首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 108 毫秒
1.
为研究硅烷偶联剂对复合材料的性能影响,采用不同质量分数的硅烷偶联剂对桉木单板进行表面处理,然后与聚氯乙烯膜采用热压--冷压工艺制备木塑复合材料,测定复合材料的物理力学性能,并用扫描电子显微镜观察分析其界面相容机理。结果表明:当偶联剂质量分数为1%时处理效果最好,复合材料的胶合强度最高、耐水性能最好;当偶联剂质量分数为3%时,复合材料的弹性模量和静曲强度最高。单板经过硅烷偶联剂处理后,制得的复合材料的界面相容性得到改善。   相似文献   

2.
植物纤维/塑料复合材作地板基材的研究   总被引:4,自引:0,他引:4  
利用植物纤维与塑料加工生产地板材料的试验表明,利用纤维/聚丙稀复合的产品有较好的性能,可以满足合格品的质量要求,在添加偶联剂的条件下,可满足优等品的质量要求 而其余2种塑料与纤维的复合在添加偶联剂的条件下可超过合格品的质量要求 偶联剂的存在,改善了纤维与塑料的界面状态,提高了复合材料的玻璃转化温度,从而提高了复合材料的性能  相似文献   

3.
为了提高纤维与基体不饱和聚酯界面的结合强度,利用低温等离子体技术对纤维表面进行预处理,探讨了低温等离子体预处理对混杂纤维(亚麻纤维与玄武岩纤维)复合材料性能的影响.SEM分析表明,改性后的玄武岩纤维、亚麻纤维表面与基体界面之间的结合强度增大.FTIR分析表明,低温等离子体预处理产生的-C-OH、-C-O、-COOH和-COO-含氧基团提高了纤维与基体之间界面的结合强度.力学测试试验结果表明,PB/F、PB/PF和B/PF的弯曲和冲击性能明显提高,B/PF的弯曲强度比未处理的B/F提高40.5%,PB/PF、B/PF的冲击韧性比B/F提高116%.混杂纤维复合材料表现出较好的弯曲和冲击性能.  相似文献   

4.
采用偶联剂处理玄武岩纤维(BF),然后用丙烯酸二次接枝的方法改善玄武岩纤维增强胶合板的胶合性能,研究了丙烯酸溶液浓度、处理时间和处理温度对BF/杨木胶合板胶合性能的影响。结果表明:玄武岩纤维经丙烯酸溶液处理后,BF/杨木胶合板的胶合性能得到明显改善。通过正交试验优化得出的处理条件为:丙烯酸溶液浓度0.3 mol/L、处理时间2 h、处理温度30℃;在此优化条件下,BF/杨木胶合板的性能达到干态胶合强度2.71MPa、湿态胶合强度1.68 MPa,较未经丙烯酸溶液处理的对照组分别提高了57.6%、54.1%,且煮沸剥离率由15%下降为0。  相似文献   

5.
黄麻纤维的表面改性对其复合材料力学性能的影响   总被引:1,自引:0,他引:1  
汤栋  赵玉萍  张娟 《安徽农业科学》2011,39(5):3052-3054
[目的]研究了不同改性方法对黄麻表面及其结晶态结构的改变对环氧树脂复合材料界面的影响。[方法]采用硅烷偶联剂KH560、钛酸酯偶联剂NDZ201、碱处理、轻度乙酰化、氰乙基化5种方法对黄麻纤维毡进行处理。并测试了其复合材料的拉伸和弯曲强度,通过SEM分析了黄麻/环氧树脂的拉伸断裂微观状态。[结果]5种改性方法均降低了黄麻的结晶度,提升了黄麻与环氧树脂的界面相容性,对复合材料的拉伸和弯曲强度均有不同程度的提高,KH560和碱处理对复合材料力学性能提升最为明显。[结论]该研究为黄麻纤维复合材料应用的扩大提供了依据。  相似文献   

6.
唐伟  张晨夕  王伟宏  郭丽敏 《安徽农业科学》2014,(27):9509-9512,9618
我国的麻类资源非常丰富,将麻纤维用于复合材料的制备能扩大麻纤维的应用范围,有效提高麻纤维的使用价值.将苘麻纤维(AF)作为增强材料,通过热压工艺制备了苘麻/聚乙烯(PE)复合材,并探讨了该复合材的各项性能.通过热重分析确定了苘麻纤维的加工温度为180℃,对比分析AF/PE复合材的力学性能,确定制备复合材时AF含量控制在60%范围内能得到性能优异的复合材,AF与PE的最佳质量比为55∶45.苘麻纤维经硅烷偶联剂处理后,AF/PE复合材的弯曲性能和拉伸性能都有明显提高,吸水厚度膨胀率明显降低.由红外光谱分析发现,硅烷偶联剂与苘麻纤维表面的羟基发生化学反应生成了硅-氧-碳共价键,硅烷偶联剂使麻纤维表层与PE基质层之间产生分子结合,因此提高了PE基质与苘麻纤维的结合强度.  相似文献   

7.
水泥基复合材料是装配式建筑结构最重要的材料之一,为探究玄武岩纤维对其强韧化效果及作用机制,研究玄武岩纤维掺量、形态等特征参数对高性能砂浆的抗压强度、抗折强度、劈裂抗拉强度和弯曲韧性的影响规律,并结合扫描电镜(SEM)、X射线衍射(XRD)、接触角(OCA)和压汞(MIP)等测试方法分析玄武岩纤维对高性能砂浆作用机制。结果表明:玄武岩纤维可有效提升高性能砂浆抗压强度、抗折强度、劈裂抗拉强度和弯曲韧性,随着纤维掺量的增加,提升效果先增大后降低,适宜掺量为1%,相同条件下树脂铰联化玄武岩纤维(BF-Ⅱ)增强效果优于短切玄武岩纤维(BF-Ⅰ)。BF-Ⅱ表面粗糙与砂浆机械互锁作用更强,BF-Ⅰ表面光滑但与砂浆分子间作用力更强。纤维表面附着大量水泥水化产物,随着龄期的延长增强效果更加显著。添加纤维后,砂浆的最可几孔径变小、孔隙率及多害孔比例均得到降低,有效提高砂浆的性能。  相似文献   

8.
针对石墨/酚醛树脂复合双极板存在的强度低、脆性大等问题,采用偶联剂改性方法来增强复合双极板的界面结合,提高其抗弯强度.研究了偶联剂的种类、添加方式及用量对石墨/酚醛树脂复合材料双极板力学性能和电学性能的影响.结果表明:采用石墨改性法可提高石墨/酚醛树脂复合双极板的抗弯强度,但导电性能有所降低;而采用树脂改性法制备的石墨/树脂复合双极板同时具有较高的电学和力学性能.因此树脂改性法更适合制备复合双极板.当偶联剂质量分数均为0.7%,采用树脂改性法分别以硅烷偶联剂和钛酸酯偶联剂改性时,石墨/树脂复合材料双极板抗弯强度和电导率分别为33.3 MPa,70.3 S·cm-1和32.1 MPa,73.8 S·cm-1,均满足燃料电池用石墨/酚醛树脂复合双极板的技术要求.  相似文献   

9.
在普通胶合木梁上粘贴玄武岩纤维复合材料,经抗弯试验,检测不同层数玄武岩纤维布和玄武岩纤维板对胶合木梁的增强效果。结果表明:玄武岩纤维复合材料对胶合木梁受弯性能有很好的增强效果;与未增强的胶合木梁相比,受弯极限承载力提高幅度为20.88%~111.25%,抗弯刚度提高幅度为18.7%~27.6%,延性系数提高幅度为23.0%~74.3%。对于玄武岩纤维复合材料配量适中的增强胶合木梁,在受拉区层板破坏的同时,受压区层板出现压屈褶皱,木材抗压强度得到比较充分的发挥,破坏时表现出明显的塑性破坏特征。玄武岩纤维复合材料的存在,能有效降低木材缺陷对胶合木梁受弯性能的不良影响。  相似文献   

10.
改性黄麻纤维和酚醛树脂复合材料的力学性能   总被引:1,自引:0,他引:1  
采用碱溶液(20 g/L NaOH)、热(140℃)处理方法对黄麻纤维进行改性处理,采用热压工艺将纤维与酚醛树脂制成复合材料。通过力学性能、冲击断口形貌对复合材料进行表征。结果表明:当碱处理时间不超过2 h、热处理时间不超过3 h时,黄麻纤维增强酚醛树脂基复合材料的拉伸强度和冲击强度均有不同程度提高。碱处理2 h的黄麻纤维增强酚醛树脂基复合材料的拉伸强度和冲击强度提高幅度最大,分别为13.5%和25%;冲击断口分析结果表明,热处理纤维与基体的界面结合强度高于碱处理纤维,断口呈平面化。  相似文献   

11.
为研究原位沉积对竹、杉木、黄麻3种植物纤维的表面改性效果,采用平压工艺制备了植物纤维增强聚丙烯复合材料,并通过SEM、原子力学显微镜、光学纤维接触角测量仪等方法分别表征了植物纤维的表面形貌、表面粗糙度、静态接触角、拉伸性能以及复合材料的断口形貌和力学性能。结果表明:CaCO3原位沉积改性对单根植物纤维的表面性能有显著影响,不仅提高了单根植物纤维的拉伸性能,还改善了植物纤维增强热塑性聚合物的界面性能,增强了复合材料的界面强度。原位沉积改性后,3种植物纤维表面均有CaCO3附着,杉木纤维的CaCO3上载量最高,达16.08%;竹纤维最低,为6.96%。改性竹纤维的表面粗糙度Rq值降低了32.95%,静态接触角增加了1.85%;改性杉木纤维的Rq值和静态接触角分别增加了42.51%、3.12%;改性黄麻纤维的Rq值增加了62.77%,静态接触角降低了0.4%。单根改性植物纤维的拉伸性能均有所提高,相同CaCO3原位沉积改性条件下,改性竹纤维的拉伸强度和弹性模量最大,分别为1 134.83 MPa、37.25 GPa。断口形貌SEM图中,改性植物纤维与聚丙烯结合紧密,复合材料的断裂主要以改性植物纤维的断裂为主,表明复合材料的界面性质得到改善。改性植物纤维增强聚丙烯复合材料的拉伸性能得到提高,而且其弹性模量的变化趋势与改性植物纤维CaCO3附着量的变化趋势一致。改性杉木纤维增强聚丙烯复合材料弹性模量最大,为2.28 GPa;改性竹纤维增强聚丙烯复合材料拉伸强度最大,为54.04 MPa。   相似文献   

12.
为评估造纸废弃竹屑增强高聚物制备竹塑复合材料的可行性,采用竹粉、竹屑、竹浆纤维、竹屑+ 竹浆纤维共 混4 种竹质纤维,分别以50%的质量比增强高密度聚乙烯(HDPE)制备竹质纤维-HDPE(竹塑)复合材料,并对比分 析了竹屑-HDPE 复合材料与其他3 种竹塑复合材料的力学和热性能。结果表明:与常规的竹粉-HDPE 复合材料相 比,竹屑-HDPE 复合材料有较好的拉伸性能,但是弯曲性能较差。其拉伸强度和模量分别比竹粉-HDPE 复合材料 提高了45.94%和114.09%;而弯曲强度和模量分别比竹粉-HDPE 复合材料降低了8.08% 和17.64%。竹屑- HDPE 复合材料有较好的热性能,与竹粉-HDPE 复合材料相比,其起始热分解温度提高了21.23 ℃,力学松弛峰 值温度提高了10.44 ℃。   相似文献   

13.
引入碳纤维作为增强手段,通过设计不同的工艺结构,探究其对木塑复合材力学性能的增强效果。板材结构设计方案有CF313(3 mm表层木塑板+碳布+1 mm芯层木塑板+碳布+3 mm表层木塑板)、CF232(2 mm表层木塑板+碳布+3 mm芯层木塑板+碳布+2 mm表层木塑板)、CF151(1 mm表层木塑板+碳布+5 mm芯层木塑板+碳布+1 mm表层木塑板)、CF070(碳布贴在最外层)、CF7(不添加碳布的空白实验)。研究结果表明,CF070复合材的弯曲强度最大;CF151的弹性模量最大,即碳纤维放在近表层位置时,弯曲性能较好,但拉伸时木塑表层容易拉断;放在靠近中心位置时复合材的拉伸强度和冲击强度提高幅度较大。综合考虑各性能,表层厚度为2 mm时可最大程度发挥碳布优势、增强木塑复合材料力学性能。  相似文献   

14.
研究利用玉米秸秆粉体作为增强材料与聚乙烯(PE)通过挤出成型制备玉米秸秆粉体/PE复合材料的可行性,并考查了玉米秸秆粉体添加量及其尺寸对复合材料力学性能的影响。结果表明:随玉米秸秆粉体添加量的增加,玉米秸秆粉体/PE复合材料的拉伸强度、拉伸模量呈先升后降趋势,弯曲模量逐渐增大,冲击强度则逐渐减小;当玉米秸秆粉体添加量为50%时,复合材料的综合力学性能最佳。此外,玉米秸秆粉体/PE复合材料的力学性能随玉米秸秆粉体长径比的增大而增强;在考查范围内,添加40目h(粒径)≤60目玉米秸秆粉体复合材料的力学性能最好。电镜结果显示添加20目h≤40目玉米秸秆粉体/PE复合材料粉体在基体中分布不均,断面形貌最差,而添加40目h≤60目玉米秸秆粉体复合材料的断面形貌最佳。  相似文献   

15.
以高密度聚乙烯(HDPE)为基体,松木粉为增强项,MAPE为偶联剂,采用注塑法制备WPC,研究其热膨胀性能与弯曲性能,结果表明:木塑复合材料的弯曲强度和弯曲模量较单纯的HDPE有所提高,且随着木粉含量增加而增加;线性热膨胀系数随着木粉含量增加而降低;随着木粉的加入,对WPC长度方向上的热膨胀的限制较宽度方向上更大。  相似文献   

16.
3种木塑复合材料的耐老化性能比较   总被引:1,自引:0,他引:1       下载免费PDF全文
木塑复合材料的老化性能直接关系其使用寿命和适用范围。使用稻壳、橡胶木锯末和橡胶籽壳分别与回收聚乙烯混合制备木塑复合材料。通过色差分析、红外光谱分析和差示扫描量热法(DSC),研究了3种木塑复合材料经紫外荧光老化后表面颜色、化学成分及结晶度的变化。结果表明,经2 000 h紫外荧光辐照后,处理B(锯末)ΔL和ΔE值为35和30,处理A(稻壳)为40和37,处理C(橡胶籽壳)为45和43;3种材料表面羰基浓度增大,表面氧化程度加深;紫外荧光辐照1 000 h后,处理B(锯末)结晶度由59.21上升到88.44,增加了49.37%;处理A(稻壳)结晶度由63.53上升到94.00,增加了47.96%;处理C(橡胶籽壳)结晶度由55.42上升到98.35,增加了77.46%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号