首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six lighthorse stallions with previous sexual experience were used to determine the short-term effects of sexual stimulation (SS; 5 min exposure to an estrous mare), SS plus ejaculation (SSE), and no stimulation (control) on serum concentrations of LH, FSH, testosterone, cortisol and prolactin. Stallions received one treatment per day on d 1, 4 and 7. Treatments were assigned such that each stallion 1) received each treatment once and 2) experienced a unique sequence of treatments. Neither SS nor SSE had any consistent effects on LH or FSH concentrations. Testosterone concentrations during control bleedings increased (P less than .05) with time. This increase was suppressed (P less than .05) by both SS and SSE. Cortisol concentrations increased (P less than .05) immediately after SS and SSE. Cortisol concentrations also tended to increase during the control bleedings, but only in stallions that previously had been exposed to SS or SSE. Prolactin concentrations increased (P less than .05) immediately after SS and SSE and tended to rise during control bleedings in stallions previously exposed to SS or SSE. We conclude that 1) prolactin and cortisol were secreted rapidly in response to SS and SSE, 2) the rise in cortisol concentrations likely suppressed testosterone secretion within the next hour, and 3) stallions appeared to associate the distant sounds of other stallions with their own previous exposure to SS and SSE, resulting in a cortisol response (and perhaps a prolactin response) even in the absence of direct stimulation.  相似文献   

2.
Ten lighthorse stallions were used to determine 1) whether prolactin (PRL) and cortisol responses previously observed after acute exercise in summer would occur in winter when PRL secretion is normally low, 2) whether subsequent treatment with a dopamine receptor antagonist, sulpiride, for 14 d would increase PRL secretion and response to thyrotropin-releasing hormone (TRH) and exercise, and 3) whether secretion of LH, FSH, and cortisol would be affected by sulpiride treatment. On January 11, blood samples were drawn from all stallions before and after a 5-min period of strenuous running. On January 12, blood samples were drawn before and after an i.v. injection of GnRH plus TRH. From January 13 through 26, five stallions were injected s.c. daily with 500 mg of sulpiride; the remaining five stallions received vehicle. The exercise and secretagogue regimens were repeated on January 27 and 28, respectively. Before sulpiride injection, concentrations of both cortisol and PRL increased (P less than .05) 40 to 80% in response to exercise; concentrations of LH and FSH also increased (P less than .05) approximately 5 to 10%. Sulpiride treatment resulted in (P less than .05) a six- to eightfold increase in daily PRL secretion. The PRL response to TRH increased (P less than .05) fourfold in stallions treated with sulpiride but was unchanged in control stallions. Sulpiride treatment did not affect (P greater than .05) the LH or FSH response to exogenous GnRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Short-term patterns of growth hormone (GH) secretion and factors affecting it were studied in mares and stallions. In Exp. 1, hourly blood samples were collected from three mares and three stallions in summer and winter. Although GH concentrations varied in a pulsatile manner in all horses, there was no effect of sex or season (P greater than .1) on plasma GH concentrations and no indication of a diurnal pattern of GH secretion. In Exp. 2, 10-min blood samples were drawn for 8 h from 12 mares; after 6 h, porcine GH-releasing hormone (GHRH) was administered i.v. at 0, 45, 90, or 180 micrograms/mare (three mares per dose). Pulsatile secretion of GH occurred in all mares and averaged 2.4 +/- .3 peaks/6 h; amplitudes were variable and ranged from 2.6 to 74.4 ng/mL. Eight of nine mares responded within 20 min to GHRH injection, but there was no difference (P greater than .1) among the three doses tested. In Exp. 3, plasma GH concentrations in stallions increased (P less than .05) 8- to 10-fold after 5 min of acute physical exercise or exposure to an estrual mare. Restraint via a twitch (5 min) and epinephrine administration (3 mg i.v.) also increased (P less than .05) plasma GH concentrations by approximately fourfold. In Exp. 4 and 5, administration of either .4, 2, or 10 mg of thyrotropin-releasing hormone (TRH) or 100 or 500 mg of sulpiride (a dopamine receptor antagonist) increased (P less than .01) plasma prolactin concentrations but had no effect (P greater than .1) on GH concentrations during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Pituitary and serum from 86 male or female horses of various reproductive states were collected in the normal breeding season (summer) and in the nonbreeding season (winter) at a commercial slaughterhouse. Concentrations of prolactin (PRL), luteinizing hormone (LH) and follicle stimulating hormone (FSH) were measured by radioimmunoassay. Concentrations of pregnant mare serum gonadotropin and reproductive steroids in serum and gross appearance of the reproductive tract and gonads were used to catagorize reproductive state. Concentrations of PRL were higher (P less than .01) in summer than in winter in pituitary and serum of mares, stallions and geldings. In summer, mares had higher (P less than .01) concentrations of PRL in serum than stallions. In mares, concentrations of LH in pituitary were higher (P less than .05) in summer than in winter. Concentrations of LH in serum were higher (P less than .01) in summer than in winter in mares and geldings, higher (P less than .01) in mares than in stallions in summer, higher (P less than .01) in geldings than in stallions in summer and higher (P less than .01) in mares with low serum progesterone (P) concentrations than in mares with high P concentrations in summer. Concentrations of FSH in pituitary and serum did not differ between summer and winter for any type of horse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Effect of controlled exercise on libido in 2-yr-old stallions   总被引:1,自引:0,他引:1  
Eight sexually inexperienced, 2-yr-old Morgan stallions were used in a consecutive two-phase design with two groups of four stallions each. Each phase lasted 16 wk, with semen collections every 14 d. Libido scores were assigned to stallions during each semen collection. Scores ranged from zero to four, with zero indicating minimum and four representing maximum libido. In Phase 1, four stallions received daily forced exercise for 16 wk, and the remaining four stallions were confined to box stalls. In Phase 2, the previously exercised stallions were confined to box stalls, and the non-exercised stallions of Phase 1 received daily forced exercise. No week X treatment effect (P greater than .05) was found in Phase 1. Exercised stallions, however, tended to have lower libido values than non-exercised stallions from wk 10 through wk 16. A week X treatment effect (P less than .01) was found in Phase 2. Libido scores were lower (P less than .05) over time among exercised stallions, whereas scores of non-exercised stallions tended to remain stable or rise slightly over time. Mean libido scores for exercised and non-exercised stallions were different (P less than .05) at the end of Phase 1 (2.06 +/- .37 and 3.5 +/- .37, respectively). By wk 26, mean libido scores were similar (exercised: 2.62 +/- .34; non-exercised: 2.52 +/- .34). However, by wk 32, libido values for exercised stallions were lower (P less than .05) than non-exercised stallions (1.87 +/- .34 and 2.81 +/- .34, respectively). In general, mean libido scores of the non-exercised group were higher than exercised stallions after 12 wk of forced daily exercise.  相似文献   

6.
Three experiments tested the hypotheses that daily cortisol rhythm, feeding time, and/or insulin infusion affect(s) leptin secretion in stallions. Ten mature stallions received ad libitum hay and water and were fed a grain concentrate once daily at 0700. In Exp. 1, stallions received either a single injection of dexamethasone (125 microg/kg BW i.m.; n = 5) or vehicle (controls; n = 5) at 0700 on d -1. Starting 24 h later, blood samples were collected every 2 h for 36 h via jugular venipuncture. Cortisol in control stallions varied (P < 0.01) with time, with a morning peak and evening nadir; dexamethasone suppressed (P < 0.01) cortisol concentrations. Leptin and insulin were greater (P < 0.01) in the treated stallions, as was the insulin response to feeding (P < 0.01). Leptin in control stallions varied (P < 0.01) in a diurnal pattern, peaking approximately 10 h after onset of eating. This pattern of leptin secretion was similar, although of greater magnitude (P < 0.01), in treated stallions. In Exp. 2, five stallions were fed the concentrate portion of their diet daily at 0700 and five were switched to feeding at 1900. After 14 d on these regimens, blood samples were collected every 4 h for 48 h and then twice daily for 5 d. Cortisol varied diurnally (P = 0.02) and was not altered (P = 0.21) by feeding time. Insulin and leptin increased (P < 0.01) after feeding, and the peaks in insulin and leptin were shifted 12 h by feeding at 1900. In Exp. 3, six stallions were used in two 3 x 3 Latin square experiments. Treatments were 1) normal daily meal at 0700; 2) no feed for 24 h; and 3) no feed and a bolus injection of insulin (0.4 mIU/kg BW i.v.) followed by infusion of insulin (1.2 mIU.kg BW(-1).min(-1)) for 180 min, which was gradually decreased to 0 by 240 min; sufficient glucose was infused to maintain euglycemia. Plasma insulin increased (P < 0.01) in stallions when they were meal-fed (to approximately 150 microIU/mL) or infused with insulin and glucose (to approximately 75 microIU/mL), but insulin remained low (10 microIU/mL or less) when they were not fed. The increases in insulin were paralleled by gradual increases (P < 0.01) in leptin concentrations 3 to 4 h later in stallions fed or infused with insulin and glucose. When stallions were not fed, leptin concentrations remained low. These results demonstrate that feeding time, and more specifically the insulin increase associated with a meal, not cortisol rhythm, drives the postprandial increase in plasma leptin concentrations in horses.  相似文献   

7.
Very little information is available regarding the physiological mechanisms involved in the normal sexual activity in the stallion and, in particular, the endocrine control of reproduction is still not clearly understood. This experiment was designed to determine the short-term effect of sexual stimulation on plasma concentrations of testosterone, cortisol, oestrone sulphate and 15-ketodihydro-PGF(2alpha) in stallions. Semen samples were collected from 10 lighthorse stallions of proven fertility using a Missouri model artificial vagina. At the same time, blood samples were collected from the jugular vein with heparinized tubes, 20 and 10 min before oestrous mare exposure, at exposure and 10, 20, 30 min after dismounting. Testosterone concentrations showed a sharp rise 10 min after mating (p < 0.001), reached a plateau, and then showed a further increase 30 min after mating (p < 0.001). Cortisol concentrations increased 10 min after mating (p < 0.001) and remained at high levels in the subsequent samples taken. A peak of oestrone sulphate was observed 10 min after mating (p < 0.001). 15-Ketodihydro-PGF(2alpha) concentrations decreased rapidly at the moment of the exposure of the stallions to an oestrous mare (p < 0.05), returned to pre-mating concentrations and then decreased again 30 min after mating (p < 0.05).  相似文献   

8.
In Exp. 1, 16 long-term ovariectomized pony mares were used to determine the effects of treatment with estradiol benzoate (EB) and dihydrotestosterone (DHT) benzoate alone, and in combination, on secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in daily blood samples and after three consecutive injections of gonadotropin releasing hormone (GnRH). Administration of EB alone, or in combination with DHT, every other day for 11 d reduced (P less than .05) concentrations of FSH and increased (P less than .05) concentrations of LH in daily blood samples, and increased (P less than .05) the secretion of both gonadotropins after administration of GnRH. Treatment with DHT alone had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples and no effect on the LH response to exogenous GnRH. There was no interaction (P greater than .10) between DHT and EB treatment for any hormonal characteristic. In Exp. 2, the control mares and mares treated with DHT in Exp. 1 were equally allotted to treatment with vehicle or testosterone propionate (TP) every other day for six injections, and then GnRH was administered as in Exp. 1. Treatment with TP had no effect (P greater than .10) on LH or FSH concentrations in daily blood samples but increased (P less than .05) the FSH response to exogenous GnRH, confirming our findings in previous experiments. It is concluded that the TP-induced stimulation of FSH secretion after exogenous GnRH in ovariectomized mares may involve estrogens produced from aromatization of the injected androgen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Two experiments were designed to examine whether hormonal profiles were related to luteal life span in pluriparous postpartum anestrous beef cows. Cows (Exp. 1, n = 34; Exp. 2, n = 23) received norgestomet (N) for 9 d or served as controls (C). Each cow received 1,000 IU human chorionic gonadotropin (hCG) 48 h after removal of N (d 0). Blood samples collected every 15 min for 8 h on d -5, 3 and 5 (Exp. 1) or on d -10 and -1 (Exp. 2) were assayed for luteinizing hormone (LH) and follicle stimulating hormone (FSH). Cortisol was determined in hourly samples collected on d -5 and in samples collected every 2 min during suckling on the same day (Exp. 1). Concentrations of 15-keto-13,14-dihydro-PGF2 alpha (PGFM) were determined in samples collected at 15-min intervals for 2 h on d -5, 3, 5 and 10 (Exp. 1). Estradiol-17 beta was measured in samples collected on d -5 (Exp. 1) or on d -10 and -1 (Exp. 2). Life span of induced corpora lutea was longer (P less than .05) in N than C cows. Percentages of N cows in which corpora lutea, formed in response to hCG, exhibited a normal life span were 83% on farm 1 and 25% on farm 2 (Exp. 1), and 90% (Exp. 2), compared with 0% in C cows. Concentrations of FSH were not affected by N but were lower (P less than .05) on d -5 in cows on farm 2 (.6 +/- .1 ng/ml) than in cows on farm 1 (.8 +/- .1 ng/ml). On d -5, a treatment X farm interaction (P less than .05) for mean LH was observed and frequency of pulses of LH was higher (P less than .01) in N than C cows (2.7 +/- .4 vs. .8 +/- .8 pulses/8 h). Neither cortisol nor PGFM was affected by N. Estradiol was increased in d -1 (6.1 +/- .5 vs 2.6 +/- .8 pg/ml; P less than .01) by N. It is suggested that pre-treatment with N enhanced life span of induced corpora lutea, in part, by influencing secretion of LH and development of follicles, but a threshold concentration of FSH was required for N to exert this effect.  相似文献   

10.
Light horse mares, stallions, and geldings were used to 1) extend our observations on the thyrotropin releasing hormone (TRH) inhibition of GH secretion in response to physiologic stimuli and 2) test the hypothesis that stimulation of endogenous TRH would decrease the normal rate of GH secretion. In Exp. 1 and 2, pretreatment of mares with TRH (10 microg/kg BW) decreased (P < 0.001) the GH response to exercise and aspartate infusion. Time analysis in Exp. 3 indicated that the TRH inhibition lasted at least 60 min but was absent by 120 min. Administration of a single injection of TRH to stallions in Exp. 4 increased (P < 0.001) prolactin concentrations as expected but had no effect (P > 0.10) on GH concentrations. Similarly, 11 hourly injections of TRH administered to geldings in Exp. 5 did not alter (P > 0.10) GH concentrations either during the injections or for the next 14 h. In Exp. 5, it was noted that the prolactin and thyroid-stimulating hormone responses to TRH were great (P < 0.001) for the first injection, but subsequent injections had little to no stimulatory effect. Thus, Exp. 6 was designed to determine whether the inhibitory effect of TRH also waned after multiple injections. Geldings pretreated with five hourly injections of TRH had an exercise-induced GH response identical to that of control geldings, indicating that the inhibitory effect was absent after five TRH injections. Retrospective analysis of pooled, selected data from Exp. 4, 5, and 6 indicated that endogenous GH concentrations were in fact lower (P < 0.01) from 45 to 75 min after TRH injection but not thereafter. In Exp. 7, 6-n-propyl-2-thiouracil was fed to stallions to reduce thyroid activity and hence thyroid hormone feedback, potentially increasing endogenous TRH secretion. Treated stallions had decreased (P < 0.01) concentrations of thyroxine and elevated (P < 0.01) concentrations of thyroid-stimulating hormone by d 52 of feeding, but plasma concentrations of GH and prolactin were unaffected (P > 0.10). In contrast, the GH response to aspartate and the prolactin response to sulpiride were greater (P < 0.05) in treated stallions than in controls. In summary, TRH inhibited exercise- and aspartate-induced GH secretion. The duration of the inhibition was at least 1 h but less than 2 h, and it waned with multiple injections. There is likely a TRH inhibition of endogenous GH episodes as well. Reduced thyroid feedback on the hypothalamic-pituitary axis did not alter basal GH and prolactin secretion.  相似文献   

11.
Two experiments were conducted to examine influences of dietary energy and insulin on ovulation rate and patterns of luteinizing hormone (LH), follicle stimulating hormone (FSH), glucose, insulin and estradiol in gilts during 6 d before estrus. In Exp. 1, 36 gilts were given altrenogest for 14 d to synchronize estrus. In a factorial arrangement, gilts were fed one of two levels of dietary energy (5,771 or 9,960 kcal metabolizable energy (ME)/d), and given one of two levels of porcine insulin (0 or .1 IU/kg body weight iv every 6 h). Dietary treatments began 4 d before and insulin treatments began 1 d after the last day of altrenogest, respectively, and lasted until 24 h after estrus. Main effect means for number of corpora lutea were 14.0 +/- 1.3 and 17.6 +/- .9 for 5,771 and 9,960 kcal ME (P less than .05), and 14.6 +/- 1.0 and 17.0 +/- .9 for 0 and .1 IU insulin (P less than .05). Number of LH peaks on d 3 was greater for gilts that received 9,960 kcal than 5,771 kcal (3.3 +/- .2 vs 2.7 +/- .2; P less than .05), and for .1 than 0 IU insulin (3.2 +/- .2 vs 2.7 +/- .2; P less than .05). During the first 24 h of sampling, concentrations of LH and FSH were greater (P less than .05) in gilts receiving 9,960 kcal ME plus insulin than for other treatment combinations. Concentrations of estradiol were not affected by treatments. In Exp. 2, two formulations of insulin were evaluated for influence on ovulation rate. All gilts received altrenogest and 9,960 kcal ME/d as in Exp. 1. Then on the first day after altrenogest, seven gilts each received short-acting insulin (as in Exp. 1), long-acting insulin (zinc suspension, 1.0 IU/kg body weight every 18 to 24 h), or served as controls. Ovulation rates were increased (P less than .05) by both insulin preparations (15.6, control; 19.1, short-acting; 18.5, long-acting; SE = 1.2). Concentrations of LH tended to be greater after short-acting insulin, but differences were not significant (P = .13). We conclude that increases in ovulation rate produced by dietary energy and insulin are not necessarily accompanied by changes in gonadotropins or estradiol.  相似文献   

12.
The effect of i.v. administration of ionophores on metabolism in ruminants was investigated in two experiments. In Exp. 1, four Angus heifers were assigned randomly to receive i.v. monensin (18 mg, n = 2) or vehicle (control, n = 2). Samples were collected from indwelling vena cava cannulas from -60 to 240 min. Concentrations of K, Mg (P less than .05) and P (P less than .10) were lower and glucose (GLU) and free fatty acids (FFA) were higher (P less than .05) in monensin-treated than in control heifers. Serum insulin (INS) initially declined and subsequently increased (P less than .05) following monensin administration. A second experiment was conducted to determine the effect of a higher dose of monensin and the effect of lasalocid on minerals and metabolites. Angus (n = 3) and Hereford (n = 3) steers were randomly assigned to treatments in two 3 x 3 latin square designs. Treatments were i.v. administration of monensin, lasalocid or vehicle (ethanol) administered on three consecutive days. Administration of monensin, but not vehicle or lasalocid, resulted in ataxia, hypernea, polyuria and anorexia for approximately 2 h. Plasma concentrations of K, P and Mg were suppressed (P less than .05) by monensin, but not by vehicle or lasalocid administration. The decrease in K was preceded by a transient increase in K 15 min after administering monensin. Concentrations of GLU and FFA increased (P less than .05) following monensin administration. Concentrations of INS were lower from 60 to 120 min and greater at 180 and 240 min compared with -60 to 0 min from monensin administration (P less than .05). These results provide first evidence of an effect of monensin on metabolism in ruminants independent of alterations in ruminal microbial metabolism.  相似文献   

13.
Two experiments were conducted to assess the effects of feeding thyrotropin-releasing hormone (TRH) during lactation on sows. In Exp. 1, sows were fed 0, 1, 10, 100 or 1,000 mg TRH on d 10.8 +/- .4 (mean +/- SE) after parturition. Blood samples were taken from sows every 30 min from -2 h to 8 h and at 10, 12 and 18 h from feeding. Consumption of 100 or 1,000 mg TRH increased mean serum concentrations of thyroxine (T4; P less than .001), 1,000 mg TRH increased growth hormone (GH; P less than .06) and 100 or 1,000 mg TRH increased prolactin (PRL; P less than .01), but insulin (INS; P greater than .10) was unaffected by TRH. Serum concentrations of T4 were elevated within 2 to 4 h after feeding TRH and remained elevated for 12 to 18 h. Concentrations of GH and PRL began to increase immediately after feeding 100 or 1,000 mg TRH and remained elevated for 6 and 8 h, respectively. In Exp. 2, sows were fed 0 or 200 mg TRH from d 111 of gestation to weaning at 27.1 +/- .3 d of lactation. Consumption of TRH elevated concentrations of T4 at all stages of lactation and increased respiration rate on d 10 and d 20, heart rate on d 20, and milk production on d 20 of lactation. Consumption of TRH did not influence number of pigs born, number born alive, survival rate during lactation, sow body weight, heartgirth, backfat depth, feed disappearance, or milk production on d 10 of lactation. Piglets nursing sows fed TRH were similar in weight to piglets nursing sows not fed TRH on d 0 and 5 of lactation, but they were heavier on d 10 (P less than .07), 15 (P less than .001), 20 (P less than .001) and 27 (P less than .0001). Sows fed TRH took longer (P less than .001) to return to estrus after weaning than control sows. Results indicated that feeding TRH elevated T4, GH and PRL and that feeding TRH for the duration of lactation increased milk production on d 20 of lactation and increased weaning weights, but it delayed estrus after weaning.  相似文献   

14.
Three experiments were performed to test the following hypotheses: 1) stallions and/or progesterone-estradiol-treated geldings could serve as models for the effects of a single implant of the GnRH analog, deslorelin acetate, on LH and FSH secretion by mares; and 2) multiple implants of deslorelin acetate could be used as a means of inducing ovarian atrophy in mares for future study of the mechanisms involved in the atrophy observed in some mares after a single implant. In Exp. 1, nine light horse stallions received either a single deslorelin implant (n = 5) or a sham injection (n = 4) on d 0. In Exp. 2, 12 geldings received daily injections of progesterone on d -20 through -4, followed by twice-daily injections of estradiol on d -2 to 0. On the morning of d 0, geldings received either a single deslorelin implant (n = 6) or a sham injection (n = 6). Daily injections of progesterone were resumed on d 2 through 15. In Exp. 1, plasma LH and FSH were elevated (P < 0.05) in the treatment group relative to controls at 4, 8, and 12 h after implant insertion. In the treated stallions, FSH was decreased (P < 0.05) on d 3 to 13, and LH was decreased on d 6 to 13. In Exp. 2, plasma LH and FSH were elevated (P < 0.05) at 4,8, and 12 h after deslorelin implant insertion. Plasma LH was suppressed (P < 0.05) below controls on d 2 to 7, 9, and 11 to 15; plasma FSH was suppressed (P < 0.05) on d 4 to 15. In Exp. 3, 21 mares were used to determine whether multiple doses of deslorelin would cause ovarian atrophy. Mares received one of three treatments: 1) sham injections; 2) three implants on the first day; or 3) one implant per day for 3 d (n = 7 per group). Treatment with multiple implants increased (P < 0.05) the interovulatory interval by 14.8 d and suppressed (P < 0.01) LH and FSH concentrations for approximately 25 d; no mare exhibited ovarian atrophy. In conclusion, after an initial short-term increase in LH and FSH secretion, deslorelin implants caused long-term suppression of both gonadotropins in stallions as well as in geldings treated with progesterone and estradiol to mimic the estrous cycle. It is likely that either of these models may be useful for further study of this suppression in horses. Although multiple implants in mares suppressed gonadotropin secretion longer than a single implant, the lack of ovarian atrophy indicates that the atrophy observed after a single implant in previous experiments was likely due to the susceptibility of individual mares.  相似文献   

15.
Thirty-five ovariectomized pony mares were used to study the relationships among luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin (PRL) concentrations in blood (secretion), in pituitary (storage) and in blood after secretagogue administration, as well as the content of gonadotropin releasing hormone (GnRH) in hypothalamic areas, under various conditions of steroidal and nonsteroidal treatment. Five mares each were treated daily for 21 d with vegetable shortening (controls), testosterone (T; 150 micrograms/kg of body weight, BW), dihydrotestosterone (DHT; 150 micrograms/kg BW), estradiol (E2; 35 micrograms/kg BW), progesterone (P4; 500 micrograms/kg BW), dexamethasone (DEX; 125 micrograms/kg BW) or charcoal-stripped equine follicular fluid (FF; 10 ml). Secretagogue injections (GnRH and thyrotropin releasing hormone, TRH, at 1 and 4 micrograms/kg of BW, respectively) were given one d prior to treatment and again after 15 d of treatment. Relative to controls, treatment with T, DHT and DEX reduced (P less than .05) LH secretion, storage and response to exogenous GnRH, whereas treatment with E2 increased (P less than .05) these same characteristics. Treatment with P4 reduced (P less than .05) only LH secretion. Treatment with T, DHT, E2 and DEX reduced (P less than .05) FSH secretion, whereas treatment with P4 increased (P less than .05) it and FF had no effect (P greater than .1). All treatments increased (P less than .05) FSH storage, whereas only treatment with T and DHT increased (P less than .05) the FSH response to exogenous GnRH. Other than a brief increase (P less than .05) in PRL secretion in mares treated with E2, secretion of PRL did not differ (P greater than .1) among groups. Only treatment with E2 increased (P less than .01) PRL storage, yet treatment with T or DHT (but not E2) increased (P less than .05) the PRL response to exogenous TRH. Content of GnRH in the body and pre-optic area of the hypothalamus was not affected (P greater than .1) by treatment, whereas treatment with T, E2 and DEX increased (P less than .1) GnRH content in the median eminence. For LH, secretion, storage and response to exogenous GnRH were all highly correlated (r greater than or equal to .77; P less than .01). For FSH, only storage and response to exogenous GnRH were related (r = .62; P less than .01). PRL characteristics were not significantly related to one another. Moreover, the amount of GnRH in the median eminence was not related (P greater than .1) to any LH or FSH characteristic.  相似文献   

16.
Morphine (M), an opioid agonist, was administered to postpartum (PP) Angus cows to investigate opioid modulation of gonadotropin secretion. In Exp. 1, eight PP cows (36.9 +/- 2.3 d) received either M (1 mg/kg; n = 4) or saline solution (S) (n = 4) via i.v. injection 36 h after calf removal. Morphine decreased (P less than .01) the number of serum LH pulses (3.0 +/- 1.1 pre- vs .3 +/- .3 post-pulses/h) and, compared with pretreatment values (3.3 mg/ml), decreased (P less than .05) mean LH at 105 min (2.1 ng/ml) through 270 min 1.9 ng/ml +/- .4). Serum prolactin (PRL) increased (P less than .01) following M from 16.4 ng/ml to a peak of 59.3 ng/ml (+/- 3.9). Serum FSH concentrations were unaffected. In Exp. 2, M (.31 mg/kg i.v. injection followed by .15 mg/(kg.h) infusion; n = 6) or S (n = 6) treatments were given for 7 h beginning 36 h after calf removal. Serum LH was similar between groups during the pretreatment and the first 6 h of infusion, but M decreased (P less than .001) the number of serum LH pulses (.44 +/- .09 vs .06 +/- .04 pulses/h). Morphine increased (P less than .05) serum PRL. It is concluded that M differentially modulated gonadotropin secretion in the cow such that PRL increased, LH decreased and FSH was unchanged.  相似文献   

17.
Four experiments were conducted to determine the effects of dietary fat on lipolysis in lactating sows. In Exp. 1, a 6 x 6 Latin square was used to determine the optimal dosage of epinephrine for use in a subsequent epinephrine challenge. Peak concentrations of plasma glucose and response area increased linearly (P < .10) with epinephrine dosage. However, plasma NEFA peak and response area were quadratically affected (P < .05 and .06, respectively) by epinephrine dosage, with a minimum NEFA peak concentration observed at .4 microg/kg and a maximum at 1.6 microg/kg. In Exp. 2, the effect of dietary tallow on the response to epinephrine infusion (1.6 microg/kg BW) was examined. No differences (P > .10) between treatments were observed in NEFA, glycerol, or peak concentrations of plasma glucose following epinephrine administration. In Exp. 3, the effect of dietary fat on hormone-sensitive lipase activity was examined. Sows (n = 36) were fed diets containing either 0 or 10% added tallow. Hormone-sensitive lipase activity on d 28 of lactation was increased by the addition of tallow to the diet (P = .06). No effect of dietary tallow was observed on hormone-sensitive lipase activity of adipose tissue on d 21 of lactation (P > .10) in Exp. 3 (n = 16 sows) and Exp. 4 (n = 30 sows). In summary, diets containing 10% added tallow did not alter the rate of lipolysis, as measured by exogenous epinephrine challenge, in adipose tissue of lactating sows.  相似文献   

18.
Two experiments, each arranged as a 2 x 2 factorial, were conducted in ewes to examine direct effects of bovine follicular fluid (bFF) on follicular development and luteal function and to further characterize follicular development and luteal function after pituitary stalk transection (SS). In Exp. 1, ewes were sham-operated or SS on d 6 of an estrous cycle and received 5 ml of saline or bFF three times daily on d 5 through 11 of the same cycle. In Exp. 2, all ewes were SS on d 6 of an estrous cycle and treated with saline or bFF three times daily on d 5 through 11 and with ovine FSH (60 micrograms; NIADDK-oFSH-16) or saline (1.2 ml) from d 7 to 11. In Exp. 2, ewes were ovariectomized on d 11 to assess effects of treatments on follicular development and luteal function. In both experiments, concentrations (ng/ml) of FSH on d 7 were suppressed (P less than or equal to .005) by bFF compared with saline (.50 +/- .17 vs 1.63 +/- .15) and remained suppressed (P less than or equal to .005) through d 11 (.46 +/- .12 vs 1.54 +/- .12). Replacement therapy (oFSH) restored concentrations of FSH. Concentrations of LH were not affected by bFF but were elevated (P less than or equal to .05) 1 d after SS (d 7; .88 +/- .09 vs .56 +/- .09) and remained elevated (P less than or equal to .05; 1.31 +/- .20 vs .65 +/- .11) from d 6 through 11. Concentrations of progesterone were unaffected by SS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Serum concentrations of IGF-I in postpartum beef cows   总被引:1,自引:0,他引:1  
Four experiments assessed changes in serum IGF-I under various physiologic conditions in postpartum cows. In Exp. 1, anestrous suckled cows (n = 25) were infused for 6 d with either saline or glucose at two different infusion rates. In Exp. 2, anestrous cows (n = 29) received either a saline (weaned and suckled controls) or 3 g/d phlorizin (weaned phlorizin) infusion for 3 d. Calves from the weaned groups were removed from 15 h before and throughout infusions. In Exp. 3, cycling suckled cows (n = 20) received prostaglandin F2 alpha (PGF2 alpha) when the 5-d saline or phlorizin infusion began. In Exp. 4, suckled cows (n = 20) had ad libitum access to feed or received 50% of control feed consumption from 30 to 40 d postpartum. Increasing glucose availability (Exp. 1) increased (P less than .05) serum IGF-I by 30 to 35%. IGF-I remained stable after weaning (Exp. 2) in phlorizin-infused cows (128.8 +/- 12.7 ng/ml), but increased (P less than .05) by 3 d after calf removal in weaned control cows (152.2 +/- 7.5 ng/ml). IGF-I also remained stable in phlorizin-infused cows following PGF2 alpha injection (Exp. 3), but increased in control cows by 2 d after PGF2 alpha (156.8 +/- 18.3 on d 2 vs. 133.7 +/- 9.8 ng/ml pre-injection; P less than .05) and remained elevated (P less than .05) during the periovulatory period. In cows receiving restricted feed intake (Exp. 4), IGF-I decreased by approximately 50% within 4 d of feed restriction (71.3 +/- 9.4 vs 137.4 +/- 16.6 ng/ml; P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Melatonin (MEL) was evaluated for effects on LH, prolactin (PRL) and fertility in spring (Exp. 1, 2) and summer (Exp. 3 to 5). In Exp. 1, 17 ovariectomized ewes bearing estradiol implants were fed 3 mg MEL or vehicle for 44 d beginning May 1. Melatonin decreased (P less than .001) PRL levels but had no effect on LH secretion and response to GnRH. In Exp. 2, 12 ewes each received a 40-d MEL ear implant or a sham implant on March 31. Progesterone-releasing pessaries (CIDR) were applied for 12 d and were withdrawn concomitant with ram joining on May 7. Neither treatment stimulated follicular development or induced estrus or ovulation. Exp. 3 and 4 were contemporary 2 x 2 factorial trials with 24 ewes at each of two locations. Melatonin implants were administered on June 29 and CIDR on July 22. The CIDR were removed and rams (Exp. 3, vasectomized; Exp. 4, fertile) were joined on August 3. Days from introduction of rams to estrus were reduced (P less than .05) by CIDR but not by MEL. All ewes lambed in Exp. 4, and days to estrus and conception were reduced (P less than .001) by CIDR but not by MEL. Exp. 5 was designed like Exp. 4 except that MEL implants were inserted June 20 and rams were joined August 8. Intervals from introduction of rams to estrus were reduced (P less than .01) by both MEL and CIDR treatments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号