首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REASONS FOR PERFORMING STUDY: Danofloxacin is a fluoroquinolone developed for veterinary medicine showing an excellent activity. However, danofloxacin pharmacokinetics profile have not been studied in horses previously. OBJECTIVE: To study the pharmacokinetics following i.v., i.m. and intragastric (i.g.) administration of 1.25 mg/kg bwt danofloxacin to 6 healthy horses. METHODS: A cross-over design was used in 3 phases (2 x 2 x 2), with 2 washout periods of 15 days (n = 6). Danofloxacin (18%) was administered by i.v. and i.m. routes at single doses of 1.25 mg/kg bwt. For i.g. administration an oral solution was prepared and administered via nasogastric tube. Danofloxacin concentrations were determined by HPLC assay with fluorescence detection. Tolerability at the the site of i.m. injection was monitored by creatine kinase (CK) activity. RESULTS: Danofloxacin plasma concentration vs. time data after i.v. and i.g. administration could best be described by a 2-compartment open model. The disposition of i.m. administered danofloxacin was best described by a one-compartment model. The terminal half-lives for i.v., i.m. and i.g. routes were 6.31, 5.36 and 4.74 h, respectively. Clearance value after i.v. dosing was 0.34 l/kg bwt/h. After i.m. administration, absolute bioavailability was mean +/- s.d. 88.48 +/- 11.10% and Cmax was 0.35 +/- 0.05 mg/l. After i.g. administration, absolute bioavailability was 22.36 +/- 6.84% and Cmax 0.21 +/- 0.07 mg/l. CK activity following i.m. dosing increased 3-fold over pre-injection levels 12 h after dosing and subsequently approached (but did not reach) normal values at 72 h post dose. CONCLUSIONS: Systemic danofloxacin exposure achieved in horses following i.m. administration was consistent with the predicted blood levels needed for a positive therapeutic outcome for many equine infections. Conversely, danofloxacin utility by the i.g. route was limited by low bioavailability. Tolerability associated with i.m. administration was high. POTENTIAL RELEVANCE: Pharmacokinetics, blood levels and good tolerability of i.v. and i.m. administration of danofloxacin in horses indicates that it is likely to be effective for treating sensitive bacterial infections.  相似文献   

2.
OBJECTIVE: To study the pharmacokinetics of difloxacin (5 mg/kg) following IV, IM, and intragastric (IG) administration to healthy horses. ANIMALS: 6 healthy mature horses. PROCEDURES: A crossover study design with 3 phases was used (15-day washout periods between treatments). An injectable formulation of difloxacin (5%) was administered IV and IM in single doses (5 mg/kg); for IG administration, an oral solution was prepared and administered via nasogastric tube. Blood samples were collected before and at intervals after each administration. A high-performance liquid chromatography assay with fluorescence detection was used to determine plasma difloxacin concentrations. Pharmacokinetic parameters of difloxacin were analyzed. Plasma creatine kinase activity was monitored to assess tissue damage. RESULTS: Difloxacin plasma concentration versus time data after IV administration were best described by a 2-compartment open model. The disposition of difloxacin following IM or IG administration was best described by a 1-compartment model. Mean half-life for difloxacin administered IV, IM, and IG was 2.66, 5.72, and 10.75 hours, respectively. Clearance after IV administration was 0.28 L/kg.h. After IM administration, the absolute mean +/- SD bioavailability was 95.81 +/- 3.11% and maximum plasma concentration (Cmax) was 1.48 +/- 0.12 mg/L. After IG administration, the absolute bioavailability was 68.62 +/- 10.60% and Cmax was 0.732 +/- 0.05 mg/L. At 12 hours after IM administration, plasma creatine kinase activity had increased 7-fold, compared with the preinjection value. CONCLUSIONS AND CLINICAL RELEVANCE: Data suggest that difloxacin is likely to be effective for treating susceptible bacterial infections in horses.  相似文献   

3.
Nonsteroidal anti‐inflammatory drugs (NSAIDs) are an integral component of equine analgesia, yet currently available NSAIDs are both limited in their analgesic efficacy and have adverse effects. The NSAID ketorolac tromethamine (KT) is widely used in humans as a potent morphine‐sparing analgesic drug but has not been fully evaluated in horses. The purpose of this study was to determine the pharmacokinetic profile of KT in horses after intravenous (i.v.), intramuscular (i.m.), and oral (p.o.) administration. Nine healthy adult horses received a single 0.5‐mg/kg dose of KT via each route of administration. Plasma was collected up to 48 h postadministration and analyzed for KT concentration using HPLC/MS/MS. Noncompartmental analysis of i.v. dosage indicated a mean plasma clearance of 8.4 (mL/min)/kg and an estimated mean volume of distribution at steady‐state of 0.77 L/kg. Noncompartmental analysis of i.v., i.m., and p.o. dosages indicated mean residence times of 2.0, 2.6, and 7.1 h, respectively. The drug was rapidly absorbed after i.m. and p.o. administration, and mean bioavailability was 71% and 57% for i.m. and p.o. administration, respectively. Adverse effects were not observed after i.v., i.m., and p.o. administration. More studies are needed to evaluate the analgesic and anti‐inflammatory properties of KT in horses.  相似文献   

4.
ObjectiveTo compare the pharmacokinetics and pharmacodynamics of hydromorphone in horses after intravenous (IV) and intramuscular (IM) administration.Study designRandomized, masked, crossover design.AnimalsA total of six adult horses weighing [mean ± standard deviation (SD))] 447 ± 61 kg.MethodsHorses were administered three treatments with a 7 day washout. Treatments were hydromorphone 0.04 mg kg⁻1 IV with saline administered IM (H-IV), hydromorphone 0.04 mg kg⁻1 IM with saline IV (H-IM), or saline IV and IM (P). Blood was collected for hydromorphone plasma concentration at multiple time points for 24 hours after treatments. Pharmacodynamic data were collected for 24 hours after treatments. Variables included thermal nociceptive threshold, heart rate (HR), respiratory frequency (fR), rectal temperature, and fecal weight. Data were analyzed using mixed-effects linear models. A p value of less than 0.05 was considered statistically significant.ResultsThe mean ± SD hydromorphone terminal half-life (t1/2), clearance and volume of distribution of H-IV were 19 ± 8 minutes, 79 ± 12.9 mL minute⁻1 kg⁻1 and 1125 ± 309 mL kg⁻1. The t1/2 was 26.7 ± 9.25 minutes for H-IM. Area under the curve was 518 ± 87.5 and 1128 ± 810 minute ng mL⁻1 for H-IV and H-IM, respectively. The IM bioavailability was 217%. The overall thermal thresholds for both H-IV and H-IM were significantly greater than P (p < 0.0001 for both) and baseline (p = 0.006). There was no difference in thermal threshold between H-IV and H-IM. No difference was found in physical examination variables among groups or in comparison to baseline. Fecal weight was significantly less than P for H-IV and H-IM (p = 0.02).Conclusions and clinical relevanceIM hydromorphone has high bioavailability and provides a similar degree of antinociception to IV administration.IM hydromorphone in horses provides a similar degree and duration of antinociception to IV administration.  相似文献   

5.
OBJECTIVE: To determine the pharmacokinetics of acetazolamide administered IV and orally to horses. ANIMALS: 6 clinically normal adult horses. PROCEDURE: Horses received 2 doses of acetazolamide (4 mg/kg of body weight, IV; 8 mg/kg, PO), and blood samples were collected at regular intervals before and after administration. Samples were assayed for acetazolamide concentration by high-performance liquid chromatography, and concentration-time data were analyzed. RESULTS: After IV administration of acetazolamide, data analysis revealed a median mean residence time of 1.71 +/- 0.90 hours and median total body clearance of 263 +/- 38 ml/kg/h. Median steady-state volume of distribution was 433 +/- 218 ml/kg. After oral administration, mean peak plasma concentration was 1.90 +/- 1.09 microg/ml. Mean time to peak plasma concentration was 1.61 +/- 1.24 hours. Median oral bioavailability was 25 +/- 6%. CONCLUSIONS AND CLINICAL RELEVANCE: Oral pharmacokinetic disposition of acetazolamide in horses was characterized by rapid absorption, low bioavailability, and slower elimination than observed initially after IV administration. Pharmacokinetic data generated by this study should facilitate estimation of appropriate dosages for acetazolamide use in horses with hyperkalemic periodic paralysis.  相似文献   

6.
The pharmacokinetic behaviour of marbofloxacin, a new fluoroquinolone antimicrobial agent developed exclusively for veterinary use, was studied in mature horses (n = 5) after single-dose i.v. and i.m. administrations of 2 mg/kg bwt. Drug concentrations in plasma were determined by high performance liquid chromatography (HPLC) and data obtained were subjected to compartmental and noncompartmental kinetic analysis. This compound presents a relatively high volume of distribution (V(SS) = 1.17 +/- 0.18 l/kg), which suggests good tissue penetration, and a total body clearance (Cl) of 0.19 +/- 0.042 l/kgh, which is related to a long elimination half-life (t(1/2beta) = 4.74 +/- 0.8 h and 5.47 +/- 1.33 h i.v. and i.m. respectively). Marbofloxacin was rapidly absorbed after i.m. administration (MAT = 33.8 +/- 14.2 min) and presented high bioavailability (F = 87.9 +/- 6.0%). Pharmacokinetic parameters are not significantly different between both routes of administration (P>0.05). After marbofloxacin i.m. administration, no adverse reactions at the site of injection were observed. Serum CK activity levels 12 h after administration increased over 8-fold (range 3-15) compared with pre-injection levels, but this activity decreased to 3-fold during the 24 h follow-up period. Based on the value of surrogate markers to predict clinical success, Cmax/MIC ratio or AUC/MIC ratio, single daily marbofloxacin dose of 2 mg/kg bwt may not be effective in treating infections in horses caused by pathogens with an MIC > or = 0.25 microg/ml. However, if we use a classical antimicrobial efficacy criteria, marbofloxacin can reach a high plasma peak concentration and maintain concentrations higher than MICs determined for marbofloxacin against most gram-negative veterinary pathogens throughout the administration period. Taking into account the fact that fluoroquinolones are considered to have a concentration-dependent effect and a long postantibiotic effect against gram-negative bacteria, a dose of 2 mg/kg bwt every 24 h could be adequate for marbofloxacin in horses.  相似文献   

7.
Metronidazole pharmacokinetics in horses was studied after intravenous (i.v.), rectal (p.r.) and oral (p.o.) administration at 20 mg/kg using a triple crossover study design. Metronidazole mean+/-SD half-life was 196+/-39, 212+/-30 and 240+/-65 min after i.v., p.r. and p.o. administration, respectively. The metronidazole clearance was 2.8 (mL/min/kg) and the volume of distribution at steady state was 0.68 L/kg. The pharmacokinetic parameters calculated for metronidazole after administration of the drug by the various routes showed that bioavailability (74+/-18 vs. 30+/-9%) and maximum serum concentration (22+/-8 vs. 9+/-2 microg /mL) were significantly higher after p.o. administration compared with p.r. administration. There were no significant differences in mean absorption time (45+/-69 vs. 66+/-18 min) and the time to reach maximum serum concentration (65+/-36 vs. 58+/-18 min). The results indicated that p.r. administration of metronidazole to horses, although inferior to p.o. administration in terms of bioavailability, provides an alternative route of administration when p.o. administration cannot be used.  相似文献   

8.
The aim of this study was to characterise the pharmacokinetic properties of different formulations of erythromycin in cats. Erythromycin was administered as lactobionate (4 mg/kg intravenously (IV)), base (10 mg/kg, intramuscularly (IM)) and ethylsuccinate tablets or suspension (15 mg/kg orally (PO)). After IV administration, the major pharmacokinetic parameters were (mean ± SD): area under the curve (AUC)(0–∞) 2.61 ± 1.52 μg h/mL; volume of distribution (Vz) 2.34 ± 1.76 L/kg; total body clearance (Clt) 2.10 ± 1.37 L/h kg; elimination half-life (t½λ) 0.75 ± 0.09 h and mean residence time (MRT) 0.88 ± 0.13 h. After IM administration, the principal pharmacokinetic parameters were (mean ± DS): peak concentration (Cmax), 3.54 ± 2.16 μg/mL; time of peak (Tmax), 1.22 ± 0.67 h; t½λ, 1.94 ± 0.21 h and MRT, 3.50 ± 0.82 h. The administration of erythromycin ethylsuccinate (tablets and suspension) did not result in measurable serum concentrations. After IM and IV administrations, erythromycin serum concentrations were above minimum inhibitory concentration (MIC)90 = 0.5 μg/mL for 7 and 1.5 h, respectively. However, these results should be interpreted cautiously since tissue erythromycin concentrations have not been measured and can reach much higher concentrations than in blood, which may be associated with enhanced clinical efficacy.  相似文献   

9.
The aim of this trial was to implement a method to obtain a tool for analyses of tramadol and the main metabolite, o-desmethyltramadol (M1), in goat's plasma, and to evaluate the pharmacokinetics of these substances following intravenous (i.v.) and oral (p.o.) administration in female goats. The pharmacokinetics of tramadol and M1 were examined following i.v. or p.o. tramadol administration to six female goats (2 mg/kg). Average retention time was 5.13 min for tramadol and 2.42 min for M1. The calculated parameters for half-life, volume of distribution and total body clearance were 0.94+/-0.34 h, 2.48+/-0.58 L/kg and 2.18+/-0.23 L/kg/h following 2 mg/kg tramadol HCl administered intravenously. The systemic availability was 36.9+/-9.1% and half-life 2.67+/-0.54 h following tramadol 2 mg/kg p.o. M1 had a half-life of 2.89+/-0.43 h following i.v. administration of tramadol. Following p.o., M1 was not detectable.  相似文献   

10.
OBJECTIVE: To characterize pharmacokinetics of voriconazole in horses after oral and IV administration and determine the in vitro physicochemical characteristics of the drug that may affect oral absorption and tissue distribution. ANIMALS: 6 adult horses. PROCEDURES: Horses were administered voriconazole (1 mg/kg, IV, or 4 mg/kg, PO), and plasma concentrations were measured by use of high-performance liquid chromatography. In vitro plasma protein binding and the octanol:water partition coefficient were also assessed. RESULTS: Voriconazole was adequately absorbed after oral administration in horses, with a systemic bioavailability of 135.75 +/- 18.41%. The elimination half-life after a single orally administered dose was 13.11 +/- 2.85 hours, and the maximum plasma concentration was 2.43 +/- 0.4 microg/mL. Plasma protein binding was 31.68%, and the octanol:water partition coefficient was 64.69. No adverse reactions were detected during the study. CONCLUSIONS AND CLINICAL RELEVANCE: Voriconazole has excellent absorption after oral administration and a long half-life in horses. On the basis of the results of this study, it was concluded that administration of voriconazole at a dosage of 4 mg/kg, PO, every 24 hours will attain plasma concentrations adequate for treatment of horses with fungal infections for which the fungi have a minimum inhibitory concentration 相似文献   

11.
Tramadol is a synthetic opioid used in human medicine, and to a lesser extent in veterinary medicine, for the treatment of both acute and chronic pain. In humans, the analgesic effects are owing to the actions of both the parent compound and an active metabolite (M1). The goal of the current study was to extend current knowledge of the pharmacokinetics of tramadol and M1 following oral administration of three doses of tramadol to horses. A total of nine healthy adult horses received a single oral administration of 3, 6, and 9 mg/kg of tramadol via nasogastric tube. Blood samples were collected at time 0 and at various times up to 96 h after drug administration. Urine samples were collected until 120 h after administration. Plasma and urine samples were analyzed using liquid chromatography–mass spectrometry, and the resulting data analyzed using noncompartmental analysis. For the 3, 6, and 9 mg/kg dose groups, Cmax, Tmax, and the t1/2λ were 43.1, 90.7, and 218 ng/mL, 0.750, 2.0, and 1.5 h and 2.14, 2.25, and 2.39 h, respectively. While tramadol and M1 plasma concentrations within the analgesic range for humans were attained in the 3 and 6 mg/kg dose group, these concentrations were at the lower end of the analgesic range and were only transiently maintained. Furthermore, until effective analgesic plasma concentrations have been established in horses, tramadol should be cautiously recommended for control of pain in horses. No significant undesirable behavioral or physiologic effects were noted at any of the doses administered.  相似文献   

12.
The pharmacokinetic characteristics of valnemulin in layer chickens were studied after single intravenous, intramuscular, and oral administration at a dose of 15 mg/kg body weight. Plasma samples at certain time points were collected and the drug concentrations in them by ultra high‐performance liquid chromatography tandem mass spectrometry (UHPLC‐MS). The concentration–time data for each individual were plotted by noncompartmental analysis for the whole three routes. Following intravenous administration, the plasma concentration showed tiny fluctuation. The elimination half‐life (), total body clearance (Cl), and area under the plasma concentration–time curve (AUC) were 1.85 ± 0.43 h, 2.2 ± 0.9 L/h, and 7.52 ± 2.46 μg·h/mL, respectively. Following intramuscular administration, the peak concentration (Cmax, 1.40 ± 0.43 μg/mL) was achieved at the time of 0.34 h. A multiple‐peak phenomenon existed after oral administration, and the first peak and secondary peak were at 10 min and during 2–4 h, respectively, while the tertiary peak appeared during 5–15 h. The bioavailability (F %) for intramuscular and oral administration was 68.60% and 52.64%, respectively. In present study, the detailed pharmacokinetic profiles showed that this drug is widely distributed and rapidly eliminated, however has a low bioavailability, indicating that valnemulin is likely to be a favorable choice in the clinical practice.  相似文献   

13.
In the present study, the pharmacokinetic parameters of a trimethoprim/sulphachlorpyridazine preparation following intravenous administration, administration by nasogastric tube and administration with concentrate were determined in the horse. Eight adult horses were dosed at 1 week intervals in a sequentially designed study at a dose of 5 mg/kg trimethoprim (IMP) and 25 mg/kg sulphachlorpyridazine (SCP) on all occasions. Plasma concentrations of both drugs were measured serially for 48 h. Pharmacokinetic parameters of clinical importance (distribution and elimination half-lives, clearance, bioavail-ability, volume of distribution) were determined both for TMP and SCP. Following intravenous administration, the volume of distribution at steady-state (Vd(33) was significantly larger for TMP (1.51 ± 0.25 L/kg than for SCP (0.26 ± 0.05 L/kg. The clearance was 7.73 ± 2.26 mL/min-kg for TMP and 2.64 ± 0.48 mL/min·kg for SCP. For both TMP and SCP, mean peak plasma concentrations (Cmax) and the bioavailabilities (F) were reduced significantly when the drugs were mixed with concentrate (ct) as compared with those after nasogastric administration (ngt) (Fct= 44.3 ± 10.7% vs. Fngt= 68.3 ± 12.5% for TMP; Fct= 46.3 ± 8.9% vs. Fngt= 67.3 ±13.7% for SCP). Following the administration of TMP and SCP mixed with concentrate, the plasma concentration—time curves showed a biphasic absorption pattern in all horses. The first peak occurred 1–2 h and the second peak 8–10 h after administration of the combination preparation. Based on the pharmacokinetic data obtained and the published in vitro sensitivity data, it may be predicted that TMP and SCP given intravenously or by nasogastric tube at a dose of 5 mg/kg and 25 mg/kg respectively and a dosage interval of 8–12 h would result in sufficiently high plasma concentrations for effectiveness against susceptible bacteria. The single oral administration of TMP and SCP mixed with concentrate did not result in effective plasma concentrations. Further studies are needed to investigate whether higher plasma concentrations would be achieved by a multiple dosing scheme for several days.  相似文献   

14.
The purpose of this study was to determine the pharmacokinetics of tramadol and its metabolite M1 after intravenous and intramuscular administration to llamas. Tramadol, a centrally acting analgesic whose efficacy is a result of complex interactions between opiate, adrenergic and serotonin receptor systems, has been used clinically to treat moderate to severe pain in humans. The pharmacokinetic parameters of tramadol and M1 in plasma were examined following intravenous and intramuscular administration to six healthy male llamas. Tramadol half-life, volume of distribution at steady-state and clearance after intravenous administration were 2.12 ± 0.37 h, 4.02 ± 1.16 L/kg and 1728.73 ± 152.82 mL/h/kg, respectively. The bioavailability was 110 ± 21% and half-life 2.54 ± 0.31 h following intramuscular administration of tramadol. M1 had a half-life of 10.40 ± 2.90 h and 7.71 ± 0.54 h following intravenous and intramuscular administration of tramadol.  相似文献   

15.
The pharmacokinetics and estimated bioavailability of amoxicillin were determined after IV, intragastric, and IM administration to healthy mares. After IV administration of sodium amoxicillin (10 mg/kg of body weight), the disposition of the drug was best described by a 2-compartment open model. A rapid distribution phase was followed by a rapid elimination phase, with a mean +/- SD half-life of 39.4 +/- 3.57 minutes. The mean volume of distribution was 325 +/- 68.2 ml/kg, and the mean body clearance was 5.68 +/- 0.80 ml/min.kg. It was concluded that frequent IV administration of sodium amoxicillin would be required to maintain therapeutic plasma concentrations of amoxicillin, and thus, the use of this dosage form should be limited to the initiation of treatment or to intensive care situations. After intragastric administration of amoxicillin trihydrate (20 mg/kg), 5% cherry-flavored suspension, the drug was rapidly, but incompletely, absorbed and rapidly eliminated (mean half-life of the decline phase of the plasma amoxicillin concentration-time curve, 51 minutes). The mean estimated bioavailability (fractional absorption) of the administered dose was 10.4%, and the mean peak plasma amoxicillin concentration was 2.73 micrograms/ml at 1.5 hours after dosing. In one horse with clinical signs of abdominal discomfort and diarrhea, the absorption of amoxicillin from the gastrointestinal tract was delayed and the fraction absorbed was increased. It was concluded that this oral dosage form could be recommended only for the treatment of infections caused by bacteria that are highly susceptible to amoxicillin, that frequent dosing would be necessary, and that absorption may be inconsistent in horses with gastrointestinal disease.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The purpose of the study reported here was to describe the bioavailability and pharmacokinetics of acyclovir after intravenous and oral administration to horses. Six healthy adult horses were used in a randomized cross-over study with a 3 x 3 Latin square design. Three treatments were administered to each horse: 10 mg of injectable acyclovir/kg of body weight in 1 L of normal saline delivered as an infusion over 15 minutes; 10 mg of acyclovir/kg in tablets by nasogastric intubation; and 20 mg of acyclovir/kg in tablets by nasogastric intubation. A 2-week washout period was provided between each treatment. Serum samples were obtained for acyclovir assay using reversed-phase, high-performance liquid chromatography with fluorescence detection. Deproteinated serum was injected onto a C18 column, and elution occurred under isocratic conditions. The limit of quantification was 0.04 microg/mL. The assay exhibited suitable accuracy, precision, and recovery. The IV data were analyzed by a 3-compartment model, and oral data were analyzed noncompartmentally. Intragastric acyclovir administration at either dose was associated with high variability in serum acyclovir-time profiles, low Cmax, and poor bioavailability. The dosage of 20 mg/kg was associated with mean (+/- SD) Cmax of 0.19 +/- 0.10 microg/mL, and bioavailability was 2.8%. Inhibition of equine herpesvirus has been reported to require significantly higher acyclovir concentrations than those obtained here. The results of this study do not support a therapeutic benefit for the oral administration of acyclovir up to doses of 20 mg/kg.  相似文献   

17.
The objective of this study was to determine the pharmacokinetic behaviour of imidocarb in horses following a single i.m. injection at the dose commonly administered to treat Babesia caballi infections or to prevent babesiosis. Eight horses were injected i.m. with a single dose of 2.4 mg imidocarb dipropionate/kg bwt and blood, faecal, urine and milk samples were collected. For imidocarb determination, a high-performance liquid chromatographic method (HPLC) was used after weak cation-exchange solid phase, or liquid-liquid, extraction procedures. Twelve hours after treatment, no detectable plasma concentrations were recorded in any of the treated animals. The distribution and elimination patterns of the drug suggested that it is quickly sequestrated in some storage tissues and remains in the body for a long time. Its prolonged presence in the body may confer a reservoir effect to imidocarb in some tissues, therefore making it undetectable in the plasma of animals but sufficient to produce its described therapeutic and prophylactic activities.  相似文献   

18.
OBJECTIVE: To determine the pharmacokinetics of itraconazole after IV or oral administration of a solution or capsules to horses and to examine disposition of itraconazole in the interstitial fluid (ISF), aqueous humor, and polymorphonuclear leukocytes after oral administration of the solution. ANIMALS: 6 healthy horses. PROCEDURE: Horses were administered itraconazole solution (5 mg/kg) by nasogastric tube, and samples of plasma, ISF, aqueous humor, and leukocytes were obtained. Horses were then administered itraconazole capsules (5 mg/kg), and plasma was obtained. Three horses were administered itraconazole (1.5 mg/kg, IV), and plasma samples were obtained. All samples were analyzed by use of high-performance liquid chromatography. Plasma protein binding was determined. Data were analyzed by compartmental and noncompartmental pharmacokinetic methods. RESULTS: Itraconazole reached higher mean +/- SD plasma concentrations after administration of the solution (0.41 +/- 0.13 microg/mL) versus the capsules (0.15 +/- 0.12 microg/mL). Bioavailability after administration of capsules relative to solution was 33.83 +/- 33.08%. Similar to other species, itraconazole has a high volume of distribution (6.3 +/- 0.94 L/kg) and a long half-life (11.3 +/- 2.84 hours). Itraconazole was not detected in the ISF, aqueous humor, or leukocytes. Plasma protein binding was 98.81 +/- 0.17%. CONCLUSIONS AND CLINICAL RELEVANCE: Itraconazole administered orally as a solution had higher, more consistent absorption than orally administered capsules and attained plasma concentrations that are inhibitory against fungi that infect horses. Administration of itraconazole solution (5 mg/kg, PO, q 24 h) is suggested for use in clinical trials to test the efficacy of itraconazole in horses.  相似文献   

19.
Tramadol (T) is a centrally acting atypical opioid used for treatment of dogs. Piglets might experience pain following castration, tooth clipping and tail docking and experimental procedures. The aim of this study was to assess the pharmacokinetics of T and its active metabolite M1 in male piglets after a single intramuscular injection. Six healthy male piglets were administered T (5 mg/kg) intramuscularly. Blood was sampled at scheduled time intervals and drug plasma concentrations evaluated by a validated HPLC method. T plasma concentration was quantitatively detectable from 0.083 to 8 h. M1 was quantified over a shorter time period (0.083–6 h) with a Tmax at 0.821 h. The study demonstrated that piglets produce a larger amount of M1 compared with dogs, horses and goats. The human minimum effective concentration of M1 (40 ng/mL) was exceeded for over 3 h in piglets. If it is assumed to also apply to piglets, it could be speculated that the drug efficacy might exert its action over 3 h or longer. This assumption has to be confirmed by further specific pharmacokinetic/pharmacodynamic studies.  相似文献   

20.
Reasons for performing study: Detomidine is commonly used i.v. for sedation and analgesia in horses, but the pharmacokinetics and metabolism of this drug have not been well described. Objectives: To describe the pharmacokinetics of detomidine and its metabolites, 3‐hydroxy‐detomidine (OH‐detomidine) and detomidine 3‐carboxylic acid (COOH‐detomidine), after i.v. and i.m. administration of a single dose to horses. Methods: Eight horses were used in a balanced crossover design study. In Phase 1, 4 horses received a single dose of i.v. detomidine, administered 30 μg/kg bwt and 4 a single dose i.m. 30 üg/kg bwt. In Phase 2, treatments were reversed. Plasma detomidine, OH‐detomidine and COOH‐detomidine were measured at predetermined time points using liquid chromatography‐mass spectrometry. Results: Following i.v. administration, detomidine was distributed rapidly and eliminated with a half‐life (t1/2(el)) of approximately 30 min. Following i.m. administration, detomidine was distributed and eliminated with t1/2(el) of approximately one hour. Following, i.v. administration, detomidine clearance had a mean, median and range of 12.41, 11.66 and 10.10–18.37 ml/min/kg bwt, respectively. Detomidine had a volume of distribution with the mean, median and range for i.v. administration of 470, 478 and 215–687 ml/kg bwt, respectively. OH‐detomidine was detected sooner than COOH‐detomidine; however, COOH‐detomidine had a much greater area under the curve. Conclusions and potential relevance: These pharmacokinetic parameters provide information necessary for determination of peak plasma concentrations and clearance of detomidine in mature horses. The results suggest that, when a longer duration of plasma concentration is warranted, the i.m. route should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号