首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A factorial experiment was conducted to examine effects of dietary protein concentration (24, 28, 32, or 36%) and feeding regimen (feeding once daily or every other day [EOD]) on channel catfish, Ictalurus punctatus, production in earthen ponds. Compared with fish fed daily, fish fed EOD had lower feed consumption, weight gain, net production, and percentage of market‐size fish but had high feed efficiency and required fewer hours of aeration. Fish fed EOD also had lower carcass yield, fillet yield, and visceral and fillet fat. There was a significant interaction between dietary protein and feeding regimen for weight gain. No significant differences were observed in weight gain of fish fed daily with diets containing various levels of protein, whereas weight gain of fish fed EOD with a 24% protein diet was lower than those fed EOD with higher protein diets. Results suggest that response of channel catfish to dietary protein levels depends on whether the fish were fed daily or EOD. Feeding EOD to satiation improved feed efficiency and required less aeration compared with fish fed daily but also reduced net production and processing yield; therefore, EOD feeding should be examined closely before implementation.  相似文献   

2.
Two experiments were conducted in earthen ponds to evaluate the effect of dietary protein concentration and feeding rate on weight gain, feed efficiency, and body composition of channel catfish. In Experiment 1, two dietary protein concentrations (28% or 32%) and four feeding rates (≤ 90. ≤ 112, ≤ 135 kg/ha per d, or satiation) were used in a factorial arrangement. Channel catfish Ictalurus punctatus fingerlings (average size: 27 g/fish) were stocked into 0.04-ha ponds at a rate of 24,700 fish/ha. Fish were fed once daily at the predetermined maximum feeding rates for 282 d (two growing seasons). In Experiment 2, three dietary protein concentrations (24, 28, or 32%) and two feeding rates (≤ 135 kg/ha per d or satiation) were used. Channel catfish (average size: 373 g/fish) were stocked into 0.04-ha ponds at a rate of 17,300 fish/ha. Fish were fed once daily for 155 d. In both experiments, five ponds were used for each dietary treatment. Results from Experiment 1 showed no differences in total feed fed, feed consumption per fish, weight gain, feed conversion ratio (FCR), or survival between fish fed diets containing 28% and 32% protein diets. As maximum feeding rate increased, total feed fed, feed consumption per fish, and weight gain increased. There were no differences in total feed fed, feed consumption per fish, or weight gain between fish fed at ≤ 135 kg/ha per d and those fed to satiation. Fish fed the 28% protein diet had a lower percentage carcass dressout and higher percentage visceral fat than fish fed the 32% protein diet. Dietary protein concentrations of 28% or 32% had no effect on fillet protein, fat, moisture, and ash. Feeding rate did not affect FCR, survival, percentage carcass dressout, or fillet composition, except fillet fat. As feeding rate increased, percentage visceral fat increased. Fish fed at ≤ 90 kg/ha per d had a lower percentage fillet fat than fish fed at higher feeding rates. In Experiment 2, dietary protein concentration or maximum feeding rate did not affect total feed fed, feed consumption per fish, weight gain, FCR, or survival of channel catfish. Feeding rate had no effect on percentage carcass dressout and visceral fat, or fillet composition. This was due to the similar feed consumption by the fish fed at the two feeding rates. Fish fed the 24% protein diet had lower carcass dressout, higher visceral fat and fillet fat than those fed the 28% or 32% protein diet. Results from the present study indicate that both 28% and 32% protein diets provide satisfactory fish production, dressed yield, and body composition characteristics for pond-raised channel catfish fed a maximum rate of 90 kg/ha per d or ahove.  相似文献   

3.
Abstract.— This study was conducted to evaluate the effect of dietary protein concentration and an all‐plant diet on growth and processing yield of pond‐raised channel catfish Ictalurus punctatus. Four diets were formulated using plant and animal proteins to contain 24%n, 28%, 32%, or 36% crude protein with digestible energy to protein (DE/P) ratios of 11.7, 10.2, 9.0, and 8.1 kcal/g, respectively. An all‐plant diet containing 28% protein with a DE/P ratio of 10.2 kcal/g was also included. Channel catfish fingerlings averaging 40 g/fish were stocked into 24, 0.04‐ha ponds at a density of 18,530 fish/ha. Five ponds were used for each dietary treatment except for the all‐plant diet which had four replicates. The fish were fed once daily to apparent satiation for 160 d. No differences were observed in feed consumption, weight gain, survival, carcass and nugget yield, or fillet moisture and protein concentrations among treatments. Fish fed the 28% protein diet had a lower feed conversion ratio (FCR) than fish fed diets containing 24% and 32% protein, but had a FCR similar to fish fed the 36% protein diet. Fillet yield was higher for fish fed the 36% protein diet than fish fed the 24% protein diet. Visceral fat was lower in fish fed the 36% protein diet than fish fed other diets. Fish fed the 32% and 36% protein diets exhibited a lower level of fillet fat than fish fed the 24% protein diet. The 36% protein diet resulted in a lower level of fillet fat than fish fed the 28% protein diet. There was a positive linear regression in fillet yield and fillet moisture concentration and a negative linear regression in visceral fat and fillet fat against dietary protein concentration. No differences in any variables were noted between the 28% protein diets with and without animal protein except that fish fed the 28% protein diet without animal protein had a higher FCR than fish fed the 28% protein diet with animal protein. This observation did not appear to be diet related since FCR of fish fed the 32% protein diet containing animal protein was not different from that of fish fed the 28% all‐plant protein diet. Data from the present study indicate that dietary protein concentrations ranging from 24% to 36% provided for similar feed consumption, growth, feed efficiency, and carcass yield. However, since there is a general increase in fattiness and a decrease in fillet yield as the dietary protein concentration decreases or DEP ratio increases, it is suggested that a minimum of 28% dietary protein with a maximum DEIP ratio of 10 kcal/g protein is optimal for channel catfish growout.  相似文献   

4.
Two studies were conducted to evaluate the effects of (I) high-protein (38%) finisher feed fed to satiation for 30,45,60, or 90 days prior to harvest and (2) dietary protein (32 vs. 38%) and feeding regimen (satiation or restricted) on growth and fattiness of channel catfish. Each study was conducted for two years in earthen ponds stocked with channel catfish at a rate of 13,590 fish/ha (35 to 40 g initial weight) for year 1 and 6,800 fish/ha (0.45 to 0.6 kg initial weight) for year 2. Years refer to year of experiment and not fish age class. There were no significant differences in total yield, dressed yield, or muscle fat, regardless of diet or feeding regimen within year. Year-one fish (study 2) fed to satiation tended to gain more weight and appeared to convert feed better than fish fed at a restricted rate. In study 2 there were significant interactions between year and feed, and between year and feeding regimen. Percentage visceral fat was reduced by feeding a high-protein feed during year 1 (study 1). Females also generally had a higher percentage visceral fat than males, regardless of diet. Year-two-fish generally contained a higher percentage of visceral fat as compared to year-one fish. In study 2, there was a significant interaction effect between year, feed, feeding regimen, and sex on visceral fat. Increasing dietary protein or restricting feed appeared to have only marginal effects on fattiness in channel catfish. Fish size and/or age appeared to influence fattiness more than diet or feeding regimen.  相似文献   

5.
To quantitatively define relationships among stocking densities, feeding rates, water quality, and production costs for channel catfish, Ictalurus punctatus, grown in multiple‐batch systems, twelve 0.1‐ha earthen ponds were stocked at 8,600, 17,300, 26,000, or 34,600 fingerlings/ha along with 2,268 kg/ha of carryover fish. Fish in all ponds were fed daily to apparent satiation using 32% protein floating feed. Temperature and dissolved oxygen in each pond were monitored twice daily; pH weekly; nitrite‐N, total ammonia nitrogen, and Secchi disk visibility every 2 wk; nitrate‐N, chlorophyll a, total nitrogen, total phosphorus, and chemical oxygen demand monthly; and chloride every other month. The costs of producing channel catfish at different stocking densities were estimated. There were no significant differences (P > 0.05) as a result of stocking density among treatment means of (1) gross or net yields, (2) mean weights at harvest, and (3) growth or survival of fingerlings (24–36%) and carryover fish (77–94%). Mean and maximum daily feeding rates ranged from 40 to 53 kg/ha/d and 123 to 188 kg/ha/d, respectively, and feed conversion ratios averaged 1.75. There were no differences in any feed‐related parameter as a result of density. Water quality variables showed few differences among densities at samplings and no differences when averaged across the production season. Yield of fingerlings increased as stocking density increased with significant differences between the two highest and the two lowest stocking densities. Breakeven prices were lower at the higher stocking densities as a result of the higher yield of understocked fish and similar mean individual fish weights produced at these higher stocking densities. Overall, varying stocking densities of fingerlings in multiple‐batch systems had little effect on production efficiency and water quality. Additional research on managing the population structure of carryover fish in commercial catfish ponds may be warranted.  相似文献   

6.
Two studies were conducted in 110‐L flow‐through aquaria and 0.4‐ha ponds to evaluate effects of periodic feed deprivation on the growth performance of channel catfish Ictalurus punctatus. Fish were deprived of feed 0, 1, 2, or 3 consecutive d/wk, l d per 5‐d period, or 3 consecutive d per 10‐d period and fed to satiation on days fish were fed. In Experiment 1, fish fed less frequently than daily consumed significantly less feed (over the experimental period) and gained significantly less weight than fish fed daily, except that feed consumption of fish deprived of feed 1 d/wk was not significantly different from that of fish fed daily. Compared with fish fed daily, fish deprived of feed 2 d/wk had significantly lower feed conversion ratio (FCR). Visceral fat of fish deprived of feed 1 or 2 d/wk was similar to that of fish fed daily, but fish deprived of feed for longer periods had significantly lower visceral fat than fish fed daily. Regression analysis indicated that feed consumption, weight gain, and visceral fat increased linearly as the number of days that fish were fed increased. In Experiment 2, there were no significant differences in the amount of feed fed between fish deprived of feed 1 d/wk and those fed daily. Net production of fish deprived of feed 1 or 2 d/wk or 1 d per 5‐d period was not significantly different from that of fish fed daily, but fish deprived of feed for longer periods had significantly lower net production than fish fed daily. Visceral fat of fish deprived of feed 1 d/wk or 1 d per 5‐d period was similar to that of fish fed daily, but fish on other treatments had significantly lower visceral fat than fish fed daily. Regression analysis showed that as the number of days fed increased the amount of feed fed and net production increased quadratically. Feed conversion ratio, carcass yield, visceral fat, and fillet fat increased, while fillet moisture decreased linearly as the number of days fed increased. Although feeding less frequently than daily may improve feed efficiency, and fish deprived of feed may demonstrate compensatory growth when a full feeding regime is resumed, it may be difficult to provide enough feed to satiate all size‐classes of fish under a multiple‐batch cropping system without causing water quality problems. Under normal economic conditions, fish should be fed daily to apparent satiation without waste and without causing water quality problems. However, during periods of unfavorable economic conditions, channel catfish raised from advanced fingerlings to market size may be fed less frequently than daily to reduce production cost. Results from the present study indicated that feeding channel catfish to satiation 5 or 6 d/wk (not feeding on one or two weekend days) could provide some benefits in reducing production cost through reduced feed and labor costs for food‐sized channel catfish during periods of low fish prices and high feed prices.  相似文献   

7.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

8.
The efficacy of short-term feed withdrawal as a method of reducing ammonia concentrations in catfish production ponds was investigated. Channel catfish, Ictalurus punctatus, fingerlings averaging 35 g were stocked at 9,880 fish/ha into six 0.04-ha ponds and fed twice daily to satiation for 131 days. For a 9-day period immediately prior to harvest (days 132-140), feeding of fish in three ponds was terminated, while feeding of fish in three other ponds was continued. Total ammonia-nitrogen concentrations were not significantly reduced (P > 0.05) in unfed ponds until 9 days after feeding was terminated. However, after 7 days without feed, un-ionized ammonia concentrations were significantly higher (P < 0.05) in ponds where fish were not fed, due to significantly higher (P < 0.05) pH levels. Short-term (9 days) feed withdrawal had little effect on lowering total ammonia and actually increased concentrations of toxic un-ionized ammonia in ponds.  相似文献   

9.
Abstract

This study evaluated the effects of dietary protein concentration (26, 28, and 32%) and an all-plant protein diet (28% protein) on growth, feed efficiency, processing yield, and body composition of channel catfish, Ictalurus punctatus raised from advanced fingerlings to large marketable size (about 800 to 900 g/fish) for two growing seasons. Fingerling channel catfish (average weight = 56 g/fish) were stocked into twenty 0.04-ha ponds at a density of 18,525 fish/ha. Fish were fed once daily to satiation during the two growing seasons and fed according to recommended winter feeding schedules during the winter. There were no differences in diet consumption, weight gain, feed conversion ratio, survival, processing yields (carcass, shank fillet, and nugget), or fillet composition (moisture, protein, fat, and ash) among fish fed the various diets. These results indicate that a 26% protein diet containing plant and animal proteins or a 28% all-plant protein diet is adequate for channel catfish raised in ponds from advanced fingerlings to large marketable size without adversely affecting weight gain, feed efficiency, processing yield, or body composition. Large marketable-size channel catfish appear to use diets less efficiently but give higher processing yields compared to small marketable-size fish.  相似文献   

10.
Channel catfish, Ictalurus punctatus, in a quadruplicate flowthrough aquaria for 15 weeks, were fed a semipurified basal diet containing no folic acid or with folic acid levels ranging from 0.2 to 10.0 mg/kg with or without antibiotic. A second study was conducted for 25 weeks under similar conditions but with semipurified diets containing either 20 or 200 mg/kg ascorbic acid and either 0, 0.4, or 4.O.mg/kg folic acid in a factorial design. Mortalities throughout both experiments were monitored and the etiological causes noted. Fish remaining from the second study were overwintered in circular tanks, kept on the same experimental diets, and challenged with Edwardsiella ictaluri after having been on experimental diets for 50 weeks. In both studies, the addition of folk acid to the basal experimental diet resulted in a decreased incidence of columnaris, Flexibacter columnaris. Folic acid concentration in the diet significantly affected mortalities in fish exmrimentallv challenged with E. ictaluri; however, there was significant interaction between the folic acid concentration and the concentration of ascorbic acid. At the lower concentration of ascorbic acid, 4 mg/kg of folic acid was required to reduce mortalities, but at the higher concentration of ascorbic acid, only 0.4 mg/kg folic acid was needed to reduce mortalities below that of the diet without folk acid. Antibody tilers were not affected by folic acid concentration at the lower concentration of ascorbic acid; however at the higher concentration of ascorbic acid, the diets containing 0.4 or 4 mg/kg of folic acid resulted in increased antibody production.  相似文献   

11.
Previous work suggested that feeding catfish, Ictalurus punctatus, more frequently over the winter might reduce weight loss. Twelve 0.10-ha ponds were stocked with 987 kg/ha market-sized fish and 2,960 kg/ha sub-marketable fish in November 2008 with treatments of: (1) unfed, (2) fed daily (fed 90 d), and (3) temperature-threshold feeding (fed 62 d). Total gross yield was significantly greater for the temperature-threshold feeding treatment than the unfed control, but survival and mean weight of fish at harvest were not. Net yield was negative for all treatments, due primarily to mortality of market-sized fish. Plasma glucose and insulin-like growth factor-1 did not differ significantly, but plasma osmolality was significantly lower in fasted than in fed fish. Mean feed consumption rates in vats provided evidence to support more frequent feeding over the winter. Overwintering costs were $0.11/kg with temperature-threshold feeding. Research on strategies to reduce winter mortality has potential to reduce overwintering costs.  相似文献   

12.
A laboratory feeding trial was conducted to evaluate the effects of reducing digestible energy to protein (DE:P) ratios of practical diets on body fat and weight gain of channel catfish. Five diets were formulated to contain 32, 28, or 24% crude protein with typical DE:P ratios of 8.5, 9.9, or 11.4 kcal/g protein, respectively, and 28% or 24% protein with a reduced DE:P ratio of 8.5 kcal/g protein. Cellulose was used to adjust the DE:P ratio. Juvenile channel catfish Ictalurus punctatus (initial weight: 5.2 g/fish) were fed the experimental diets twice daily to apparent satiation for 12 wk. Fish fed the 28% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein gained less weight and converted feed less efficiently than those fed the 28% protein diet with a typical DE:P ratio of 9.9 kcal/g protein. Fish fed the 24% protein diet with a reduced DE:P ratio of 8.5 kcal/g protein had a similar weight gain but converted feed less efficiently than those fed the 24% protein diet with a typical DE:P ratio of 11.4 kcal/g protein. Weight gain and feed conversion efficiency of fish fed the 32% protein diet with a typical DE:P ratio of 8.5 kcal/g protein were higher than for fish fed other diets except those fed the 28% protein diet with a DE:P ratio of 9.9 kcal/g protein. There were no differences in feed consumption and survival among dietary treatments. Fillet fat of fish fed the 24% and 28% protein diets with a reduced DE:P ratio was lower than that of the fish fed diets containing the same protein concentrations with typical DE:P ratios. At a DE:P ratio of 8.5 kcal/g protein, there were no differences in fillet fat concentration among fish fed diets containing different protein concentrations. There were no differences in fillet protein, moisture, and ash between fish fed the 24% or 28% protein diets containing reduced and typical DE:P ratios. Results from this study show that reducing DE:P ratios in practical diets lowers body fat but also depresses weight gain of channel catfish; thus it would not be economical to use this strategy to reduce body fat of the fish.  相似文献   

13.
The storage quality of channel catfish (Ictalurus punctatus), following long term frozen storage, fed diets containing 5 and 10 times the normal level of vitamin E for 45 or 60 days prior to harvest, was evaluated. There were no unusual effects of treatment on fish weight, survival or feed conversion ratios. Muscle vitamin E content was higher (P < 0.05) from fed diets containing supplemental vitamin E than in the control. Oxidation as measured by TBARS and sensory analysis values did not differ (P > 0.05) in response to vitamin E supplementation. Lipid oxidation increased as storage time increased. Lack of change in phospholipid and neutral lipid fractions during storage indicated that autoxidations was the major cause of oxidation in catfish. Vitamin E levels up to 10 times the normal amount did not improve the overall quality of catfish fillets.  相似文献   

14.
15.
Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1‐ha ponds were stocked with 13‐ to 15‐cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single‐batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite‐N, nitrate‐N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201‐d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite‐N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs.  相似文献   

16.
ABSTRACT

Animal protein, generally fish meal, has traditionally been used in the diet of channel catfish. However, our previous research indicates that animal protein is not needed for growing stocker-size catfish to food fish when the fish are stocked at densities typical of those used in commercial catfish culture. Whether this holds when fish are stocked at high densities is not known; thus, we conducted an experiment to evaluate the effect of feeding diets with and without fish meal to channel catfish stocked in earthen ponds at different densities. Two 32% protein-practical diets containing 0% or 6% menhaden fish meal were compared for pond-raised channel catfish, Ictalurus punctatus, stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each fish meal level?×?stocking density combination. Fish were fed once daily to satiation for two growing seasons. There was a significant interaction between stocking density and fish meal for net production; net production increased in fish fed a diet containing fish meal compared with those fed an all-plant diet at the highest stocking density, but not at the two lower stocking densities. Net production of fish fed diets with and without fish meal increased as stocking density increased. Viewing the main effect means, weight gain decreased and feed conversion ratio increased for fish stocked at the two highest densities, and survival was significantly lower at the highest stocking density. Visceral fat decreased in fish at the two highest stocking densities. Body composition data were largely unaffected by experimental treatment except for a reduction in percentage filet fat in fish at the highest stocking density, and fish that were fed diets containing fish meal had a lower percentage fillet protein and a higher percentage fillet fat. It appears that at stocking densities two to three times higher than generally used, animal protein (fish meal) may be beneficial in the diet of channel catfish. In regard to stocking densities, high stocking results in higher overall production, but the average fish size decreased as stocking density increased.  相似文献   

17.
There has been considerable interest worldwide in applying bacterial inocula to channel catfish ponds for improving water quality, especially for acceleration of ammonia nitrogen oxidation through bacterial nitrification. The effects of a selected bacterial amendment on water quality in small research ponds for channel catfish production were evaluated at the E. W. Shell Fisheries Center, Auburn University, Auburn, Alabama. Three ponds were treated with the bacterial amendment Waste & Sludge Reducer? (Keeton Industries, Wellington, CO, USA) at three times the dose recommended by the manufacturer every 2 wk, and three ponds served as controls. There were nonconsistent minor differences in water quality between ponds treated with a commercial bacterial amendment and control ponds on several sampling dates. However, the average concentrations of water quality variables did not differ (P > 0.05) between the treatments and control. Channel catfish yield was not improved by applying the bacterial amendment. This study demonstrates that the bacterial amendment was of no benefit in improving water quality in well‐managed catfish ponds where stocking rates, feeding rates, and amount of aeration are balanced.  相似文献   

18.
A comparative study was conducted on growth and protein requirements of channel catfish, Ictalurus punctatus, and blue catfish, Ictalurus furcatus. Four diets containing 24, 28, 32, or 36% protein were fed to both channel (initial weight 6.9 g/fish) and blue (6.6 g/fish) catfish for two growing seasons. There were significant interactions between dietary protein and fish species for weight gain and feed conversion ratio (FCR). No significant differences were observed in weight gain of channel catfish fed various protein diets, whereas higher protein diets (32 and 36%) resulted in better weight gain in blue catfish than lower protein diets (24 and 28%). No consistent differences were observed in the FCR of channel catfish fed various levels of dietary protein, whereas significantly higher FCRs were noted in blue catfish fed the 24 and 28% protein diets compared with fish fed 32 and 36% protein diets. Regardless of dietary protein levels, blue catfish had higher carcass, nugget, and total meat yield, and higher fillet moisture and protein, but lower fillet yield and fillet fat. Regardless of fish species, fish fed the 36% protein diet had higher carcass, fillet, and total meat yield than fish fed the 28 and 32% protein diets, which in turn had higher yields than fish fed the 24% protein diet. It appears that blue catfish can be successfully cultured by feeding a 32% protein diet.  相似文献   

19.
Abstract.— Channel catfish Ictalurus punctatus fry are typically held under hatchery conditions for 7 to 14 d after hatching to allow feeding and growth before they are stocked into nursery ponds to produce fingerling catfish. In an attempt to reduce hatchery operating costs, several catfish fingerling producers in Louisiana presently stock fry within 2 d after hatching before yolk absorption is complete. Fry at this stage of development are commonly referred to as "sac-fry." Although research has shown that fry can be stocked at the onset of yolk absorption with no detrimental effects on subsequent fingerling production, stocking sac-fry has been reported to result in reduced fingerling survival. To further investigate this topic, production trials were conducted in experimental outdoor pools over the course of two growing seasons to evaluate the effect of stocking fry of three different ages (2-, 7-, and 14-d post-hatch, DPH) on survival, growth (weight and length), condition factor (K), yield, feed consumption, and feed conversion ratio (FCR) of fingerling catfish. Results from both trials indicated that the age at which fry were stocked had no effect on production characteristics with the exception of growth. Specifically, fingerlings reared from fry stocked at 2 and 7 DPH were significantly larger than fingerlings reared from fry stocked at an age of 14 DPH. These findings suggest that the practice of stocking sac-fry may be a suitable alternative to the traditional procedure of holding and feeding fry under hatchery conditions prior to stocking. However, in order to fully evaluate the effects of early-age stocking of catfish fry on fingerling production, additional studies must be conducted under pond conditions. Furthermore, these studies must be coupled with a rigorous economic analysis before the practice of stocking sac-fry can be recommended to the catfish industry.  相似文献   

20.
Economic trade-offs associated with single- and multiple-batch production of channel catfish, "Ictalurus punctatus," were analyzed using multi-period and risk programming mathematical models. Single-batch stocking strategies maximized net returns above variable cost, primarily because poorer feed conversions in multiple-batch systems resulted in lower net returns. In the absence of off-flavor, single-batch production would increase annual net returns by 5%. For every 25% reduction in off-flavor incidence, annual net returns increased by 1-3%. The 10-year average fall-to-spring price differential was less than the cost of holding fish through the winter, based on an assumed inventory holing cost of $0.08/kg/month. For each reduction in holding cost of $0.02/kg/month, annual net returns increased by 8-9%. Multiple stocking was selected as a risk-reducing strategy, but expected income decreased by 8% to 35% depending on the number of ponds stocked in multiple batches. Cash flow restrictions decreased annual net returns by 18% because multiple-batch stocking strategies were required to meet financial obligations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号