首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 281 毫秒
1.
以微晶纤维素、N,N-二甲基乙酰胺(DMAc)、无水氯化锂(Li Cl)为原料制备纤维素凝胶。为探究不同填料对纤维素丝力学及热稳定性能的影响,通过加入氧化石墨烯(GO)、纳米纤维素(NCC)、无水氯化钙(Ca Cl2)等对其进行补强,并将其制备成纤维素丝。用万能试验机、热重分析(TGA)分别对纤维素丝力学性能及热稳定性能进行研究;用红外光谱、原子力显微镜等分析方法对其结构进行表征。结果表明,GO、Ca Cl2和NCC等填料可以增强纤维素丝的力学强度,但GO和NCC会使纤维素丝的热稳定性能稍有降低。其中采用无水Ca Cl2补强纤维素丝的性能最为优越。此时的纤维素丝表面光滑,存在的缺陷少,其拉伸强度和断裂伸长率分别为125.2 MPa、6.3%。  相似文献   

2.
【目的】以废弃的丝瓜络为原料,利用其优良的生物理化特性制备高附加值的纳米纤维素晶体(NCC),探索丝瓜络资源高值化综合利用的新途径。【方法】用KOH/NaClO2体系脱除丝瓜络原料中的木质素和半纤维素,制备丝瓜络纯化纤维素,利用纤维形态分析仪分析丝瓜络纯化纤维素的纤维形态,采用超声-硫酸水解法制备高得率的丝瓜络纳米纤维素晶体,并对纳米纤维素晶体的微观形貌、物理和表面化学性质进行了表征。【结果】丝瓜络纯化纤维素的平均直径为26.4μm,重均长度平均为0.893nm,卷曲度为6.8%。丝瓜络纳米纤维素晶体直径约10nm,长度为200~400nm,Zeta电位为-15.1mV,结晶度为63.3%。【结论】丝瓜络纯化纤维素是一种潜在的优良制浆纤维原料,棒状丝瓜络纳米纤维素晶体可作为绿色的纳米增强相使用,经冷冻干燥处理后形成的纳米纤维素泡沫体表现出了良好的保温性能。  相似文献   

3.
纳米纤维素制备优化及其形貌表征   总被引:10,自引:0,他引:10  
通过硫酸水解微晶纤维素制备纳米纤维素,分析硫酸浓度、反应温度和水解时间对纳米纤维素得率的影响,采用正交实验优化了实验参数。用场发射环境扫描电镜(ESEM-FEG)和透射电镜(HR-TEM)表征了微晶纤维素与纳米纤维素的形貌,并对其尺寸分布进行了分析。结果表明,当硫酸浓度为56%,反应温度40℃,水解时间90min时,纳米纤维素得率最高,达55.40%;电镜观察纳米纤维素呈棒状,其尺寸较微晶纤维素明显减小,直径2-24nm,长度为50-450nm。  相似文献   

4.
一锅法制备羧基化纳米纤维素晶体   总被引:1,自引:0,他引:1  
为了探究高效、简便的羧基化纳米纤维素晶体(CCN)制备工艺,以微晶纤维素(MCC)为原料,过硫酸铵为氧化剂,采用一锅法制备出羧基化纳米纤维素晶体。并运用响应面分析法对影响羧基化纳米纤维素得率的各因素及其相互之间的交互作用进行优化。再采用透射电镜、马尔文激光粒度仪、红外光谱、X射线衍射和热分析对样品的微观形貌、粒度分布、晶体特性、结构和热稳定性能进行了研究。结果表明:过硫酸铵浓度与时间、温度与时间之间的交互作用比过硫酸铵浓度与温度间的交互作用对羧基化纳米纤维素得率的影响显著。通过优化得到的制备工艺条件为时间204min、过硫酸铵浓度2mol/L、温度62℃,优化条件下制备的羧基化纳米纤维素得率为46.41%,与模型预测值(46.93%)吻合较好,表明建立的数学模型是有效的。CCN为直径10~30nm、长度50~200nm均匀分布的棒状,Z均粒径为96.92nm;在1731cm-1出现了羧基基团的CO特征峰,表明过硫酸铵分解产生的氧化剂H2O2选择性地把纤维素C6原子上的羟基氧化成了羧基;CCN属纤维素Ⅰ型,结晶度为78.35%;羧基化后的CCN热稳定性相对于MCC有较明显的降低。   相似文献   

5.
纳米晶纤维素补强天然橡胶的研究   总被引:1,自引:0,他引:1  
采用共凝沉法制备了纳米晶纤维素/天然橡胶(NCC/NR)复合材料.对复合材料的微观结构、物理机械性能、动态力学性能、热稳定性分析结果表明,纳米晶纤维素在天然橡胶中分散均匀,对天然橡胶有较好的补强作用,复合材料的储能模量提高,损耗因子下降,但对天然橡胶的热稳定性影响不大.  相似文献   

6.
目的 由于强亲水的纳米纤维素与有机高分子材料之间的界面相容性差,使其作为一种有前景的增强剂应用受到限制。采用丙烯酸丁酯(BA)对纳米纤维素(CNF)表面进行原位乳液接枝聚合改性可以提高纳米纤维素与聚乳酸等高分子材料的相容性。方法本研究优化了纳米纤维素表面接枝聚丙烯酸丁酯(PBA)链接枝率的影响条件,并利用傅里叶红外光谱(FTIR)、X射线衍射光谱(XRD)、透射电镜(TEM)、热重(TG)、X射线光电子能谱(XPS)以及扫描电子显微镜?能量散射X射线微区(SEM-EDS)分析等手段对聚丙烯酸丁酯修饰前后的纳米纤维素进行了表征,利用扫描电子显微镜对改性纳米纤维素与聚乳酸基体的相容性进行了分析。结果改性纳米纤维素(PBA-g-CNF)在1 734 cm? 1出现了典型的羰基红外吸收;改性纳米纤维素的结晶度指数为48%,较纳米纤维素的61%有所下降;纳米纤维直径由50 nm增加至 80 ~ 100 nm;最大热失重温度由改性前的340 ℃增加至改性后的354 ℃;纳米纤维素中的C和O的原子数比为1.89,改性纳米纤维素的C和O的原子数比为3.76,C和O元素在改性前后纳米纤维素中分布均匀;改性纳米纤维素与聚乳酸的共混膜材料拉伸断面呈现出韧性断裂过程。结论 聚丙烯酸丁酯改性纳米纤维素是成功的,且改性过程主要发生在纳米纤维素的表面。改性后的纳米纤维素与聚乳酸之间展现了良好的界面相容性。   相似文献   

7.
蛀粉直接氧化降解制备纤维素纳米晶体的表征   总被引:2,自引:2,他引:0  
以毛竹蛀粉为原料,采用过硫酸铵在超声波辅助作用下直接氧化降解制备了羧基化的纳米纤维素晶体(CCN).采用扫描电子显微镜、透射电子显微镜、傅利叶红外光谱仪(FTIR)和X射线衍射仪(XRD)对蛀粉及所制备的CCN的微观形貌、谱学性能及晶型结构进行了表征分析.结果表明,蛀粉颗粒呈撕裂状,形状不规则,尺寸为10-50μm;所制备的CCN为球形,粒径约为10-30 nm.FTIR分析结果表明CCN具有纤维素的基本化学结构,在1731 cm-1附近出现了羧基的C=O特征峰.XRD图谱表明制备的CCN属于纤维素Ⅰ型,结晶度为55.75%.  相似文献   

8.
以稻草为原料采用微波-超声辅助水解氧化法制备稻草微晶纤维素,运用傅立叶红外光谱和X射线衍射等对微晶纤维素产物进行了初步表征和分析;扫描电镜观察了稻草纤维素和微晶纤维素。结果表明:微波-超声辅助法制备的微晶纤维素保持纤维素的化学结构特征,形态上由松散状变为较规则的排列,纤维素的无定形区被大部分除去。微波-超声辅助水解氧化法制备微晶纤维素工艺条件在反应时间与消耗能量方面明显低于传统方法。  相似文献   

9.
采用硫酸水解桉木浆制备纳米纤维素,进行响应面法优化制备工艺条件设计实验,并用透射电子显微镜表征了桉木浆纳米纤维素的形貌.结果表明,硫酸浓度55%,反应温度50℃,水解时间2h,纳米纤维素得率为70.05%;透射电子显微镜观察制备的纳米纤维素呈棒状,长度小于1000nm.桉木浆纳米纤维素制备优化适宜的水解时间应在3h以上.  相似文献   

10.
为促进笋头的高值化利用,利用富含纤维素的竹笋笋头进行纳米纤维素晶体(cellulose nanocrystal,CNC)的制备。以福建省绿竹笋笋头为原料,通过粉碎、前处理和硫酸水解法进行笋头纳米纤维素晶体的制备,并研究其持水力、持油力和膨胀力等理化性质。结果表明:笋头是制备纳米纤维素晶体的适宜原料,经过硫酸水解后笋头纳米纤维素晶体的理化性质得到显著改良。通过硫酸水解法制备的笋头纳米纤维素晶体的得率为49.54%,粒径为91.87nm;相对于笋头粗纤维,笋头纳米纤维素晶体的持水力、持油力和膨胀力分别提高了99.54%、29.80%和81.15%。  相似文献   

11.
以玉米淀粉为原料,研究盐酸制备酸解玉米淀粉,考察酸解温度和酸解时间对酸解玉米淀粉结构和性能的影响。通过X射线衍射(XRD)、旋转黏度计、差示扫描量热法(DSC)和热重分析(TGA)对酸解淀粉的结晶度、糊化黏度、糊化温度和热性能进行分析,结果表明:结晶度和糊化温度随酸解温度的升高和酸解时间的延长表现为先增大后减小;糊化黏度随酸解温度的升高和酸解时间的延长而迅速降低;酸解改性对玉米淀粉的热稳定性影响较小。  相似文献   

12.
通过羟乙基纤维素(HEC)与六甲基二硅胺烷的反应,对水溶性物质HEC三甲基硅化改性,以改善其脂溶性。用红外光谱和扫描电镜(SEM)分析了产物的结构和表面形貌,并用热质量分析(TGA)、示差扫描量热(DSC)对改性产物的热性能进行了表征,应用霉菌法进行了生物降解性能实验。结果表明,HEC经硅化改性后,脂溶性得到改善;热分解温度显著提高,热稳定性得到增强;通过观测产物经过霉菌不同时间降解后的表面形貌,证明羟乙基纤维素三甲基硅醚具有生物降解性。图8表4参11  相似文献   

13.
为高效利用五节芒Miscanthus floridulus,通过硫酸酸解五节芒纤维素制备了纤维素纳米晶体(CNC),并采用正交分析法考察了硫酸质量分数、酸解时间和反应温度对五节芒CNC产率、悬浮液稳定性和CNC尺寸的影响。透射电镜(TEM)研究结果表明:用酸解法可成功制备五节芒CNC,CNC为刚性棒状结构,长度为100~200nm,直径为5~15 nm,产率为25%~50%。动态光散射(DLS)和Zeta电位测试发现,五节芒CNC悬浮液的稳定性很好,DLS得到的CNC流体力学直径略小于由TEM观察到的CNC长度。正交分析表明,3个工艺参数对CNC产率的影响依次为:硫酸质量分数(P=0.03),酸解时间(P=0.06),反应温度(P=0.35);对CNC流体力学直径的影响依次为:硫酸质量分数(P=0.03),反应温度(P=0.22),酸解时间(P=0.38)。制备五节芒CNC的最优工艺条件为:硫酸质量分数(62%),酸解时间(45 min),反应温度(45℃)。  相似文献   

14.
以棉纤维为原料,乙酸酐为共反应剂,浓硫酸为催化剂,在冰醋酸体系中对纤维素进行乙酰化改性制得纤维素乙酸酯;对反应温度、反应时间和催化剂用量与产物取代度(DS)的关系进行分析;对产物的官能团、微细构造和热稳定性采用红外光谱(FTIR)、X射线衍射(XRD)和热重分析(TGA)等3种分析手段进行表征。结果表明,当反应温度为90℃,反应时间为4 h,催化剂用量为0.5%时,产物的DS最大;产物中存在大量酯基;与纤维素相比,由于乙酰基的存在,纤维素乙酸酯的结晶度有所下降且热稳定性增强。  相似文献   

15.
以微晶纤维素(microctTstallinece llulose,MCC)为原料,首次采用水热合成反应方法,分别利用硫酸、磷钨酸以及高碘酸为降解剂对微晶纤维素进行降解处理,气质联用仪(GC-MS)分析降解产物,解析降解产物结构,并分析降解机制。结果表明:新型水热方法降解微晶纤维素较完全;不同降解剂处理所得产物中均含有机酸、酮、醛、醇和酯类化合物;采用降解剂不同,降解所得产物结构不同,含量有差异;通过反应机制分析获得降解机制迥异。图3表4参25  相似文献   

16.
以核桃壳经苯酚液化后的液化产物、硼酸、多聚甲醛为原料,通过固相法合成硼改性核桃壳生物基酚醛树脂(BWPF),用傅立叶红外光谱(FTIR)分析其结构,扫描电镜(SEM)观察其自然断面形貌,差示扫描量热法(DSC)与热重分析法(TG)分析其热性能。结果表明:硼酸与核桃壳液化产物中的酚羟基发生反应生成新的交联,随着硼酸加入量的增加,硼改性核桃壳生物基酚醛树脂韧性和固化温度得到提高;随着硼酸加入量的增加、反应温度的提高和反应时间的延长,硼改性核桃壳生物基酚醛树脂炭残余质量有所增加,耐热性能提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号