首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用原状土柱模拟方法,探讨了施肥水平、添加不同碳氮比(C/N)有机物、不同类型土壤、土壤水分含量及温度对含3,4-二甲基吡唑磷酸盐(3,4-dimethyl pyrazole phosphate,DMPP)硝化抑制剂的尿素(DMPP尿素)氨挥发损失的影响。结果表明,施肥水平对DMPP尿素的氨挥发损失有显著影响,随着DMPP尿素施用量的增加,土壤氨挥发损失量呈显著上升的趋势;DMPP尿素配施低C/N比的有机物鸡粪,氨挥发损失增加6.0%;而配施高C/N比的生物秸秆,则表现为可抑制78.2%的氨挥发损失;DMPP尿素的氨挥发损失受土壤理化性质影响很大,在肥力高的碱性土壤中氨挥发损失严重,而在酸性红壤和阳离子交换量高的青紫泥中挥发损失量较低;在土壤含水量为田间饱和持水量时,氨挥发损失表现为急剧增加;随着土壤温度的升高,氨挥发损失的量快速递增。合理控制施肥量、选择配施高C/N比的生物秸秆和适宜的水分管理方式是减少农田氨挥发损失的重要对策。  相似文献   

2.
应用密闭法对尿素及其二次加工产品—复合肥料、包膜尿素和包膜复合肥料在施入土壤后的氨挥发特征进行了研究。结果表明,尿素二次加工产品的氨挥发损失特征各不相同:尿素、复合肥料、包膜尿素、包膜复合肥的氨挥发分别占总施氮量的9.2%、10.4%、7.6%、9.3%;复合肥料氨挥发损失比尿素高12.9%,而包膜尿素的氨挥发损失较尿素低17.9%。包膜复合肥与尿素相比,二者氨挥发总体上接近,但在施肥后前25 d包膜复合肥降低氨挥发15.6%,降雨后25 d却增加氨挥发20.7%。尿素二次加工产品的氨挥发损失特征需结合其生产工艺进行进一步研究。  相似文献   

3.
Abstract

Volatilization of ammonia derived from nitrogen (N) fertilizers and its possible reabsorption by crops depend on specific soil, climate, and atmospheric conditions, as well as the method of fertilizer application and plant architecture. In an experiment carried out in Piracicaba, State of São Paulo, Brazil, the volatilization of ammonia derived from urea, ammonium sulfate, and natural soil were quantified using static semi‐open N‐ammonia (NH3) collectors. Fertilizers were top‐dressed under the plant canopy on top of dead leaf mulch. In another experiment, the reabsorption of the volatilized ammonia by plants was quantified using 15N‐labeled urea. Results showed, as expected, that volatilization derived from urea was seven times more intense in relation to ammonium sulfate, whose volatilization was very low, and slightly more than the natural volatilization from soil at pH 5.3. The loss of ammonia from the ammonium sulfate was very low, little more than twice of that of the natural soil. Through isotopic labeling, it was verified that 43% of the volatilized N‐NH3 was reabsorbed by coffee plants, which gives evidence that volatilization losses are greatly reversed through this process.  相似文献   

4.
Nitrogen (N) loss by ammonia (NH3) volatilization is the main factor for poor efficiency of urea fertilizer applied to the soil surface. Losses can be suppressed by addition of zeolite minerals to urea fertilizer. The objective of this study was to evaluate ammonia volatilization from soil and dry-matter yield and nitrogen levels of Italian ryegrass. A greenhouse experiment was carried out with the treatments of urea, urea incorporated into soil, urea + urease inhibitor, urea + zeolite, ammonium nitrate, and unfertilized treatment. Ammonia was captured by a foam absorber with a polytetrafluoroethylene tape. There were few differences between zeolite and urease inhibitor amendments concerning NH3 volatilization from urea. Results indicate that zeolite minerals have the potential to improve the N-use efficiency and contributed to increasing N uptake. Zeolite and urea mixture reduced 50% the losses by volatilization observed with urea.  相似文献   

5.
南京两种菜地土壤氨挥发的研究   总被引:40,自引:3,他引:40       下载免费PDF全文
在南京雨花区武警农场和栖霞区东阳科技站先后进行了秋季小青菜和秋冬季大白菜田间试验,研究菜地土壤施用氮肥后的氨挥发及其影响因素,氨挥发采用密闭室间歇密闭通气法测定。结果表明,小青菜试验地的pH为5 .4 ,施肥后土壤pH值也未高于6 .0 ,故氨挥发损失低(<0 .4 % ) ;而在pH为7.7的大白菜试验地上,控释尿素、低氮和高氮3个处理(施氮量分别为N 180、30 0和6 0 0kghm-2 )氨挥发率分别为0 .97%、12 .1%和17 1%。以上结果表明,土壤pH是影响菜地土壤氨挥发的主要因素,降低氮肥用量能明显减少氨挥发,而施用控释尿素是一种有效控制氨挥发损失的措施。大白菜不同施肥期的结果还表明,施尿素后降雨通过降低表层土壤氮的浓度而影响氨挥发,降雨离施肥期越近,雨量越大,氨挥发越小  相似文献   

6.
控释复合肥对冷季型草坪氨挥发和硝态氮淋洗的影响   总被引:1,自引:0,他引:1  
通过田间试验,研究了控释复合肥、常规施肥、市售草坪专用肥对冷季型草坪氨挥发和硝态氮淋洗的影响。氨挥发采用通气密闭法收集测定,硝态氮利用土壤溶液提取器收集淋洗液然后进行测定。结果表明,常规施肥处理的氨挥发量为47.7 kg/hm2(占年施氮量的18.3%),显著高于控释复合肥处理(氨挥发损失为2.9 kg/hm2,占年施氮量的1.1%)和市售草坪专用肥处理(氨挥发损失为4.1 kg/hm2,占年施氮量的1.6%)。施氮不同程度增加了淋洗液中硝态氮的浓度,3种氮肥的硝态氮淋洗程度不同。0—50 cm土层,淋洗液的硝态氮浓度范围分别是:控释复合肥处理1.16~.7 mg/L,常规施肥处理1.21~0.1 mg/L,市售草坪专用肥处理1.51~6.7 mg/L;0—100 cm土层,淋洗液的硝态氮浓度范围分别是:控释复合肥处理1.15~.7 mg/L,常规施肥处理1.11~2.5 mg/L,市售草坪专用肥处理1.16~.2 mg/L。综上所述,控释复合肥降低了冷季型草坪氨挥发损失和硝态氮的淋洗,表现出明显的环境效益,是一种有应用前景的新型肥料。  相似文献   

7.
冀北高原草甸栗钙土春小麦中化肥氮去向的研究   总被引:7,自引:2,他引:7       下载免费PDF全文
在冀北高原张北县的草甸栗钙土上,采用^15N质量平衡法和微气象学技术,对春小麦中氮肥的去向,以及氨挥发进行了田间原位观测。试验中的氮肥用量为N4.83kg/亩,1/3作基肥、2/3作追肥。基肥随播种施入,追肥于拔节期撤施,随即灌水。结果表明,小麦回收、土壤残留和损失的肥料氮各占施入氮量的37.8%-48.3%、33.8%-40.4%和14.3%-25.4%。其中,尿素作基肥与作追肥的处理之间,其氮  相似文献   

8.
在特制密闭盆钵甲,研究了15N标记氮肥作水稻基肥混施时,氨的挥发及其在氮素损失中的重要性,随着通气速率的增高,氨的挥发及其在氮素损失中的重要性也增大,至换气频率达15-20次/分时即接近或达到最大值.在酸性水稻土上,硫铵的氮素损失的主要途径是反硝化作用,特别是气温较低的月份;尿素的氮素损失途径,在气温较低的月份中以反硝化作用为主,在温度较高的月份中,则氨的挥发与反硝化作用都是重要的;对碳铵来说,氨的挥发和反硝化作用都是氮素损失的重要途径.在石灰性土壤上,碳铵的氮素损失的主要途径是氨的挥发,而在硫铵和尿素的氮素损失中,氨的挥发和反硝化作用则都是重要的.  相似文献   

9.
Summary The relative importance of ammonia volatilization and denitrification as loss processes following the application of urea to flooded rice by the traditional method was assessed at four sites with different characteristics in the Philippines. The effect of reducing ammonia loss on denitrification and total N loss was also studied. The total N loss was determined by a 15N-balance method and ammonia volatilization was assessed by a bulk aerodynamic method following the application of urea to small plots (4.8×5.2 m). As run-off was prevented and leaching losses were negligible, the denitrification loss was assessed as the difference between total N loss and ammonia loss. When urea was broadcast into the floodwater at transplanting, the ammonia loss varied from 10% to 56% of the applied N. Loss was smallest at Aguilar where wind speeds were low and the greatest at Mabitac where floodwater pH values and temperatures were high and the winds were strong. The ammonia loss was reduced at all sites by incorporating the urea into the soil by harrowing. However, the reduction achieved varied markedly between sites, with the largest reduction (from 56% to 7% loss of the applied N) being observed at Mabitac. The total N lost from the basal application into the floodwater ranged from 59% to 71% of the applied N. Incorporating the urea by harrowing reduced the total N loss at two sites, increased the total N loss at the third site, and had no effect at the fourth site. The denitrification losses ranged widely (from 3% to 50% of the applied N) when urea was broadcast into the floodwater at the four sites. The denitrification loss was low when the ammonia loss was high (Mabitac) and high when the ammonia loss was low (Aguilar). Reducing ammonia losses by incorporating the urea into the flooded soil resulted in increased denitrification losses at three of the sites and appeared to have no effect on denitrification at the fourth site. The results show that reducing the ammonia loss by incorporating urea into the soil does not necessarily result in reduced total N loss, and suggest that the efficiency of fertilizer N will be improved only when both N-loss processes are controlled simultaneously.  相似文献   

10.
采用室内扩散模拟试验研究了施用大颗粒尿素(PUR)、辣椒专用复混肥(LCCF)、辣椒专用缓释复混肥(LSRF)土壤的氨挥发特性,并采用土培试验研究了LSRF、LCCF、普通复合肥(OCCF)、市场非包膜缓释复合肥(MSRF)对‘渝椒五号’和‘改良早丰’辣椒产量、氮磷钾养分吸收利用、土壤有机质及酶活性的影响,探讨LSRF的应用效果。结果显示,室内扩散模拟试验中,前28 d氨释放速率总体表现为PURLCCFLSRF不施肥(CK),28 d以后LSRF的氨释放速率略高于PUR和LCCF处理。培养70 d时,PUR、LSRF和LCCF的氨挥发量分别为71.87 mg·kg-1、54.29 mg·kg-1和63.49 mg·kg-1,LSRF比PUR和LCCF分别降低了24.5%和11.7%。土培试验中,LSRF处理显著提高了2个辣椒品种的果实重量,‘渝椒五号’和‘改良早丰’分别较OCCF处理增产64.7%和33.8%。与OCCF处理相比较,LSRF处理增加了土壤有机质含量、土壤脲酶、蔗糖酶和过氧化氢酶活性,提高了辣椒对氮磷钾养分的吸收利用。‘渝椒五号’和‘改良早丰’LSRF处理的氮素表观利用率较OCCF处理分别增加62.5%和123.1%,‘改良早丰’和‘渝椒五号’LSRF处理的磷素表观利用率分别较OCCF处理提高了14.0倍和3.2倍,钾素表观利用率分别较OCCF处理提高了28.7%和120.9%。  相似文献   

11.
碳酸氢铵和尿素在山东省主要土壤类型上的氨挥发特性研究   总被引:11,自引:1,他引:11  
采用全程密闭通气法研究了山东省四种主要土壤类型 (棕壤 ,褐土 ,潮土和砂姜黑土 ) ,尿素和碳酸氢铵表施后的氨挥发特点。结果表明 :碳酸氢铵初始的氨挥发强度大于尿素 ,而氨挥发总量小于尿素 ,尿素在四种类型土壤上铵挥发强度次序为 :褐土 >潮土≈砂姜黑 >棕壤 ,氨挥发总量次序为 :褐土 >潮土≈砂姜黑土 >棕壤 ;碳酸氨氢在四种类型土壤上氨挥发强度次序为 :褐土 >潮土≈砂姜黑土 >棕壤 ,挥发总量次序为 :褐土 >棕壤 >潮土≈砂姜黑土。影响氨挥发的因素主要有 :氮素形态 ,土壤 pH、CEC、粘粒含量和粘土矿物类型、有机质含量等 ,但在不同土壤中其影响的主导因素又有较大差异。  相似文献   

12.
Recent studies indicate that aerobic rice can suffer injury from ammonia toxicity when urea is applied at seeding. Urea application rate and soil properties influence the accumulation of ammonia in the vicinity of recently sown seeds and hence influence the risk of ammonia toxicity. The objectives of this study were to (i) evaluate the effects of urea rate on ammonia volatilization and subsequent seed germination for a range of soils, (ii) establish a critical level for ammonia toxicity in germinating rice seeds and (iii) assess how variation in soil properties influences ammonia accumulation. Volatilized ammonia and seed germination were measured in two micro‐diffusion incubations using 15 soils to which urea was applied at five rates (0, 0.25, 0.5, 0.75 and 1.0 g N kg?1 soil). Progressively larger urea rates increased volatilization, decreased germination and indicated a critical level for ammonia toxicity of approximately 7 mg N kg?1. Stepwise regression of the first three principal components indicated that the initial pH and soil texture components influenced ammonia volatilization when no N was added. At the intermediate N rate all three components (initial pH, soil texture and pH buffering) affected ammonia volatilization. At the largest N rate, ammonia volatilization was driven by soil texture and pH buffering while the role of initial pH was insignificant. For soils with an initial pH > 6.0 the risk of excessive volatilization increased dramatically when clay content was <150 mg kg?1, cation exchange capacity (CEC) was <10 cmolc kg?1 and the buffer capacity (BC) was <2.5 cmolc kg?1 pH?1. These findings suggest that initial pH, CEC, soil texture and BC should all be used to assess the site‐specific risks of urea‐induced ammonia toxicity in aerobic rice.  相似文献   

13.
Abstract. Ammonia volatilization with and without gypsum incorporation was measured in Gujranwala soil (Udic Haplustalf) in an incubation study using different nitrogen fertilizers e.g. urea, ammonium sulphate (AS), calcium ammonium nitrate (CAN), and urea nitrophos (UNP). Nitrogen from different fertilizers was applied at the rate of 200 mg N kg−1 to two sets of soils in plastic bags (1.0 kg soil) and plastic jars (0.5 kg soil). Soil moisture was maintained at field capacity. Application of urea increased soil pH to 9, three hours after its addition. Ammonium sulphate and calcium ammonium nitrate had little effect on soil pH. Ammonium volatilization losses from fertilizers were related to the increase in soil pH caused by the fertilizers. Consequently maximum losses were recorded due to application of urea. Losses through ammonia volatilization were significantly lower with AS, CAN and UNP in descending order. Gypsum incorporation significantly reduced the losses. Therefore, application of gypsum to soil before urea may substantially improve N use efficiency for crop production by reducing N losses.  相似文献   

14.
Total nitrogen(N) loss and ammonia volatilization from urea applied to flooded rice grown on a paddy soil in Zhejiang Province were measured by ^15N balance and micro-meteorological methods,respectively.Floodwater properties and ammonia loss from the circular plot were compared with those from the microplots.And the effectiveness of urease inhibitor,NBPT [N-(n-butyl) thiophosphoric triamide],was also tested Results showed that the total losses from urea broadcast and incorporated at transplanting (basal dressing) were similar with those from urea broadcast 12 days after transplanting (top-dressing)(51.5% and 48%,respectively,of applied N),and ammonia losses were low,the corresponding figures were 10.8% and 7.0% of applied N,respectively.Thus,denitrification was a much more important pathway of nitrogen loss than ammonia volatilization under the particular conditions.Addition of NBPT retarded urea hydrolysis,reduced pHs and ammoniacal nitrogen concentrations of floodwater for either the application of urea as basal or as top-dressing,but these effects were not translated into the reduction of total nitrogen loss.Floodwater pHs and ammonia loss in the microplots were apparently lower than those in the circular plot from urea applied as basal dressing;however,such differences were not found when urea was top-dressed.The frequently raining days occurred after top-dressing may be responsible for the insignificant effect of plot size on floodwater pHs and ammonia volatilization.It seems that the effects of phot size on ploodwater properties and ammonia loss mainly depend on weather conditions,in addition to the height and leaf area index of the crop.  相似文献   

15.
The effects of three patented nitrification inhibitors on transformations of urea N in soils were studied by determining the effects of these compounds (10 μg/g of soil) on urea hydrolysis, ammonia volatilization. and production of ammonium, nitrite, and nitrate in soils incubated under aerobic conditions (30°C, 60% WHC) after treatment with urea (400 μg of urea N/g of soil). The inhibitors used (N-Serve, ATC, and CL-1580) had little, if any, effect on urea hydrolysis, but they retarded nitrification of the ammonium formed by urea hydrolysis and increased gaseous loss of urea N as ammonia. They also decreased the amount of (urea + exchangeable ammonium + nitrite + nitrate) — N found in urea-treated soils after various times.Two of the soils used accumulated substantial amounts of nitrite(> 160 μg of nitrite N/g of soil) when incubated under aerobic conditions after treatment with urea. Addition of nitrification inhibitors to these soils eliminated or substantially reduced nitrite accumulation and greatly retarded nitrate formation, but had little, if any, effect on the recovery of urea N as (urea + exchangeable ammonium + nitrite + nitrate + ammonia) — N after various times. This finding and other observations reported indicate that the “nitrogen deficits” observed in studies of urea N transformations in soils may not largely be due to gaseous loss of urea N through chemodenitrification and are at least partly due to volatilization and fixation of the ammonium formed by urea hydrolysis in soils. The work reported also indicates that N-Serve and other nitrification inhibitors may prove useful for reduction of the nitrite toxicity problems associated with the use of urea as a fertilizer but that application of such inhibitors in conjunction with fertilizer urea, when surface applied, may promote gaseous loss of urea N as ammonia.  相似文献   

16.
不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响   总被引:27,自引:4,他引:23  
【目的】氨挥发是农田氮素损失的重要途径之一,氮肥类型或尿素氮肥缓释处理方式直接或间接影响作物吸收及土壤理化性质,进而影响氨挥发和氮素利用效率。通过不同缓释处理技术减低氨挥发和氮素降解释放速率来提高作物氮素吸收,对于提高作物氮素利用率具有重要意义。【方法】通过两年田间原位监测试验,以不施氮肥为对照(CK),设硝酸钙(CN)、常规尿素(CU)、树脂包膜尿素(CRF)、控失尿素(LCU)、凝胶尿素(CLP)、脲甲醛(UF)7个处理,研究不同氮肥缓释化处理对夏玉米土壤氨挥发损失量、玉米产量和氮素利用的影响。【结果】1)氨挥发主要集中于施肥后一周以内,常规尿素氨挥发累积量占整个生育期氨挥发累计总量平均为81.6%,凝胶尿素、控失尿素、树脂包膜尿素、脲甲醛氨挥发累积量占整个生育期氨挥发累计总量的比例介于62.2%~82.2%之间。2)2014年夏玉米田间氨挥发监测期内,常规尿素的氨挥发累计总量为N 14.9 kg/hm2,凝胶尿素、控失尿素、树脂包膜尿素、脲甲醛处理与常规尿素相比下降幅度介于21.7%~64.6%。2015年,常规尿素的氨挥发累计总量为N 17.3 kg/hm2,凝胶尿素、控失尿素、树脂包膜尿素、脲甲醛处理与常规尿素相比下降幅度介于17.3%~57.2%。3)化肥氮在常规尿素、树脂包膜尿素以及控失尿素处理中的贡献率较高,两年均达60%以上,其中常规尿素中化肥氮的贡献率平均高达76.0%。而化肥氮在脲甲醛中的贡献率较低,平均仅为37.6%。4)与常规尿素相比,脲甲醛、凝胶尿素、控失尿素以及树脂包膜尿素的产量也有显著增加,两年平均产量增幅为6.3%~18.8%。5)不同氮肥的夏玉米氮肥利用率也有显著差异,其中脲甲醛为最高,平均高达57.9%,其次为凝胶尿素、控失尿素、树脂包膜尿素、硝酸钙和常规尿素,分别为42.4%、38.3%、38.3%、23.5%和20.8%。【结论】氮肥中的氨挥发主要集中于施肥后一周以内。与常规尿素相比,脲甲醛、控失尿素、树脂包膜尿素、凝胶尿素均能明显减少氨挥发损失、提高产量和氮肥利用率,以脲甲醛和凝胶尿素效果更显著,是高产、高效、低损失的肥料类型。  相似文献   

17.
改性尿素硝酸铵溶液调控氮素挥发和淋溶的研究   总被引:1,自引:0,他引:1  
为了提高肥料的利用率,以尿素硝酸铵溶液为原料、聚氨酸为保护剂,复合抑制剂NBPT(N-丁基硫代磷酰三胺)和DMPP(3,4-二甲基吡唑磷酸盐)为材料,开发出改性尿素硝酸铵溶液(YUL1和YUL2),研究其对华北平原夏玉米追肥过程中的氨挥发和淋溶损失的调控效果。田间试验设置6个处理:不施氮肥(CK)、农民习惯追施尿素(CN)、优化追施尿素(CNU)、优化追施尿素硝酸铵溶液(UAN)、优化追施改性尿素硝酸铵溶液(YUL1)和优化追施改性尿素硝酸铵溶液(YUL2)。采用扫描电镜和能谱仪分析相关指标变化,在夏玉米喇叭口期追施氮肥后15d内进行田间原位连续动态观测氨挥发和土壤铵态氮和硝态氮变化,并在玉米成熟期测定产量,计算经济效益。结果表明,改性尿素硝酸铵溶液清澈无杂质,流延后成膜表面光滑、致密,抑制剂在膜表面分布均匀;能谱测试膜层表面磷硫含量增高,证明复合抑制剂与尿素硝酸铵溶液达到有效融合。在同等优化施氮量下:与CNU相比, YUL1氨挥发总量显著降低19.3%, YUL2增加9.6%;与UAN相比, YUL1、YUL2分别显著降低57.3%和42.0%。与其他施氮处理相比, YUL1和YUL2夏玉米季生长中后期0~20 cm土层依然保持相对较高的氮素含量水平,夏玉米收获后土壤硝态氮含量分别比CNU高46.0%和43.4%,比UAN高45.6%和44.7%;180~200cm土层硝态氮含量显著低于其他处理。在保证产量和净收益的同时,改性尿素硝酸铵肥料显著降低了氮素的氨挥发和淋溶损失浓度,尿酶抑制剂含量相对较高的YUL1抑制氨挥发的效果更好,硝化抑制剂含量相对高的YUL2硝态氮向下淋失的风险更小。  相似文献   

18.
Abstract

Surface‐applied urea fertilizers are susceptible to hydrolysis and loss of nitrogen (N) through ammonium (NH3) volatilization when conditions favorable for these processes exist. Calcium chloride (CaCl2) and ammonium thiosulfate (ATS) may inhibit urease activity and reduce NH3 volatilization when mixed with urea fertilizers. The objective of this study was to evaluate the effectiveness of CaCl2 and ATS as urea‐N loss inhibitors for contrasting soil types and varying environmental conditions. The proposed inhibitors were evaluated in the laboratory using a closed, dynamic air flow system to directly measure NH3 volatilization. The initial effects of CaCl2 on ammonia volatilization were more accentuated on an acid Lufkin fine sandy loam than a calcareous Ships clay, but during volatilization periods of ≥ 192 h, cumulative N loss was reduced more on the Ships soil than the Lufkin soil. Calcium chloride delayed the commencement of NH3 volatilization following fertilizer application and reduced the maximum N loss rate. Ammonium thiosulfate was more effective on the Lufkin soil than the Ships soil. For the Lufkin soil, ATS reduced cumulative urea‐N loss by 11% after a volatilization period of 192 h. A 20% (v/v) addition of ATS to urea ammonium nitrate (UAN) was most effective on the coarse textured Lufkin soil whereas a 5% addition was more effective on the fine textured, Ships soil. Rapid soil drying following fertilizer application substantially reduced NH3 volatilization from both soils and also increased the effectiveness of CaCl2 but not ATS. Calcium chloride and ATS may function as limited NH3 volatilization inhibitors, but their effectiveness is dependent on soil properties and environmental conditions.  相似文献   

19.
Ammonia volatilization from Vertisols   总被引:3,自引:0,他引:3  
Farmers want to minimize losses of nitrogen (N) by volatilization of ammonia when adding fertilizers and improve fertilizer recovery of N by plants. We aimed to quantify the losses of N through NH3 volatilization as affected by soil moisture content, type of fertilizer, and placement method in Vertisols in Kenya, and conducted three experiments for the purpose under controlled conditions in the laboratory. We found that NH3-N losses were greatest at 80% water holding capacity, which we ascribed to the ready availability of water to dissolve the fertilizer at that water content. The soil's cation exchange capacity (CEC) did not influence volatilization, whereas the soil's pH indicated the potential of the soil to volatilize ammonia. Ammonia losses from the fertilizers were in the order urea > ammonium sulphate > ammonium nitrate applied. Incorporating fertilizer within the 0–5 cm soil layer more than halved NH3 volatilization but did not prevent it completely. These results indicate that soil pH, rather than CEC, is the main inherent characteristic influencing ammonia volatilization from Vertisols. Ammonium-based fertilizers should be incorporated within the 0–5 cm soil layer, or preferably somewhat deeper, to avoid losses via NH3 volatilization, particularly in alkaline soils. Nitrate fertilizers are preferable to urea where the risks of NH3 volatilization are large, provided due consideration is given to denitrification risks.  相似文献   

20.
ABSTRACT

The effectiveness of N-(n-butyl) thiophosphoric triamide (NBPT) in reducing ammonia volatilization from urea-based fertilizers has been thoroughly investigated. However, the stability of this inhibitor during storage of NBPT treated urea and urea ammonium nitrate (UAN) needs further investigation. We compared ammonia volatilization from NBPT treated urea (360 mg NBPT kg?1 urea) and UAN (180 mg NBPT L?1 UAN) that were stored at room temperature for 6, 3 and 0 months. We measured ammonia volatilization with cylindrical chambers fitted with acid-charged discs at five times for 21 d. Total ammonia volatilization (measured as a % of applied nitrogen) was significantly greater in untreated urea and UAN (32% to 33%) than those in NBPT treated urea and UAN (6% to 12%). Reduction of ammonia volatilization was not significantly different among NBPT treated urea (73% to 81%) and UAN (63% to 73%) irrespective of storage time. This implies that farmers can mix their urea-based fertilizers with NBPT formulation 6 months prior to fertilization without compromising the ammonia volatilization reducing property of the NBPT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号