or in sward height reduced herbage intake and milk production in all experiments. Mean daily herbage OM intakes were 11·2, 12·2, 12·2 and 12·2 kg respectively in experiment 1, 12·2 and 13·2 kg respectively in experiment 2 and 12·2 and 152 kg respectively in experiment 3. Mean daily solids–corrected milk yields were 14·2, 15·2, 15·2 and 16·2 kg respectively in experiment 1, 14·2 and 16·2 kg respectively in experiment 2 and 12·2 and 17·2 kg respectively in experiment 3. It was apparent from the data obtained in the first two trials that grazing at a sward canopy height of 7 rather than 9 cm had little effect, but that at 5 cm there were significant depressions in both herbage intake and milk production. Milk yield was depressed to a greater extent when cows were kept on the same treatment for the whole season.  相似文献   

15.
Tall fescue (Festuca arundinacea Schreb.) is currently seldom used in the high‐rainfall (>600 mm) zone of south‐eastern Australia. To determine its potential to improve forage availability during the summer‐autumn feed‐deficit period, a field plot‐scale experiment with sheep evaluated a Continental cultivar of tall fescue (cv. Quantum) at Hamilton, Victoria, between September 2006 and January 2009. Four grazing treatments represented set stocking or rotational grazing at the two‐, three‐ or four‐leaf stage, in a completely randomized design with three replications. Grazing treatment effects on tall fescue tiller population dynamics, forage accumulation rates and consumption, sward nutritive value and botanical composition were measured. Results showed tall fescue can persist and support year‐round grazing by sheep, subject to water availability for summer growth from summer rain or on moisture retentive heavy soils. During the summer‐autumn (December–April) vegetative phase, grazing at the three‐leaf stage optimized forage consumption, with no difference in feed value or botanical composition between the grazing treatments during these months. During the reproductive phase (September–November), feed value was highest under set stocking and declined with the production of each successive leaf. Grazing at the three‐ or four‐leaf stage prevented winter weed invasion, but winter forage consumption was low in these treatments. Set stocking or grazing at the two‐leaf stage improved winter forage consumption rates, but these swards were invaded by winter growing weeds.  相似文献   

16.
Diet selection from ryegass-and prairie grass-white clover swards, vertically stratified into three horizons (A > 6 cm, B 3–6 cm, C > 3 cm), was studied using oesophageally fistulated sheep during summer and autumn. Animals grazed for 3-day periods. Apparent herbage intake was calculated from total herbage disappearance. The composition of each horizon and of the diet selected was measured daily.
Herbage mass (DM ha-1) and sward height (cm) prior to grazing were not significantly different between swards in each season, and were 2·0 and 20 in summer and 1·6 and 10 in autumn. In summer, 36% and 5% of the green grass leaf (GGL) for prairie grass and ryegrass, respectively, was distributed in horizons A and B. In autumn 39% and 29% of GGL occurred above 3 cm for prairie grass and ryegrass, respectively. GGL distribution determined which sward horizons were grazed. Sheep grazed horizon C (0–3 cm) of summer ryegrass pasture, and the surface canopy (>3 cm) of all other swards.
In summer, apparent intake achieved by sheep grazing prairie grass swards was 87% higher than that achieved on ryegrass swards. In autumn a greater GGL distribution above 3 cm with prairie  相似文献   

17.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

18.
The dry matter (DM) yield and herbage quality of swards of sainfoin ( Onobrychis viciifolia ), meadow fescue ( Festuca pratensis ,) and tetraploid perennial ryegrass ( Lolium perenne ) grown in monocultures and in four sainfoin:grass mixtures (0·33 sainfoin:0·66 meadow fescue, 0·66 sainfoin:0·33 meadow fescue, 0·33 sainfoin:0·66 perennial ryegrass and 0·66 sainfoin:0·33 perennial ryegrass), established by direct sowing or undersowing in spring barley, were investigated over 3 years in a field experiment in the UK. Direct sowing produced a mean yield across all species and mixtures of 1·8 t DM ha−1 in the establishment year, whereas undersowing produced no measurable yield except for that of the spring barley. Undersowing reduced the yields of sainfoin and sainfoin-grass mixtures in the first full-harvest year but not in the second. The annual yield of a monoculture of sainfoin was 7·53 t DM ha−1 and that of sainfoin-grass mixtures was 8·33 t DM ha−1 averaged over 3 years. Both sainfoin and the sainfoin-grass mixtures had higher annual DM yields than the grass monocultures. The mixture of 0·66 sainfoin:0·33 meadow fescue gave the highest mean annual yield (9·07 t DM ha−1) over the 3 years. There was a higher proportion of sainfoin maintained in mixtures with perennial ryegrass than with meadow fescue. The proportion of sainfoin in sainfoin–meadow fescue mixtures declined from 0·62 in the first year to 0·32 in the third year, whereas the proportion in sainfoin–perennial ryegrass increased from 0·48 in the first year to 0·67 in the second year and remained stable in the third year.  相似文献   

19.
Over a 24-week period, three groups of dairy cows were continuously stocked at 8, 10 or 12 cows ha-1 between morning and afternoon milkings, and overnight were housed and offered grass silage ad libitum. Due to a prolonged drought, sward heights only averaged 4·1 cm.
The increase in daytime stocking rate led to a decline in herbage intake, and increases in silage intake. At the highest stocking rate (12 cows ha-1), the silage intake failed to compensate for the reduced herbage intake. Consequently the total dry matter and estimated metabolizable energy intakes were lower than for the 8 and 10 cows ha-1 treatments. Milk yields and milk composition were not significantly affected by treatment but the 12 cows ha-1 stocking rate gave the lowest milk and milk solids yields.
The utilized metabolizable energy (UME) on the grazed swards was greatest for the 10 cows ha-1 treatment. The sward cut to provide the silage had a UME level (GJ ha-1) 32% greater on average than the grazed swards during the same growth period. The total areas utilized for grazing and silage production for 8, 10 and 12 cows ha-1 were 0·240, 0·224 and 0·215 ha respectively. Fat and protein yields per unit area were greatest for the 10 cows ha-1 group.  相似文献   

20.
Models to predict herbage intake were constructed using 168 dairy cow records from three grazing experiments. Variables included fell into three categories: animal state, sward state and animal behaviour. Linear regression models of varying complexity were obtained by removing variables from the best fitting model to reflect progressive lack of information availability on farms. Thus, behavioural variables were removed first, followed by sward surface height and milk fat concentration. Models were subject to outlier analysis and collinearity tests. Equivalent models were constructed using ridge regression to minimize collinearity problems. They were tested using 20 Holstein–Friesian dairy cows continuously stocked on a perennial ryegrass sward. A `best practice' treatment [7 cm sward surface height (SSH), 6 kg day−1 concentrate (C)] was used together with treatments of SSH5/C6, SSH7/C8, SSH7/C0 and SSH9/C6. The best model accounted for 0.37 of the variance in the estimation data and contained the following variables: concentrate intake, milk yield, milk fat concentration, days in milk, sward surface height and chewing rate while ruminating. Model performance against test data was generally poor. This was mainly because of consistent underprediction of herbage intake, caused in part by the higher average herbage intakes in the test data compared with the estimation data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号