首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phosphate status of chernozem-like soils in the northern forest steppe of the Tambov Lowland depends on soil waterlogging and hydrological conditions. Due to surface waterlogging and free effluent seep-age in podzolized, chernozem-like soils of open watershed depressions, the removal of bases and iron decrease the total phosphorus content by 10–15% because of the decrease in active mineral phosphates. Organic matter acts as a buffer preventing phosphorus from leaching. In podzolized, chernozem-like and podzolic, gleyic soils of closed watershed depressions, significant amounts of iron phosphates are accumulated in fine earth and ortsteins due to surface waterlogging and difficult effluent seepage. Under ground waterlogging, calcium phosphates prevail in the composition of active mineral phosphorus in the gleyed, gleyic, and gley chernozem-like soils of above-floodplain terraces.  相似文献   

2.
Specific features of the genesis of chernozem-like, solonetzic chernozem-like soils, and hydromorphic chernozem-like solonetzes were investigated on the southern Tambov Plain. Typical chernozems occupy well drained areas. The yield of cereals is limited by the amount of precipitation. On the flat surface of weakly drained watersheds, deeply gleyed chernozem-like soils are formed under the influence of bicarbonate-calcium ground water and water stagnation on the plow sole. In closed depressions with the 1.5- to 2.0-month long stagnation of surface water on the compact lower horizons, podzolized gleyic chernozem-like soils are formed. They have favorable physical properties, weak eluvial differentiation, and rather high acidity. In humid and moderately humid years, the cereals on these soils are waterlogged; in dry years, their yield increases by 20% as compared to that on the typical chernozem. In the low undrained areas of the watersheds, solonetzic chernozem-like soils and hydromorphic chernozem-like solonetzes are formed under the influence of bicarbonate-sodium water. Despite the unfavorable physical properties of the solonetzic horizons, their better supply with moisture determines the possibility to obtain stable high yields of cereals on the solonetzic chernozem-like soils. The productivity of the gleyic chernozem-like solonetzes is low irrespective of the humidity of the year.  相似文献   

3.
On the interfluves and in small depressions of the Ryazan forest-steppe, under periodic stagnation of surface water, acid chernozem-like soils with a relatively thick humus horizon, podzolic horizons, and marble-colored gleyed B1 and B2 horizons are formed. The eluvial horizons of these soils contain Mn-Fe nodules, and dark humus coatings occur in the illuvial horizons. In the spring, the eluvial horizons of these soils are excessively moistened and gravitational water stagnates on the soil surface for 3–4 weeks. The formation of the acid light-colored eluvial horizons of the soils on leached rocks is related to gleying under the conditions of the stagnant-percolative regime. Their total thickness is 15–25 cm and more. According to the properties of their solid phase, these horizons are similar to the podzolic horizons of soddy-podzolic gleyed soils. These soils have not been represented in the classification systems of soils of the USSR and Russia. Based on the principles of the substantial-genetic classification, one of the authors of this article [9] referred this soil to gleyed podzolic chernozem-like soils, thus, considering it as an individual genetic soil type. The gleyed podzolic chernozem-like soils differ from the leached chernozems by their low productivity and difficulty of tillage. In humid and moderately moist years, the death of crops or a reduction in yield are probable because of the excess of moisture.  相似文献   

4.
Depending on conditions of formation, solods should be differentiated into two groups: solods of ground overmoistening and solods of surface overmoistening. Criteria are offered to distinguish soils according to the ratio between the clay in the B2 horizon and that in the A2 horizon, as well as according to the changes in the soil pH. Formation of gley under conditions of stagnant to percolative water regime is a necessary and sufficient cause for light-colored acid eluvial horizons to form in their profile. In the main properties of the solid phase (acidity, total chemical composition, and distribution of silt), gley solods are identical to soddy-podzolic and chernozem-like podzolic gley soils.  相似文献   

5.
Chemical properties of chernozem-like soils in closed depressions on different relief elements in the northern part of the Tambov Plain differ significantly. The soils with podzolic features in depressions on the watershed have a high acidity and a low degree of base saturation. The soils on the above-floodplain terrace are neutral and saturated with bases. When the degree of moistening increases, the share of magnesium in the total exchangeable bases increases to 30–35%. In the soils of surface flooding under gleyzation conditions, iron is leached from the fine earth, and iron nodules are formed. In the soils formed under the impact of groundwater, iron diffusion is observed in the surface layers. In the podzolic horizons of soils on the watershed, humus acquires a fulvic-humic character. In the soils formed under the impact of groundwater and water stagnation conditions typical for gleyed soils, the Cha: Cfa ratio is higher than 1.  相似文献   

6.
The properties, hydrological features, and genesis of the solods occurring in the Baraba Lowland and Priobskoe Plateau were studied. Methods for determining the hydromorphism degree are considered; the features of the similarity and differences between the solods and other soils with textural profile differentiation are shown. Depending on the reasons for the waterlogging, the solods should be divided into two groups: the solods of groundwater waterlogging and the solods of surface waterlogging. Criteria for their discrimination are suggested: the ratio between the contents of the clay fraction in the parent rock (or in the B2 horizon) and that in the A2 horizon, the changes in the pH values along the soil profiles, and the content of nonsilicate iron compounds. The solods studied are shown to be formed under the conditions of a stagnant-percolative regime and gleying. This circumstance is an obligatory and sufficient reason for the formation of the light-colored acid eluvial (A2) horizons. According to some basic properties of the soil solid phase (the acidity, the total chemical composition, and the clay pattern in the eluvial part), the gleyed solods are close or identical to the gleyed soddy-podzolic and gleyed chernozem-like podzolic soils. At the same time, the solods differ from the gleyed chernozem-like podzolic soils by their thicker A1 (or Ap) horizon and their higher humus content (5–7%).  相似文献   

7.
Chernozem-like soils with light-colored acid eluvial horizons are widespread in the forest-steppe zone of European Russia. Their formation is related to gleying under the conditions of a stagnant-percolative water regime on leached rocks. It is closely associated with the evolution of salinized soils (Gedroits’s scheme). However, these soils have not been included in the soil classifications of the Soviet Union and Russia. Based on the principles of substantial-genetic classification, one of the authors of this article [3–5, 10] referred them to gleyed podzolic chernozem-like soils, which are considered as an individual genetic soil type. With respect to agroecological aspects, they are different from the leached chernozems in their low productivity and difficulty of tillage. This article covers the problems of genesis, classification, and melioration of gleyed podzolic chernozem-like soils in the north of the forest-steppe zone of European Russia and their possible association with dark-colored podbels.  相似文献   

8.
In Perm, alluvial soils are strongly contaminated with heavy metals (Zn, Cu, and Ni, in particular) due to the ingress of liquid sewage. The concentration of a number of chemical elements is far higher in Fe-rohrensteins (tubular concretions around plant roots) of alluvial soils as compared to the fine earth. Ni and Cu are associated with Fe in rohrensteins of alluvial soils. The soddy-podzolic soils are in general less contaminated at a distance of 30 km to the northwest of Perm. Their contamination results from aerosols emitted by Perm industrial enterprises. Fe-Mn nodules that concentrate Ni and As are formed in hydromorphic podzolic soils. Mn oxides represent a separate phase carrying heavy metals and metalloids (manganophiles). Oxianions (As, Cr, and P) are closely bound to Fe in nodules, which are formed because of the alternating redox regime in soddy-podzolic soils. However, oxianions are not associated with Fe in rohrensteins of alluvial soils.  相似文献   

9.
The composition of humus in leached chernozems differs from that in gleyed podzolized chernozem-like soils in the northern forest-steppe zone of European Russia. Leached chernozems have the fulvate-humate humus. Gleyed podzolized chernozem-like soils have the humate-fulvate humus. A more aggressive composition of humus in the latter soils is caused by their overwetting and the development of gley processes under conditions of a stagnant-percolative soil water regime.  相似文献   

10.
Along with Fe and Al, many heavy metals (Mn, Cr, Zn, Cu, and Ni) show a markedly pronounced eluvial-illuvial redistribution in the profiles of soils of the podzolic group. The intensity of the redistribution of the bulk forms of these metals is comparable with that of Fe and exceeds that of Al. Although the podzolic soils are depleted of rare-earth metals, the latter respond readily to soil podzolization. The inactive participation of Al is explained by an insignificant portion of the active reaction-capable fraction. Podzolization does not influence the profile distribution of Sr and Ba. The leaching degree of heavy metals such as Mn, Cr, Zn, Ni, and Zr is noticeably higher in the sandy podzols than in the loamy podzolic soils. Leaching of heavy metals from the podzolic horizons is of geochemical importance, whereas the depletion of metals participating in plant nutrition and biota development is of ecological importance. The leaching of heavy metals is related to the destruction of clay particles in the heavy-textured podzolic soils; the effect of the soil acidity on the leaching of heavy metals is less significant.  相似文献   

11.
An attempt is made to formulate general regularities of changes in the amount and composition of Mn‐Fe conoretions in soils of humid landscapes, confined to various soil‐forming rocks within the Russian platform. It is concluded, that the intensive formation of concretions is highly conditioned by waterlogging degree of soils and their hydrological regime. The content of concretions is always maximum in gley‐like soils (seldom in gley ones), independing on genesis of parent rocks; the fraction distribution of Mn‐Fe concretions proves to be stable in time; Mn amount is declined with increasing the waterloggiing degree of soils, while the content of Fe becomes increased; the highest accumulation of such microelements as Co, Pb, Cd is observed in concretions, which are rich in Mn. The concretions are characterized by a high amount of X‐ray‐amorphous Fe as well as by a low magnetic susceptibility. The chemical composition of concretions is shown to be preferable for quantitative diagnosis of the water‐logging degree in soils.  相似文献   

12.
Specific features of the genesis and water regime of soils in closed depressions were studied in two catenas located on the interfluvial and terrace surfaces. In humid years and in the years with moderate precipitation, the surface flooding up to early May reduced the Eh values up to 60–100 mV in the soils of the interfluvial depressions. The contrasting stagnant-percolate water regime under the surface waterlogging caused podzolization of the soils manifested in the skeletans, iron nodules, humus cutans, and podzolic horizons. The pro-files acquired eluvial-illuvial differentiation, and the water-physical properties of the soils became less favorable. In the soils of the terrace depressions upon bogging due to the shallow ground water and stagnation of water up to mid-July, the Eh values decreased to ?20 to ?80 mV. The reductive conditions were responsible for the appearance of the morphochromatic signs of gley. The ground water of bicarbonate-calcium composition at a depth of 80–120 cm hindered podzolization. The soils with features of gley and podzolization are low-productive.  相似文献   

13.
General ideas concerning the formation of light-colored acid eluvial horizons in soil profiles are considered. In Russia, the current concept is related to the polygenetic origin of these horizons due to processes of acid hydrolysis, lessivage, and gley. Based on the original and literature data summarized by the author, the conclusion was drawn that the acid hydrolysis cannot provide the reduction of Fe (III) to Fe (II) under aerobic conditions or its further transfer to the soil solution. Lessivage, which governs the formation of light-colored acid eluvial horizons, is not an obligatory factor, as its features are often absent in the profile of these soils. Under conditions of a stagnant-percolative water regime, gley may be considered to be the only process responsible for the eluviation of Fe, Mn, and Al and removal of iron hydroxide and iron oxide coatings from mineral grains, resulting in an increase in the relative Si content and the appearance of a whitish color. This factor is the only cause for the formation of light-colored eluvial (podzolic) horizons. Therefore, they are monogenetic in origin.  相似文献   

14.
It is estimated that half the soil carbon globally is in the subsoil, but data are scarce. We updated estimates of subsoil organic carbon (OC) in England and Wales made by Bradley et al. (2005) using soil and land‐use databases and compared the results with other published data. We estimated that the soils of England and Wales contained 1633, 1143 and 506 Tg of OC at 0–30, 30–100 and 100–150 cm depths, respectively. Thus, half of the soil OC was found below 30 cm depth. Peat soils accounted for the largest proportion, containing 44% of all the OC below 30 cm despite their small areal extent, followed by brown soils, surface‐water gley soils, ground‐water gley soils and podzolic soils. Peat soils had more than 25% of their profile OC per unit area in the 100–150 cm depth, whereas most other soils had <8% at this depth. The differences between soil types were consistent with differences in soil formation processes. Differences in depth distributions between land uses were small, but subsoil OC stocks in cultivated soils were generally smaller than in soils under grassland or other land uses. Data on subsoil OC stocks in the literature were scarce, but what there was broadly agreed with the findings of the above database exercise. There was little evidence by which to assess how subsoil OC stocks were changing over time.  相似文献   

15.
A system for the diagnostics of chernozemic soils of the Tambov Lowland based on concretions is proposed for agricultural and reclamation purposes. The relationships between the structure and composition of the carbonate concretions, the long-term water regime of the soils, and the productivity of the crops have been established. The dense concretions in the typical chernozem testify to the depth of the seasonal wetting; the angular-rounded concretions in the deeply gleyed chernozem-like soil, to the upper boundary of the capillary fringe; and the angular concretions with sharp edges and cavities in the gleyic chernozem-like soils, to the groundwater table. In the chernozem-like soils that were waterlogged with bicarbonate-sodium water, the black angular concretions were formed in the solonetzic horizons, while the weakly compacted light-colored ones, in the zone of the capillary fringe. Humic acids were responsible for the color of the dark neoformations, and fulvic acids predominated in the light-colored ones. The appearance of black fine nodules indicated periodic surface water stagnation. Manganese predominantly accumulates in these nodules. The structure of the Mn-Fe concretions in the plow horizon observed at a magnification of 40–50 times has a diagnostic importance. The short-term (2–3 weeks) water stagnation leads to the formation of fine-stratified concretions, and the long-term (up to 1.5 months) stagnation promotes the formation of uniform porous ones. The solonetzic process induced by the bicarbonate-sodium water results in the appearance of mottled concretions.  相似文献   

16.
Three simple factors ‐ excessive moistening, anaerobic microflora and organic matter, are indispensable and sufficient conditions for gley formation. This process is always characterised by a non‐silicate iron loss from the soil fine earth or soil plasma. Gley formation takes place under conditions of stagnant or stagnant‐percolative water regimes.

In the second case gley formation induces a drastic acidification of the mineral soil part, lessivage, removal of iron, aluminium, calcium, magnesium, bleaching of the soil fine earth, and it appears the features of soil with eluvial, acid, bleached horizons. Therefore soils with such horizons should be regarded as manifestations of gley formation in conditions stagnant ‐percolative water regime on acid, neutral or leached parent material. Under influence of stagnant water regimes Fe of mineral substrat is removed and unconsiderable eluviation of Ca and Mg takes place. pH of parent material does not change or has the trend to increase. In this case does not arise a soil with bleached horizons.  相似文献   

17.
In the northern forest-steppe of European Russia, under the conditions of surface waterlogging (freshwater) and a stagnant-percolative regime, gleyic podzolic chernozem-like soils with thick light-colored eluvial horizons are formed. These horizons are close or similar to the podzolic horizons of bog-podzolic soils in many properties of their solid phase. They are bleached in color and characterized by the removal of Ca, Mg, Fe, Al, and Mn and the relative accumulation of quartz SiO2. These soils differ from leached chernozems in their acid reaction and very low CEC, the presence of Fe-Mn concretions and coatings, and the significant decrease in the clay content in the A2 horizon as compared to the parent rock. The soils studied differ significantly from loamy podzolic and bog-podzolic soils by the composition of the clay minerals in the A2 horizons: (1) no essential loss of smectite minerals from this horizon was found as compared to the rest of the solum, (2) pedogenic chlorites (HIV and HIS) are absent, and (3) the distinct accumulation of illites is observed as compared to the subsoil and parent material, probably, due to the process of illitization.  相似文献   

18.
The current state and rate of hydromorphism development in the soils of flat bottomed depressions in Western Ciscaucasia are assessed. The dynamics of the soil cover pattern on a plain with numerous mesoand microdepressions and on a watershed with weakly pronounced erosion relief were revealed. The relationship between the expansion of the waterlogged areas and the pattern of the soil cover of the agrolandscapes in the depressions was revealed. The dependence of the areas of excessively moistened sites on the changes in the topography was shown. The direction and parameters of the changes in the morphology, chemical composition, and hydrological properties of the degraded hydromorphic soils were investigated. The relationships between the density of the soils and the humus content and the composition of the exchangeable bases were studied. Methods for the assessment of the rates of the degradation processes based on the comparison of aerial photographs and soil maps for typical sites in the territory investigated are proposed. The specific features of decoding the aerial photographs of the soils in the depressions were revealed. The relations between the differences in the photos’ tone and the degree of the hydromorphic degradation of the soils were found. Promising methods for interpretation of aerial photographs with the help of image analysis programs can be recommended.  相似文献   

19.
It has been established that soil moisture has a significant impact on the activity of chitinolytic microbial processes, rather than pectinolytic processes. The degradation of polysaccharides with an increase in soil moisture in microbial complex markedly increases the role of prokaryotic microorganisms, especially actinomycetes. For the first time, using the FISH method, the amount of detected phylogenetic composition of a metabolically active hydrolytic complex of humus horizons of grey forest and gley and weakly podzolic soil and humus has been estimated depending on the humidity. At optimum moisture, phylogenetic groups Actinobacteria and Firmicutes dominated in the chitinolytic process. An increase in the proportion of proteobacteria is observed with an increase in humidity. The role of gamma- and alphaproteobacteria and actino-bacteria is heightened with the drying of soil in the hydrolytic complex. A quantitative estimate of the rate of degradation of polysaccharides (pectin and chitin) in different types of soils at different levels of moisture is given. The dependence of the phylogenetic composition of an active microbial hydrolytic complex of humus horizons of grey forest and gley, weakly podzolic soils and humus on humidity is revealed.  相似文献   

20.
Litter samples from peat podzolic (Stagnic Podzoluvisol) and soddy gley (Mollic Gleysol) soils differing in their chemical and physicochemical properties, geochemical conditions, and the character of soil microbial complexes were analyzed. The sampling was performed three times during the growing season: in May, August, and October. The contents of ammonium ions, soluble phenolic compounds, and flavans were determined in all the samples. The litters of the two soils differed in the contents of both ammonium ions and phenolic compounds. Distinct seasonal dynamics of ammonium and phenolic compounds were registered in the litter of the peat podzolic soil. The high negative correlation between the contents of ammonium ions and phenolic compounds was found for the samples collected in May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号