首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Biological N2 fixation was estimated in a field experiment following the addition of NH4Cl or KNO3 to unconfined microplots (1.5 m2) at 2.5 g N m-2 (10 atom% 15N). A model of total N and 15N accumulation in lupins and decreasing 15N enrichment in the KCl-extractable soil-N pool (0–0.15 m depth) was used to estimate the proportion of N in lupins derived from biological N2 fixation. Estimates of N2 fixation derived from the model were compared with 15N isotope-dilution estimates obtained using canola, annual ryegrass, and wheat as nonfixing reference plants. Biomass, total N accumulation, or 15N enrichment in the lupin and reference crops did not differ whether NH inf4 sup+ or NO inf3 sup- was added as the labelled inorganic-N source. The decrease in soil 15N enrichment was described by first-order kinetics, whereas total N and 15N accumulation in the lupins were described by logistical equations. Using these equations, the uptake of soil N by lupins was estimated and was then used to calculate fixed N2. Estimates of N2 fixation derived from the model increased from 0 at 50 days after sowing to a maximum of 0.79 at 190 days after sowing. Those based on the 15N enrichment of the NO inf3 sup- pool were 10% higher than those based on the mineral-N pool. 15N isotope-dilution estimates of N2 fixation ranged from 0.37 to 0.55 at 68 days after sowing and from 0.71 to 0.77 at 190 days after sowing. Reference plant-derived values of N2 fixation were all higher than modelled estimates during the early states of growth, but were similar to modelled estimates at physiological maturity. The use of the model to estimate N2 derived from the atmosphere has the intrinsic advantage that the need for a non-fixing reference plant is avoided.  相似文献   

2.
Nitrogen fixation in faba bean (Vicia faba cv. Mesay) as affected by sulfur (S) fertilization (30 kg S ha–1) and inoculation under the semi‐arid conditions of Ethiopia was studied using the 15N‐isotope dilution method. The effect of faba bean–fixed nitrogen (N) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Sulfur fertilization and inoculation significantly (p < 0.05) affected nodulation at late flowering stage for both 2004 and 2005 cropping seasons. The nodule number and nodule fresh weighs were increased by 53% and 95%, relative to the control. Similarly, both treatments (S fertilization and inoculants) significantly improved biomass and grain yield of faba bean on average by 2.2 and 1.2 Mg ha–1. This corresponds to 37% and 50% increases, respectively, relative to the control. Total N and S uptake of grains was significantly higher by 59.6 and 3.3 kg ha–1, which are 76% and 66% increases, respectively. Sulfur and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant of faba bean from 51% to 73%. This corresponds to N2 fixation varying from 49 to 147 kg N ha–1. The percentage of N derived from fertilizer (%Ndff) and soil (%Ndfs) of faba bean varied from 4.3% to 2.8 %, and from 45.1% to 24.0%, corresponding to the average values of 5.1 and 47.9 kg N ha–1. Similarly, the %Ndff and %Ndfs of the reference crop, barley, varied from 8.5 % to 10.8% and from 91.5% to 89.2%, with average N yields of 9.2 and 84.3 kg N ha–1. Soil N balance after faba bean ranged from 13 to 52 kg N ha–1. Beneficial effects of faba bean on yield of a wheat crop grown after faba bean were highly significant, increasing the average grain and N yields of this crop by 1.11 Mg ha–1 and 30 kg ha–1, relative to the yield of wheat grown after the reference crop, barley. Thus, it can be concluded that faba bean can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

3.
Summary A field study was undertaken to examine the effects of various management strategies on wheat (Triticum aestivum L.) performance and N cycling in an intensively cropped soil. Microplots receiving 100 kg N ha–1 as15NH4 + 15NO3 at sowing, tillering or stem elongation were compared with unfertilized microplots. Stubble from the previous rice crop was either incorporated, burnt without tillage, burnt then tilled or retained on the surface of untilled soil. Wheat grain yield ranged from 1.5 to 5.1 t ha and was closely related to N uptake. Plant accumulation of soil N averaged 36 kg N ha–1 (LSD 5% = 10) on stubble-incorporation plots and 54 kg N ha–1 on stubble-retention plots. Fertilizer N accumulation averaged 18 kg N ha–1 (LSD 51% = 6) on stubble-incorporation plots and 50 kg N ha–1 on stubble-retention plots. Tillage had little effect on burnt plots. Delaying N application from sowing until stem elongation increased average fertilizer N uptake from 26 to 39 kg N ha–1 (LSD 5% = 6), but reduced soil N uptake from 50 to 37 kg N ha (LSD 5% = 10).Immobilization and leaching did not vary greatly between treatments and approximately one-third of the fertilizer was immobilized. Less than 1% of the fertilizer was found below a depth of 300 mm. Incorporating 9 t ha–1 of rice stubble 13 days before wheat sowing reduced net apparent mineralization of native soil N from 37 to 3 kg ha–1 between tillering and maturity. It also increased apparent denitrification of fertilizer N from an average 34 to 53 kg N ha–1 (LSD 5% = 6). N loss occurred over several months, suggesting that denitrification was maintained by continued release of metabolizable carbohydrate from the decaying rice stubble. The results demonstrate that no-till systems increase crop yield and use of both fertilizer and soil N in intensive rice-based rotations.  相似文献   

4.
Management of N is the key for sustainable and profitable wheat production in a low N soil. We report results of irrigated crop rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residue retention, fertilizer N application and mung bean (Vigna radiata) on crop and N yields of wheat and soil organic fertility in a mung bean–wheat sequence. Treatments were (a) crop residue retained (+residue) or (b) removed (−residue), (c) 120 kg N ha−1 applied to wheat, (d) 160 kg N ha−1 to maize or (e) no nitrogen applied. The cropping system was rotation of wheat with maize or wheat with mung bean. The experiment was laid out in a spit plot design. Postharvest incorporation of crop residues significantly (p < 0.05) increased the grain and straw yields of wheat during both years. On average, crop residues incorporation increased the wheat grain yield by 1.31 times and straw yield by 1.39 times. The wheat crop also responded strongly to the previous legume (mung bean) in terms of enhanced grain yield by 2.09 times and straw yield by 2.16 times over the previous cereal (maize) treatment. Application of fertilizer N to previous maize exerted strong carry over effect on grain (1.32 times) and straw yield (1.38 times) of the following wheat. Application of N fertilizer to current wheat produced on average 1.59 times more grain and 1.77 times more straw yield over the 0 N kg ha−1 treatment. The N uptake in wheat grain and straw was increased 1.31 and 1.64 times by residues treatment, 2.08 and 2.49 times by mung bean and 1.71 and 1.86 times by fertilizer N applied to wheat, respectively. The soil mineral N was increased 1.23 times by residues, 1.34 times by mung bean and 2.49 times by the application of fertilizer N to wheat. Similarly, the soil organic C was increased 1.04-fold by residues, 1.08 times by mung bean and 1.00 times by the application of fertilizer N. We concluded that retention of residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping system and enhances crop productivity in low N soils.  相似文献   

5.
Summary An attempt has been made to estimate quantitatively the amount of N fixed by legume and transferred to the cereal in association in intercropping systems of wheat (Triticum aestivum L.) — gram (Cicer arietinum L.) and maize (Zea mays L.) —cowpea (Vigna unguiculate L.) by labelling soil and fertilizer nitrogen with 15N. The intercropped legumes have been found to fix significantly higher amounts of N as compared with legumes in sole cropping if the intercropped cereal-legume received the same dose of fertilizer N as the sole cereal crop. But when half of the dose of the fertilizer N applied to sole cereal crop was received by intercropped plants, the amount of N fixed by legumes in association with cereals was significantly less than that fixed by sole legumes. Under field conditions 28% of the total N uptake by maize (21.2 kg N ha–1) was of atmospheric origin and was obtained by transfer of fixed N by cowpea grown in association with maize. Under greenhouse conditions gram and summer and monsoon season cowpea have been found to contribute 14%–20%, 16% and 32% of the total N uptake by associated wheat and summer and monsoon maize crops, respectively. Inoculation of cowpea seeds with Rhizobium increased both the amount of N fixed by cowpea and transferred to maize in intercropping system.  相似文献   

6.
Three unfertilized spring sown species of lupins (Lupinus angustifolius) and peas (Pisum sativa) were compared in terms of N fixation and subsequent leaching under a following winter barley crop in an organically managed rotation. Fallow plots were included to assess the potential weed burden and the ability of the sown crops to compete with weeds when no herbicides were applied. Although peas out-yielded lupins (5.4 t compared with 3.5 t grain respectively), the yellow lupin (Wodjil) fixed more N than peas (180 compared with 120 kg N/ha) and all three lupins had higher protein contents (>30%) than peas (22%). Winter leaching amounted to >50 kg nitrate-N/ha from winter barley, regardless of whether it followed treatments which were previously fallow or cropped with legumes. There were no significant differences in leaching between the lupin species. Leachate in the first 350 mm of drainage under winter barley, following the different legume species, exceeded the European Union limit for nitrate in drinking water in all treatments. Yields of winter barley, grown without fertilizers or herbicides following legumes, were not significantly different (mean 4 t/ha), but there were higher levels of P and K in the grain compared with the amounts made available from the previously fallow soil. At this site in SW England, the crops grew well and our results suggest that lupins could provide a useful break crop in an organic arable cropping rotation and an alternative source of home-grown, high protein feed.  相似文献   

7.
Field trials were conducted over two years to investigate the effect of increasing N supply on apparent fertilizer N recovery by winter cereal crops (4 × wheat and 2 × barley) and on non‐recovered N. Apparent fertilizer N recovery was calculated by comparing N in fertilized and unfertilized crops. Non‐recovered N is defined as N which was neither found in crops nor soil mineral N (Nmin = NH4‐N + NO3‐N). At N supply levels according to common farming practice (Ncfp = 190 to 220 kg N/ha), 60— 93% of the fertilizer N was recovered in crops at harvest, while at high N supply levels of 265 to 273 kg N/ha 58—76% of fertilizer N was recovered. There were small differences in soil Nmin in 0—200 cm between Ncfp and unfertilized plots, but substantial increases in Nmin occurred at the highest N supply. Amounts of non‐recovered N differed substantially between sites (maximum value of 84 kg N/ha). Non‐recovered N increased with increasing N rate on only 3 out of the 6 sites, indicating that N immobilization was not necessarily dependent on N rate. The fate of non‐recovered N was studied for a further year by growing catch crops on the sites after cereal harvest. N re‐mineralization deduced from changes in catch crop N and in Nmin indicated that non‐recovered N had been immobilized in the soil. At three sites, crop N uptake was found between milk‐ripe stage and harvest (19 to 60 kg N/ha) suggesting substantial uptake of N mineralized from soil. However, grain yields were lower with N rates below Ncfp, indicating that late net soil N mineralization could not compensate for reductions in N fertilizer rate in these trials.  相似文献   

8.
The effects of various measures introduced to increase nitrogen (N)‐use efficiency and reduce N losses to water in a 6‐yr crop rotation (winter wheat, spring barley, green manure, winter wheat, spring barley, spring oilseed rape) were examined with respect to N leaching, soil mineral N (SMN) accumulation and grain yield. An N‐use efficient system (NUE) with delayed tillage until late autumn and spring, direct drilling of winter wheat, earlier sowing of winter and spring crops and use of a catch crop in winter wheat was compared with a conventional system (CON) in a field experiment with six separately tile‐drained plots in south‐western Sweden during the period 1999–2011 (two crop rotation cycles). Total leaching of NO3‐N from the NUE system was significantly 46 and 33% lower than in the CON system during the first and second crop rotation cycle, respectively, with the most pronounced differences apparently related to management strategies for winter wheat. Differences in NO3‐N leaching largely reflected differences in SMN during autumn and winter. There was a tendency for lower yields in the NUE system, probably due to problems with couch grass. Overall, the measures for conserving N, when frequently used within a crop rotation, effectively reduced NO3 concentrations in drainage water and NO3‐N leaching losses, without severely affecting yield.  相似文献   

9.
Summary We studied the residual effect of 15N-labelled fertilizer N, applied to a maize-cowpea intercropping system, on the succeeding crops of maize/wheat and its balance in the crop sequence, in greenhouse and field experiments. The N uptake by succeeding crops was always higher following sole or intercropped cowpea. Under field conditions with fertilizer N applied to first-crop maize, the residual N uptake by the succeeding crop of wheat was 5.8% and after maize-cowpea intercropping it was 7.8%.  相似文献   

10.
Summary Soil N dynamics and barley yields (Hordeum vulgare L.) were compared in pot experiments using surface samples from a Gray Luvisol under three cropping systems at Breton, Alberta: (1) an agroecological 8-year rotation including cereals, forage, and fababeans (Vicia faba L.) as green manure, from wich two plots were selected, one following fababeans, and the second following 3 years of forage; (2) a continuous grain system, with fertilizer N at 90 kg ha-1 year-1; and (3) a classical Breton 5-year rotation [following oats (Avena sativa L.)] involving forage and cereals, without returning crop residues to the land, selecting one plot with PKS treatment and a second as control. The fertilizer N equivalent for the cropping system; AN value and A value (analogous to AN), but in fertilizer 15N units, soil biomass, and C and N mineralization were monitored. In the first agroecological plot (after fababeans), grain and total plant biomass production were 116% greater than from the continuous grain treatment. Barley plants in the two agroecological plots derived 48.5% and 37.8%, respectively, of their N requirement from non-labelled soil N sources not present in the continuous grain plot. At crop maturity, the recovery of 15N microbial biomass was 1.5 times higher in soil from the first agroecological plot than from the continuous grain plot. The fertilizer N equivalent was 2670 mg pot-1 (485 kg ha-1) for the first and 1850 mg pot-1 for the second agroecological treatment. Fertilizer N equivalent values exceed net amounts of N mineralized by a factor of 4. Recovery by the barley crop of 15N added at 55 mg pot-1 was more efficient in the agroecological treatments (45%–51%) than in the continuous grain or classical Breton treatments (35%–37%). It was concluded (1) that past soil history may be associated more with the ability of barley plants to compete for available N, and hence the use of N, than with net soil N mineralization; and (2) an increased supply of N to crops following the incorporation of fababean residues, manure application, and the soil N-conserving effect of growing legumes were all partly responsible for the observed differences in soil fertility.  相似文献   

11.
Abstract. Field peas (Pisum sativum L.) were grown in sequence with winter wheat (Triticum aestivum L.) or spring barley (Hordeum vulgare L.) in large outdoor lysimeters. The pea crop was harvested either in a green immature state or at physiological maturity and residues returned to the lysimeters after pea harvest. After harvest of the pea crop in 1993, pea crop residues (pods and straw) were replaced with corresponding amounts of 15N‐labelled pea residues grown in an adjacent field plot. Reference lysimeters grew sequences of cereals (spring barley/spring barley and spring barley/winter wheat) with the straw removed. Leaching and crop offtake of 15N and total N were measured for the following two years. These treatments were tested on two soils: a coarse sand and a sandy loam. Nitrate concentrations were greatest in percolate from lysimeters with immature peas. Peas harvested at maturity also raised the nitrate concentrations above those recorded for continuous cereal growing. The cumulative nitrate loss was 9–12 g NO3‐N m–2 after immature peas and 5–7 g NO3‐N m–2 after mature peas. Autumn sown winter wheat did not significantly reduce leaching losses after field peas compared with spring sown barley. 15N derived from above‐ground pea residues accounted for 18–25% of the total nitrate leaching losses after immature peas and 12–17% after mature peas. When compared with leaching losses from the cereals, the extra leaching loss of N from roots and rhizodeposits of mature peas were estimated to be similar to losses of 15N from the above‐ground pea residues. Only winter wheat yield on the coarse sand was increased by a previous crop of peas compared to wheat following barley. Differences between barley grown after peas and after barley were not statistically significant. 15N lost by leaching in the first winter after incorporation accounted for 11–19% of 15N applied in immature pea residues and 10–15% of 15N in mature residues. Another 2–5% were lost in the second winter. The 15N recovery in the two crops succeeding the peas was 3–6% in the first crop and 1–3% in the second crop. The winter wheat did not significantly improve the utilization of 15N from the pea residues compared with spring barley.  相似文献   

12.
Rothamsted's Woburn Ley-arable experiment, started in 1938 on a sandy loam soil, provides valuable real-world data on the effects of all-arable and ley-arable rotations. In this study, six rotations were compared from 1973 to 2001. Two had 3-year arable “treatment” crops, two had 3-year leys, and two had 8-year leys; the leys being all-grass given fertilizer nitrogen (Ln3 and Ln8), or grass/clover (Lc3 and Lc8). Here, we present the yields of two test crops, winter wheat (1981–2000) followed by spring barley (1982–1991) or winter rye (1997–2001) in each of the six rotations, and their response to four rates of fertilizer N and soil N. From fitted yield/N response curves, we show that maximum wheat yields were least (7.10 t ha−1) in the AB rotation, slightly higher, but not significantly so (7.65 t ha−1) following Ln leys but significantly higher (8.12 t ha−1) following Lc leys. Significantly less fertilizer N (30 kg ha−1) was needed to achieve the higher yields following Lc leys. Yields of the second cereal following the leys were 0.3–0.8 t ha−1 higher than those in the AB rotation; these increases were not statistically significant. However, significantly less fertilizer N, 26–38 kg N ha−1, was required to achieve those yields. There was no difference found between the type of ley. The initial benefit of the Lc leys was short-lived. If leys are to be introduced into mainly arable farming systems, they may need to be subsidized to make them financially viable.  相似文献   

13.
Nitrogen acquisition by field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) grown on a sandy loam soil and availability of N in three subsequent sequences of a cropping system were studied in an outdoor pot experiment. The effect of crop residues on the N availability was evaluated using 15N-labelled residues. Field pea fixed 75% of its N requirement and the N2 fixation almost balanced the N removed with the seeds. The barley crop recovered 80% of the 15N-labelled fertilizer N supplied and the N in the barley grain corresponded to 80% of the fertilizer N taken up by the crop. The uptake of soil-derived N by a test crop (N catch crop) of white mustard (Sinapis alba L.) grown in the autumn was higher after pea than after barley. The N uptake in the test crop was reduced by 27% and 34% after pea and barley residue incorporation, respectively, probably due to N immobilization. The dry matter production and total N uptake of a spring barley crop following pea or barley, with a period of unplanted soil in the autumn/winter, were significantly higher after pea than after barley. The barley crop following pea and barley recovered 11% of the pea and 8% of the barley residue N. The pea and barley residue N recovered constituted only 2.5% and <1%, respectively, of total N in the N-fertilized barley. The total N uptake in a test crop of mustard grown in the second autumn following pea and barley cultivation was not significantly influenced by pre-precrop and residue treatment. In the short term, the incorporation of crop residues was not important in terms of contributing N to the subsequent crop compared to soil and fertilizer N sources, but residues improved the conservation of soil N in the autumn. In the long-term, crop residues are an important factor in maintaining soil fertility and supplying plant-available N via mineralization.  相似文献   

14.
This paper presents the results of irrigated rotation experiment, conducted in the North West Frontier Province (NWFP), Pakistan, during 1999–2002 to evaluate effects of residues retention, fertilizer N and legumes in crop rotation on yield of maize (Zea mays L.) and soil organic fertility. Chickpea (Cicer arietinum L) and wheat (Triticum aestivum L) were grown in the winters and mungbean (Vigna radiata) and maize in the summers. Immediately after grain harvest, above-ground residues of all crops were either completely removed (−residue), or spread across the plots and incorporated by chisel plough by disc harrow and rotavator (+residue). Fertlizer N rates were nil or 120 kg ha−1 for wheat and nil or 160 kg ha−1 for maize. Our results indicated that post-harvest incorporation of crop residues significantly (p < 0.05) increased the grain and stover yields of maize during both 2000 and 2001. On average, grain yield was increased by 23.7% and stover yield by 26.7% due to residue incorporation. Residue retention also enhanced N uptake by 28.3% in grain and 45.1% in stover of maize. The soil N fertility was improved by 29.2% due to residue retention. The maize grain and stover yields also responded significantly to the previous legume (chickpea) compared with the previous cereal (wheat) treatment. The legume treatment boosted grain yield of maize by 112% and stover yield by 133% with 64.4% increase in soil N fertility. Similarly, fertilizer N applied to previous wheat showed considerable carry over effect on grain (8.9%) and stover (40.7%) yields of the following maize. Application of fertilizer N to current maize substantially increased grain yield of maize by 110%, stover yield by 167% and soil N fertility by 9.8% over the nil N fertilizer treatment. We concluded from these experiments that returning of crop residues, application of fertilizer N and involvement of legumes in crop rotation greatly improves the N economy of the cropping systems and enhances crop productivity through additional N and other benefits in low N soils. The farmers who traditionally remove residues for fodder and fuel will require demonstration of the relative benefits of residues return to soil for sustainable crop productivity.  相似文献   

15.
The effects of 15N-labelled ammonium nitrate, urea and ammonium sulphate on yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L. cv. Mexi-Pak-65) were studied in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 64.0–74.8%, 61.5–64.7% and 61.7–63.4% of the N from ammonium nitrate, urea and ammonium sulphate, respectively. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea and ammonium sulphate. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the three N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied with the method of application of fertilizer N. Ammonium nitrate, urea and ammonium sulphate gave 59.3%, 42.8% and 26.3% more added N interaction, respectively, when applied by the broadcast/worked-in method than with band placement. A highly significant correlation between soil N and grain yield, dry matter and added N interaction showed that soil N was more important than fertilizer N in wheat production. A values were not significantly correlated with added N interaction (r=0.719). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N stood proxy for unlabelled soil N.  相似文献   

16.

Trials were performed with early and semi-early potatoes to test the effects of nitrogen (N) fertilizer level (0-160 kg N ha-1) and timing (all at planting versus half then and half either soon after emergence or 3 weeks later). All seven trials with earlies were irrigated as required, whilst different irrigation regimes (moderate versus intensive) were compared in two trials with semi-earlies. No benefit was derived from splitting the N application. Haulm growth and N uptake increased in all cases almost linearly up to the highest N level, but tuber yield did not respond in the same way. The optimum N level was 80 kg N ha-1 for a yield of 15 Mg ha-1, rising to 120 kg N ha-1 for a yield of 40 Mg ha-1. Tuber quality was lowered by the use of excess N fertilizer, particularly in the case of earlies. The quantity of mineralised N present in the soil after harvest rose sharply with above optimum fertilizer use, and the amount of N present in crop residues also increased. The likely leaching after early potatoes was estimated to be up to 80 kg N ha-1. The proportion of fertilizer N which was not accounted for in either tuber yield, crop residues or mineral N in soil was 26% in earlies and 38% in semi-earlies.  相似文献   

17.
Summary The common bean (Phaseolus vulgaris L.) is generally regarded as a poor N2 fixer. This study assessed the sources of N (fertilizer, soil, and fixed N), N partitioning and mobilization, and soil N balance under field conditions in an indeterminate-type climbing bean (P. vulgaris L. cv. Cipro) at the vegetative, early pod-filling, and physiological maturity stages, using the A-value approach. This involved the application of 10 and 100 kg N ha-1 of 15N-labelled ammonium sulphate to the climbing bean and a reference crop, maize (Zea mays L.). At the late pod-filling stage (75 days after planting) the climbing bean had accumulated 119 kg N ha-1, 84% being derived from fixation, 16% from soil, and only 0.2% from the 15N fertilizer. N2 fixation was generally high at all stages of plant growth, but the maximum fixation (74% of the total N2 fixed) occurred during the interval between early (55 days after planting) and late podfilling. The N2 fixed between 55 and 75 days after planting bas a major source (88%) of the N demand of the developing pod, and only about 11% was contributed from the soil. There was essentially no mobilization of N from the shoots or roots for pod development. The cultivation of common bean cultivars that maintain a high N2-fixing capacity especially during pod filling, satisfying almost all the N needs of the developing pod and thus requiring little or no mobilization of N from the shoots for pod development, may lead to a net positive soil N balance.  相似文献   

18.
A long-term experiment was carried out on a Vertisol from 1986 to 1992 to examine the combined effects of NPK fertilizers on yield using sorghum (Sorghum bicolor L. Moench cv. CSH 5) and short-duration pigeonpea (Cajanus cajan L. Millsp. cv. ICPL 87). The fertilizer treatments were as follows: 0 (no fertilization), N (150 kg N ha-1 ), P (65.5 kg P2O5 ha-1), K (124.5 kg K2O ha-1), and all possible combinations (NP, NK, PK, and NPK). In this study we continued this experiment during the period 1993 to 1994 and analyzed the crop yield response to fertilizers and the N balance. The amount of N derived from the atmosphere and fertilizer was estimated by the 15N natural abundance method and l5N isotope dilution method, respectively. A combined application of Nand P fertilizers gave the highest grain yield for the two crops under the 8th and 9th continuous croppings, unlike the application of K fertilizer. The values of total N for the two crops were significantly higher in the NP and NPK plots. These crops took up N mainly from soil. There was a significant positive relationship between the uptake of Ndff and Ndfs by each crop. Pigeonpea or sorghum took up more N from the soil in the N fertilizer plots than in the plots without N, suggesting that soil N fertility was enhanced and the amount of N supplied from soil increased in the plots with consecutive application of N fertilizer for 7 y. Even pigeonpea, which fixes atmospheric N inherently, needed N fertilizer to achieve high grain yield, suggesting that N fixation by the nodules was not always sufficient to meet the N requirements of the crop under these conditions. Although fertilizer N exerted a beneficial effect on plant growth and yield in the two crops, the values of fertilizer N recovery (FNR) by the two crops were considerably low. Therefore, it is suggested that the development of N fertilizer management which could maximize FNR of each crop should be promoted.  相似文献   

19.
Crop response to fertilization and liming was investigated in field and pot trials on sandy loam Dystric Albeluvisols (pH 4.2–4.3). Treatments in the field trial were: 1, no fertilizer; 2, PK; 3, NK; 4, NP; 5, NPK; 6, lime; 7, lime+PK; 8, lime+NK; 9, lime+NP; 10, lime+NPK. In the pot trial, they were: 1, no fertilizer; 2, N; 3, P; 4, K; 5, NP; 6, NK; 7, PK; and 8, NPK applied to unlimed and limed soils. All treatments were in four replicates. Crops sensitive to soil acidity (winter wheat, fodder beet, spring barley and clover-timothy ley) and the less acid-sensitive winter rye, potatoes, oats and lupins and oats mixture were sown in the field trial. In the pot trial, the acid-sensitive spring barley and red clover, and the less acid-sensitive oats and lupin-oats served as the test crops. Combined application of fertilizers (NPK) increased yields of crops sensitive to soil acidity in plots receiving lime by 23%, and those of crops less sensitive to soil acidity by 18% in comparison to crops grown on unlimed soils. The results of pot experiments corroborated the field results. When N was applied alone, crop yields were always higher than those recorded for P or K treatments on both the unlimed and limed treatments. N application proved to be a prerequisite for high crop yields in the soils investigated. Thus, the efficiency of P and K fertilizers increased in the order NK<NP<NPK, with the effects being accentuated more in the limed than in the unlimed treatments. The results demonstrated the importance of multi-nutrient (NPK) fertilization in combination with liming for enhancement of high crop productivity in the unlimed soil investigated. N applied alone in combination with liming produced relatively good yields; hence, where resources are limited for the purchase of P and K fertilizers, applying N and lime can be a viable option in the short term.  相似文献   

20.
The effects of soil incorporation with cereal straw (nil, 2.5, 5 and 10 t straw ha?1) and direct drilling on the proportion and amount of pea N derived from biological N fixation were investigated in three field experiments. Fixed N was determined by15N dilution using barley as a reference plant. The three sites were on acidic, red clay-loams in the cropping zone of southeastern Australia. Seasonal plant available soil N, as determined by the N accumulated in barley, was 31, 56 and 158 kg N ha?1, for the three sites. Incorporated straw reduced soil nitrate at sowing by 10–50 kg N ha?1 (0–30 cm), and 5 or 10 t straw ha?1 reduced barley uptake of N by 10–38 kg N ha?1. However, reducing plant available soil N was generally ineffective for increasing the N fixed by pea. Fixed N increased only at the site with the least plant-available N, and only one-third of the increase could be attributed to lower soil N uptake by pea. There was no evidence that direct drilling pea increased fixed N by decreasing crop uptake of soil N. It is proposed that a lower requirement for soil N by pea as compared to barley, and availability of mineral N beneath the soil layer treated with straw, minimise the effectiveness of straw incorporation for increasing the N fixed by pea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号