首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Size distribution, maximum complexing ability, and stability constants for phosphate-metal-humic (PO43--M-HA) complexes involving two trivalent (Fe and Al) and five divalent metal (M) bridges (Zn, Cu, Mn, Ca, and Mg) were investigated at the pH values 4, 6, and 8. Results highlighted the existing competition between metal-humic acid (M-HA) aggregation and the formation of PO43--M-HA complexes. However, the fact that only a very low fraction of complexed metal is involved in PO43- fixation seems to be related to the existence of specific electronic and/or steric requirements in the binding site in the metal-humic complex. The importance of the ionic form of phosphate (H2PO4- or HPO42-) and the involvement of phenolic and especially carboxylic groups in the phosphate binding are discussed. Finally, the order of stability obtained for PO43--M-HA complexes was similar to that of M-HA complexes. This result suggests that PO43--M-HA might play a significant role in the dynamics of phosphorus in certain soil types.  相似文献   

3.
磷酸盐在水铁矿及水铁矿-胡敏酸复合体表面的吸附   总被引:3,自引:1,他引:3  
The adsorption of phosphate onto ferrihydrite (FH) and two FH-humic acid (HA) complexes, obtained by co-precipitating FH with low (FH-HA1) and relatively high amounts of humic acid (FH-HA2), was studied through kinetics and isotherm experiments to determine the differences in phosphate adsorption between FH-HA complexes and FH and to reveal the mechanism of phosphate adsorption onto two soil compositions. The isoelectric point (IEP) and the specific surface area (SSA) of the mineral decreased as the particle porosity of the mineral increased, which corresponded to an increase in the amount of organic carbon. The adsorption capacity of phosphate was higher on FH than on FH-HA1 and FH-HA2 at the scale of micromoles per kilogram. The initial adsorption rate and adsorption affinity of phosphate decreased with an increase in the amount of HA in the mineral. The sensitivity of phosphate adsorption to the change in the pH was greater for FH than for FH-HA complexes. Ionic strength did not affect the adsorption of phosphate onto FH and FH-HA1 at a lower pH, and the increase in the ionic strength promoted phosphate adsorption at a higher pH. However, for the FH-HA2 complex, the increase in the ionic strength inhibited the adsorption of phosphate onto FH-HA2 at a lower pH and increased the adsorption at a higher pH.  相似文献   

4.
5.
土壤胡敏酸与富里酸热力学稳定性及其驱动因素初步研究   总被引:5,自引:2,他引:5  
从过程考虑,腐殖质的形成和转化主要是微生物主导的生物化学过程,但就其始态和终态的能量水平变化而言,是热力学稳定性问题。在土壤中,影响腐殖质的形成转化的因素很多,如黏粒含量和类型,植被和微生物状况,土壤湿度、温度和空气组成,土壤溶液的化学组成、浓度、酸度和氧化还原状况等。但从热力学角度,为了计算反应平衡常数(logKR)和吉普斯生成自由能(ΔGfθ),如果将温度设为25℃,我们可以将土壤条件诸多因素简化为水活度([H2O])、氧分压(PO2)和二氧化碳分压(PCO2)这3个参数。之所以简化为这3个参数,因为任何有机成分均是由含有这3种元素的物质形成的,最终又均可以分解为含有这3种元素的H2O和CO2。本文按照上述新思路,以黑土为例探讨了胡敏酸(HA)、富里酸(FA)形成转化的驱动因素和热力学稳定性的研究方法,用元素组成-土壤条件参数法计算HA、FA的logKR和ΔGfθ及热力学稳定性范围。同时通过土壤添加有机物料的模拟培养实验研究了氧气和二氧化碳等单因素对HA和FA数量积累的影响。结果表明,黑土HA和FA的元素组成分子式分别为nC21H21O9N和nC24H33O17N。FA在缺氧、多水和高浓度二氧化碳条件下较稳定;HA则相反。培养实验中,高二氧化碳和低氧气浓度处理使FA与HA的相对比例增加。这一研究方法和结果将有助于解释和推测土壤腐殖质组成的空间变异规律,指导土壤肥力、土壤固碳的调控实践。  相似文献   

6.
Oxidative stability of conjugated linoleic acid isomers   总被引:16,自引:0,他引:16  
Conjugated linoleic acids (CLAs) have been shown to be a strong anticarcinogen in a number of animal models. Our previous study demonstrated that CLA as a whole was extremely unstable in air. The present study was undertaken further to examine the oxidative stability of individual CLA isomers using the combination of gas-liquid chromatography (GLC) and silver ion high-performance liquid chromatography (Ag-HPLC). It was found that CLA as a whole oxidized rapidly and more than 80% was degraded within 110 h in air at 50 degrees C. Four c,c-CLA isomers were most unstable followed by four c,t-CLA isomers. In contrast, four t,t-CLA isomers were relatively stable under the same experimental conditions. Both the oxygen consumption and the GLC analysis revealed that 200 ppm jasmine green tea catechins (GTCs) exhibited protection to CLA and were even stronger than 200 ppm butylated hydroxytoluene (BHT) when added to either CLA or canola oil containing 10% CLA. The present study emphasized that oxidative unstability of CLA should not be overlooked although CLA has many biological effects.  相似文献   

7.
[14C]cellulase was extracted from the culture medium of Trichoderma viride and an attempt made to complex it with humic acid by adsorption. The results showed that the humic acid extracted from soil does not form a stable complex with [14C]cellulase. In contrast, the flocculation of humic acid by 24 mM Ca2+ in the presence of the cellulase resulted in the formation of stable humic-cellulase complexes. These complexes showed great resistance to proteolysis and storage at high temperatures. DEAE cellulose chromatography of cellulase-humic complexes revealed that cellulase could not be separated from the humic acid. Enzyme activity was only eluted along with humic acid upon increasing gradient concentration from 1.0 to 1.5 m NaCl. Furthermore, in order to test their stability, the enzyme-humic complexes were incorporated into fresh soil for 90 days. The cellulase-humic complexes were then extracted from soil. Fractionation of the extract on DEAE cellulose and G 100 Sephadex revealed that cellulase activiiy could not be separated from humic acid and was again eluted in the form of enzyme-humic complexes. This confirmed the stability of cellulase-humic complexes in soil.  相似文献   

8.
Studies of the high-intensity sweetener aspartame show that its stability is significantly enhanced in the presence of beta-cyclodextrin (beta-CyD). At a 5:1 beta-CyD/aspartame molar ratio, the stability of aspartame is 42% greater in 4 mM phosphate buffer (pH 3.1) compared to solutions prepared without beta-CyD. Solution-state (1)H NMR experiments demonstrate the formation of 1:1 beta-CyD/aspartame complexes, stabilized by the interaction of the phenyl-ring protons of aspartame with the H3 and H5 protons of beta-CyD. Inclusion complex formation clearly accounts for the observed stability enhancement of aspartame in solution. The formation of inclusion complexes in solution is also demonstrated for beta-CyD and neotame, a structural derivative of aspartame containing an N-substituted 3,3-dimethylbutyl group. These complexes are stabilized by the interaction of beta-CyD with both phenyl-ring and dimethylbutyl protons. Solid-state NMR experiments provide additional characterization, clearly demonstrating the formation of inclusion complexes in lyophilized solids prepared from solutions of beta-CyD and either aspartame or neotame.  相似文献   

9.
Location and stability of a recombinant prion protein (recPrP) and its interaction with humic-like complexes were investigated by low-temperature ashing (LTA), thermal gravimetric (TG), and scanning electron microscopy (SEM) analyses. Humic-like complexes were obtained by abiotic polymerization of catechol, one of the possible precursors of soil humic matter, through the catalysis of birnessite, a manganese oxide common in soil environment. The recPrP was immobilized in organomineral complexes via sorption or entrapment. Complexes were treated by LTA, allowing the controlled removal of organic matter layer by layer, from the external to the internal side, with minimal disturbance of mineral constituents. Thermal gravimetric and SEM analyses were performed on specimens before and after LTA treatment. Entrapped recPrP, compared with sorbed, resulted less easily accessible to LTA treatment and showed a higher thermal stability by TGA analyses. On the basis of these findings, we hypothesize that the processes leading to newly formed organic complexes can enhance prion stability in soil and thus influence the environmental diffusion of infectivity.  相似文献   

10.
In order to investigate the relationships between the stability of Cu complexes and the nitrification inhibition effects of corresponding ligands, the effects of 22 kinds of Cu (II) ligands and eight kinds of Cu (I) ligands were evaluated in three types of soil on nitrification potentials (NPs) under short-term incubation (5 h) and nitrification inhibitory rates (NIRs) under long-term incubation (14 d). The results showed that the inhibitory effect of Cu (II) or Cu (I) ligands on nitrification exhibited significant linear relationships (P < 0.01) with the logarithms of the first stability constants (lgK1) and the total stability constants (lgKf) of corresponding complexes. Furthermore, lgKf of Cu (II) complexes exhibited a greater linear correlation than the corresponding lgK1 with the nitrification inhibition effects of the corresponding ligands; lgKf of Cu (I) complexes exhibited a steeper linear relationship than that of Cu (II) complexes with NPs or NIRs, and hence, nitrification inhibition effects of Cu (I) ligands almost doubled that of Cu (II) ligands when the lgKf values of Cu (I) and Cu (II) complexes have the same changes.  相似文献   

11.
 Acid phosphatase from potato was adsorbed and immobilized on a pre-formed network of Ca-polygalacturonate, a substrate which has a composition and morphology similar to the mucigel present at the root-soil interface. The influence of different types of organic buffers on enzyme adsorption and activity was investigated. The highest enzyme activity, for free and adsorbed enzyme, was obtained with Na-maleate buffer at pH 6.0, which was used for all subsequent experiments. The Michaelis-Menten kinetic parameters, Vmax and Km, were determined for free and adsorbed phosphatase. Vmax showed a 60% decrease upon adsorption (2.09±0.30 U/mg, for the soluble form and 0.84±0.15 U/mg, for the adsorbed enzyme), whereas Km increased from 0.49±0.15 mM for the free enzyme to 0.99±0.20 mM for adsorbed phosphatase. Phosphatase adsorption decreased as the concentration of NaCl increased, indicating that the enzyme is bound to the carrier gel through coulombic interactions. Adsorption increased stability of the enzyme as compared with the free enzyme (t 1/2 of the activity was 9.4 days and 5.8 days, respectively), but increased thermal and proteolytic inactivation. The pH/activity profile revealed no change in terms of shape or optimum pH (4.5) upon adsorption of the enzyme. These results indicate that adsorption of acid phosphatase on Ca-polygalacturonate induces changes in the kinetic properties and stability of the enzyme, and the same type of response can be extrapolated from these results for acid phosphatases of the rhizosphere. Received: 1 July 1997  相似文献   

12.
Abstract

Levels of cadmium (Cd) in New Zealand pastoral soils have increased due to Cd impurities in applied fertilisers. As there is little information on the interaction of Cd with soil mineral‐organic matter complexes, the sorption of Cd by complexes of kaolinite with humic acid has been investigated. Sorption was measured at pH and ionic strength values typically found for solutions of pastoral soils in New Zealand. Sorption increased with the content of humic acid in the complex, and as the pH of the medium was raised from 4.2 to 6.3. Sorption was also influenced by the ionic strength of the ambient solution, notably by the nature of the cation in the added electrolyte. The experimental data were interpreted in terms of the effect of solution pH and ionic composition on the charge characteristics of kaolinite and humic acid. These factors, in turn, influence clay particle association as well as the clay‐humic and metal‐humic interaction.  相似文献   

13.
This study utilized an in vitro digestion/Caco-2 cell model to determine the levels of ascorbic acid (AA) and "meat factor" needed to promote Fe absorption from Fe complexed with phytic acid (PA) or tannic acid (TA). AA reversed the inhibition of Fe absorption by PA beginning at a molar ratio of 1:20:1 (Fe:PA:AA) but essentially had no effect on the Fe complexed with TA. Fish also reversed the inhibition of Fe uptake by PA but not by TA. TA and fish decreased total Fe solubility. Iron in the presence of PA was highly soluble. AA, but not fish, increased the percentage of soluble Fe as Fe2+ in the presence of both inhibitors. The results indicate that monoferric phytate is a form of Fe that can be available for absorption in the presence of uptake promoters. In contrast, a TA-Fe complex is much less soluble and unavailable in the presence of promoters.  相似文献   

14.
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 degrees C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 degrees C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55-57 degrees C) and a biphasic model for higher temperatures (58-70 degrees C). The enzyme showed a stable behavior toward high-pressure/temperature treatments.  相似文献   

15.
The water- and acid-insoluble fractions of a chestnut ( Castanea sativa L.) leaf litter sample and their complexes with Cu(II), Fe(III), and Mn(II) prepared in the laboratory were characterized by major elemental analysis, total Cu, Fe, and Mn content, infrared (IR), and electron spin resonance (ESR) spectroscopy. The IR spectra revealed a broad typology of functional groups (particularly carboxyls) in the solid litter, whereas the ESR spectra showed the existence of indigenous organic free radical species, inner-sphere Fe3+ complexes, and outer-sphere Mn2+ complexes. The litter exhibited a high residual binding capacity for Cu, Fe, and Mn in chemical forms of differing stability against water leaching and proton exchange. The ESR spectra of the metal complexes prepared in the laboratory indicated that Fe3+ and Cu2+ formed highly water-stable, inner-sphere complexes, whereas Mn2+ formed water-labile, outer-sphere complexes. Oxygen ligands of the litter were involved in metal complexation in all cases. The litter showed the highest affinity for Cu2+, followed by Fe3+ and Mn2+, when it was reacted with a single metal, whereas it complexed Fe3+ preferentially in the presence of both Cu2+ and Fe3+. Only a limited portion of the metal ions retained at the pH of distilled water remained bound in stable forms by the litter when the pH was lowered. Thus, variations of pH in forest soils will significantly affect micronutrient metal content and mobility in leaf litter.  相似文献   

16.
Detailed kinetic studies of [6S] and [6RS] 5-methyltetrahydrofolic acid (5-CH3-H4folate) degradation during thermal (from 60 to 90 degrees C) and high pressure/thermal (from 30 to 45 degrees C; from 200 to 700 MPa) treatments were carried out. The results confirmed that the temperature and pressure induced degradation kinetics of [6S] 5-CH3-H4folate were identical (within 95% confidence interval) with those of [6RS] 5-CH3-H4folate. Under equal processing conditions, the estimated degradation rate constants (k), activation energy (E(a)), and activation volume (V(a)) values of [6S] and [6RS] 5-CH3-H4folate were the same (95% confidence interval). The modified thermodynamic model proposed by Nguyen and co-workers (J. Agric. Food Chem. 2003, 51, 3352-3357) to describe the pressure and temperature dependence of the rate constant for folate degradation was reevaluated.  相似文献   

17.
This study reports the formation of solid vanillin/cyclodextrin inclusion complexes (vanillin/CD ICs) with the aim to enhance the thermal stability and sustained release of vanillin by inclusion complexation. The solid vanillin/CD ICs with three types of CDs (α-CD, β-CD, and γ-CD) were prepared using the freeze-drying method; in addition, a coprecipitation method was also used in the case of γ-CD. The presence of vanillin in CD ICs was confirmed by FTIR and (1)H NMR studies. Moreover, (1)H NMR study elucidated that the complexation stoichiometry for both vanillin/β-CD IC and vanillin/γ-CD IC was a 1:1 molar ratio, whereas it was 0.625:1 for vanillin/α-CD IC. XRD studies have shown channel-type arrangement for CD molecules, and no diffraction peak for free vanillin was observed for vanillin/β-CD IC and vanillin/γ-CD IC, indicating that complete inclusion complexation was successfully achieved for these CD ICs. In the case of vanillin/α-CD IC, the sample was mostly amorphous and some uncomplexed vanillin was present, suggesting that α-CD was not very effective for complexation with vanillin compared to β-CD and γ-CD. Furthermore, DSC studies for vanillin/β-CD IC and vanillin/γ-CD IC have shown no melting point for vanillin, elucidating the true complex formation, whereas a melting point for vanillin was recorded for vanillin/α-CD IC, confirming the presence of some uncomplexed vanillin in this sample. TGA thermograms indicated that thermal evaporation/degradation of vanillin occurred over a much higher temperature range (150-300 °C) for vanillin/CD ICs samples when compared to pure vanillin (80-200 °C) or vanillin/CD physical mixtures, signifying that the thermal stability of vanillin was increased due to the inclusion complexation with CDs. Moreover, headspace GC-MS analyses indicated that the release of vanillin was sustained at higher temperatures in the case of vanillin/CD ICs due to the inclusion complexation when compared to vanillin/CD physical mixtures. The amount of vanillin released with increasing temperature was lowest for vanillin/γ-CD IC and highest for vanillin/α-CD IC, suggesting that the strength of interaction between vanillin and the CD cavity was in the order γ-CD > β-CD > α-CD for solid vanillin/CD ICs.  相似文献   

18.
Lipid oxidation and color stability of meats treated with irradiated phytic acid were investigated during storage for 2 weeks at 4 degrees C. The phytic acid in deionized distilled water (DDW) was degraded by irradiation at 10 and 20 kGy, and the irradiated phytic acid showed a strong antiradical activity. For measuring the antioxidant effects of irradiated phytic acid in food models, beef and pork were prepared with DDW (control), irradiated (10 and 20 kGy) or non-irradiated phytic acid, and ascorbic acid as a model system. Irradiated phytic acid significantly inhibited the lipid oxidation in meats compared to the control and ascorbic acid treated samples during storage (P < 0.05). The redness of the meats treated with phytic acid had a higher value than did the control and ascorbic acid treated samples, but a significant difference was not observed in the samples treated with phytic acid regardless of irradiation treatment. Irradiated phytic acid was also effective in inhibiting the loss of heme iron and metmyoglobin formation during storage. Results indicated that irradiation might be helpful for improving the antioxidant activity of phytic acid in meats.  相似文献   

19.
Interfacial protein-polysaccharide complexes can be used to improve the physical stability of oil-in-water emulsions. The purpose of this study was to examine the impact of ionic strength on the formation and stability of oil-in-water emulsions containing polysaccharide-protein-coated droplets. Emulsions were prepared that contained 0.1 wt % corn oil, 0.05 wt % beta-lactoglobulin, and 0.02 wt % pectin at pH 7. The emulsions were then adjusted to pH 4 to promote electrostatic deposition of the pectin molecules onto the surfaces of the protein-coated droplets. The salt concentration of the aqueous phase (0 or 50 mM NaCl) was adjusted either before or after deposition of the pectin molecules onto the droplet surfaces. We found that stable emulsions containing polysaccharide-protein-coated droplets could be formed when the salt was added after pectin adsorption but not when it was added before pectin adsorption. This phenomenon was attributed to the ability of NaCl to promote droplet flocculation in the protein-coated droplets so that the pectin molecules adsorbed onto the surfaces of flocs rather than individual droplets when salt was added before pectin adsorption. We also found that polysaccharide-protein-coated droplets had a much improved stability to salt-induced flocculation than protein-coated droplets with the same droplet charge (zeta-potential). Theoretical predictions indicated that this was due to the ability of the adsorbed polysaccharide layer to strongly diminish the van der Waals attraction between the droplets.  相似文献   

20.
Microbial metabolism is essential in maintaining a healthy mucosa in the large bowel, preferentially through butyrate specific mechanisms. This system depends on starch supply. Two structurally different resistant starches type 3 (RS3) have been investigated with respect to their resistance to digestion, fermentability, and their effects on the composition and turnover of bile acids in rats. RSA (a mixture of retrograded maltodextrins and branched high molecular weight polymers), which is more resistant than RSB (a retrograded potato starch), increased the rate of fermentation accompanied by a decrease of pH in cecum, colon, and feces. Because they were bound to RS3, less bile acids were reabsorbed, resulting in a higher turnover through the large bowel. Because of the rise of volume, the bile acid level was unchanged and the formation of secondary bile acids was partly suppressed. The results proved a strong relation between RS3, short chain fatty acid production, and microflora. However, butyrate specific benefits are only achieved by an intake of RS3 that result in good fermentation properties, which depend on the kind of the resistant starch structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号