首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
一种直接测定硝化—反硝化气体的15N示踪—质谱法   总被引:3,自引:0,他引:3  
本文对15N示踪—质谱法的可靠性进行了检验。结果表明,在不同的15N丰度气体样品的测定中,用两种方法(反硝化作用源的15N丰度法和气样的15N丰度法)计得的反硝化损失量基本一致,故建立起来的15N示踪—质谱法是可靠的。该方法的测定偏差随气样15N丰度的降低而增大。此外,回收率结果表明,(N2+N2O+NOx)-15N累积释放量占加入NO3-15N量的94.1%。因此,这一方法可用于直接测定氮肥的硝化—反硝化损失的研究中。  相似文献   

2.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

3.
我国几种主要土壤胶体的NH4+吸附特征   总被引:8,自引:1,他引:8       下载免费PDF全文
谢鹏  蒋剑敏  熊毅 《土壤学报》1988,25(2):175-183
本文讨论我国几种主要土壤胶体的NH4+吸附特征。土壤胶体对NH4+的吸附符合两种表面Langmuir方程。土壤胶体对NH4+的结合能力强弱顺序是:黄棕壤>黑土、(土娄)土>红壤>砖红壤,而NH4+的解吸率大小顺序与此相反。Langmuir吸附方程参数K1与土壤胶体的粘粒矿物组成有关,并与土壤胶体对NH4+的相对偏好性(A值)呈正相关。Langmuir参数(M1+M2)与土壤胶体的CEC呈正相关,去有机质(OM.)前后△K1与△OM.呈反相关。去有机质可增加土壤胶体对NH4+的偏好性。土壤胶体的NH4+吸附和解吸特征决定于其组成和表面性质,并受有机无机复合作用的影响。永久电荷吸附位对NH4+的偏好性较强,而可变电荷吸附位则较弱。  相似文献   

4.
0.01molL-1CaCl2作为土壤不同N素形态浸提剂的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文用荷兰8种表土测试不同温度下0.01molL-1CaCl2提取液和淋滤液中N素各形态。试验结果表明温度对NO3--N提取量和淋滤量无影响,但对NH4+-N、可溶性总N和还原态N影响显著;可溶性有机态N的释放服从一级动力学方程:Nt=N0(1-e-kt),非线性最小二乘法能满意地拟合动力学实验结果。测定0.01molL-1CaCl2提取液中的可溶性有机态N对预测土壤N素矿化、合理推荐施肥及防止N素污染可能是一个很有前途的指标。  相似文献   

5.
刘志光 《土壤》1986,18(3):168-168
G.Keerthisinghe等人在菲律宾主要植稻区的三种土壤上进行田间试验,考察NH4+-N肥的施用和作物氮素的吸收对土壤交换性NH4+和非交换性NH4+水平的影响。  相似文献   

6.
3 种挺水植物吸收水体NH4+、NO3-、H2PO4- 的动力学特征比较   总被引:2,自引:1,他引:2  
本文用动力学试验研究了具有景观价值的3 种挺水植物—— 水生美人蕉(Canna generalis)、细叶莎草(Cyperus papyrus)、紫芋(Colocasia tonoimo)对H2PO4-、NH4+、NO3- 的吸收特征及差异。试验结果表明: 3 种挺水植物吸收H2PO4- 时, 美人蕉的吸收速率最快, 且在较低离子浓度条件下也可以吸收该离子, 说明其具有嗜磷特性, 能够适应广范围浓度H2PO4- 环境; 吸收NO3- 时, 细叶莎草的速率最快, 但对低浓度NO3- 环境的适应能力较差, 美人蕉吸收NO3- 的特性与细叶莎草刚好相反; 吸收NH4+ 时, 细叶莎草的吸收速率最快, 且在低浓度NH4+ 环境下仍能吸收该离子, 而美人蕉的吸收速率最慢, 但能在低浓度NH4+ 环境下吸收该离子。说明不同植物对养分的吸收特性存在较大差异, 各自的污染水体修复适用范围也不同。美人蕉可用于各种浓度H2PO4- 污染的水体修复; 而NO3- 污染严重的水体最适宜用细叶莎草作先锋植物, 修复到一定程度后再种植美人蕉来维持水质; 细叶莎草在各种浓度NH4+ 污染的水体中均适用, NH4+ 污染较轻的水体也可用美人蕉修复。  相似文献   

7.
中国陕西省施有机肥黄土NH4+固定的热力学性质   总被引:3,自引:0,他引:3  
Some thermodynamic properties of NH4+ fixation by loess soil in plowing and clay layers are discussed. The results indicate that the four ion adsorption equations commonly used can describe the properties of NH4+ fixation in these soils under constant temperature. Among the four adsorption equations, the single-surface Langmuir equation is the best. When the concentration of NH4Cl solution is 10-1 mol below, the Freundlich equation can be used. The changes of apparent standard free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) illustrate that NH4+ fixation in soil is an endothermic adsorption and spontaneous reaction, and the process can be enhanced by a higher temperature and clay content in soil. The "proper value of NH4+ fixation by soil (K1 × qm) increased with increasing clay content and temperature. The heat of NH4+ fixation in soil (Qm) confirms the conclusions made in this paper.  相似文献   

8.
蚯蚓粪的NH4+吸附等温线与DTA曲线特征   总被引:2,自引:1,他引:2  
本文研究了南宁三种饲料人工饲养的蚯蚓的蚯蚓粪(简称蚓粪)对NH4+的吸附等温线,并与武功的蚓粪作比较。蚓粪对NH4+的吸附一般大于土壤对NH4+的吸附,南宁蚓粪又大于武功蚓粪。蚓粪吸附NH4+量的多少与其中有机质含量有关,特别与其中中温放热反应的有机质(即易于分解的有机质)呈正相关。不同饲料组成对蚓粪吸NH4+等温线的参数影响不同。在Langmuir方程中与结合能常数有关的K值的次序为:纯牛粪>牛粪+烂橙果>牛粪+草菇培养基脚料而与最大吸附量有关的M值的次序为:牛粪+烂橙果>纯牛粪>牛粪+草菇培养基脚料而以K与真M的总的效应表示的b值的次序为:纯牛粪>牛粪+烂橙果>牛粪+草菇培养基脚料因此,牛粪不仅是一个良好的蚯蚓饲料,并且可使蚓粪具有良好的保NH4+力,成为一种有效的吸附剂。  相似文献   

9.
Dynamics of fixed NH4+ in NH4+-treated soils incubated with glucose at 37±2 ℃ during the course of incubation and factors affecting it were studied. Results showed that content of fixed NH4+ in soil reached a minimum on day 7 after incubation and then increased gradually regardless of the amount of glucose added and the kind of soil tested. However, the amount of fixed NH4+ released from the soil at the given time varied with both the amount of glucose added and the kind of soil examined. In cases glucose was added at a rate of 10.0g C/kg soil, the amount of fixed NH4+ retained in soil after 7 days of incubation was almost identical to that found by Neubauer test. Addition of K+ depressed the release of fixed NH4+ significantly. Based on the results obtained a method for determining the content of available fixed NH4+ in soils was proposed and the amount of N as available fixed NH4+ in two soils measured by this method on an area profile-depth basis was presented.  相似文献   

10.
淹水土壤中氮素运移与转化试验及其数值模拟   总被引:4,自引:0,他引:4  
在室内试验的基础上,建立了淹水土壤中NH4+—N和NO3-运移转化的耦合数学模型,并对表施于水层中的氮肥(碳铵:NH4HCO3)在饱和土中运移与转化过程进行了数值模拟。结果表明:该试验条件下NH4+—N的硝化作用主要发生于土壤表层1cm左右的范围内。  相似文献   

11.
N2O emissions from soils treated with NH4+-N under aerobic conditions in the laboratory were 3- to 4-fold higher than those from controls (no extra N added) or when NO3?-N was added. Although the emission of N2O-N in these field and laboratory experiments represented only 0.1–0.8% of the applied fertilizer NH4+-N and are therefore not significant from an agronomic standpoint, these studies have conclusively demonstrated that the oxidation of applied ammoniacal fertilizers (nitrification) could contribute significantly to the stratospheric N2O pool.Like N-serve, acetylene was shown to be a potent inhibitor of nitrification as it stopped the oxidation of NH4+-N to (NO3+-N + NO2?)-N and hence reduced the evolution of N2O from nitrification within 60 min after its addition.Although high amounts of NO3?-N were present, the rate of denitrification was very low from soils with moisture up to 60% saturation. The further increase in the degree of saturation resulted in several-fold increase of denitrification which eventually became the predominant mechanism of gaseous N losses under anaerobic conditions.  相似文献   

12.
Li  L. M.  Wu  Q. T. 《土壤圈》1991,1(1):83-91
Studies have been made,by ^15N-tracer technique on nitrogen loss resulting from adding amorphous manganese oxide to NH4^ -N medium under anaerobic conditions.The fact that the total nitrogen recovery was decreased and that ^15NO2,^15N2O,^15N^14NO,^15NO,^15N2 and ^15N^14N were emitted has proved that,like amorphous iron oxide,amorphous manganese oxide can also act as an electron acceptor in the oxidation of NH4^ -N under anaerobic conditions and give rise to nitrogen loss.This once again illustrates another mechanism by which the loss of ammonium nitrogen in paddy soils is brought about by amorphous iron and manganese oxides.The quantity of nitrogen loss by amorphous manganese oxide increased with an increase in the amount of amorphous manganese oxide added and lessened with time of its aging.The nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss resulting from amorphous manganese oxide was less than that from amorphous iron oxide.And the nitrogen loss by cooperation of amorphous manganese oxide and microorganisms (soil suspension) was larger than that by amorphous manganese oxide alone.In the system,nitrogen loss was associated with the specific surface ares and oxidation-reduction of amorphous manganese oxide.However,their quantitative relationship and the exact reaction processes of nitrogen loss induced by amorphous manganese oxide remain to be further studied.  相似文献   

13.
钱泽澍  闵航  莫文英 《土壤学报》1985,22(2):144-149
本试验观察了在杭州生态条件下土壤中不同NH4+-N水平对水稻根际固氮活性的影响。试验的结果表明:1.NH4+-N肥在一定时间内对水稻根际固氮活性具有明显的抑制效应,施用量越大,其抑制作用越严重。土壤速效氮浓度与水稻根际固氮活性之间呈高度(或中度)负相关,不同生育期两者的相关系数r值在-0.4288—0.9945之间。2.土壤速效氮对水稻土柱固氮活性抑制的起始浓度为20ppm。3.NH4+-N对水稻根际固氮活性的抑制时间随施用量而不同,低氮区在20天左右,中氮区和高氮区在25—30天左右。此后施氮区对水稻根际固氮活性具有促进作用。  相似文献   

14.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

15.
Nitrogen isotope discrimination during denitrification in soils of nitrate containing natural concentrations of 14N and 15N was studied by determining the amount and the 15N content of nitrate-N and (nitrate + nitrite)-N in nitrate-treated soils incubated under anaerobic conditions (He atmosphere) for various times after treatment with glucose to promote denitrification. Analyses performed showed that the nitrate-N lost on incubation of these soils could largely be accounted for as products of denitrification (nitrite, NO. N2O and N2).The studies reported show that marked discrimination between 14N and 15N occurs during denitrification of nitrate in soils and that significant N isotope effects occur both in reduction of nitrate to nitrite and in reduction of nitrite to gaseous forms of N. They also indicate that the overall N isotope effect during denitrification of nitrate in soil will depend upon the tendency of the soil to accumulate nitrite under conditions that induce denitrification.It is concluded that discrimination between 14N and 15N during denitrification in soils of nitrate containing natural concentrations of these isotopes is of sufficient magnitude to invalidate the use of N isotope-ratio analyses for assessment of the contributions of soil and fertilizer N to nitrate in surface or ground waters or to nitrous oxide in the atmosphere.  相似文献   

16.
土壤微生物体氮测定方法的研究   总被引:29,自引:4,他引:25  
用熏蒸-0.5mol/LK2SO4 直接浸取NH4+-N法 (简称薰蒸 铵态氮法 ) ,熏蒸 淹水培养法和熏蒸 通气培养法测定了有机质、全氮和C/N比差异较大的 15种土壤的铵态氮增量 (FN)。结果表明 ,它们之间有极显著的正相关 ,在反映土壤微生物体氮上有相同趋势。两种培养方法测定的FN 近乎一致 ,由此而计算的微生物体氮也几乎相同。对红油土铵态氮法测定值仅为两种培养法的 1/ 10。把铵态氮法中的FN 校正后 ,其结果与 2种培养法测定的微生物体氮同样近乎一致。用 3种方法测定的微生物体氮均与土壤有机碳存在显著正相关性。淹水培养和铵态氮法水分条件易控制 ,又无NH3的挥发损失 ,比通气培养法更加优越。对培养试验和长期肥料定位试验的土样测定结果表明 ,土壤中易矿化新鲜有机物料也会使熏蒸 淹水培养法测定的FN 显著下降 ,由此而计算的微生物体氮也显著减少 ,但熏蒸 铵态氮法测定的FN 不受新鲜有机物质的影响。与土壤微生物数目进行比较后发现 ,土壤中含易分解有机物质少或微生物体氮含量低时 ,选用熏蒸 淹水培养法测定误差小 ;当土壤中富含新鲜有机物质时 ,熏蒸 铵态氮法测定的结果更加可靠。用这两种方法在同类土壤上测定的FN 的比值相对稳定 ,微生物体氮 (BN)的平均比值为 0.98~1.01,不受施肥的影响  相似文献   

17.
The transformations of applied (100 kg N ha-1)15 N labelled NO3 and NH4 in Mississippi River deltaic plain swamp forest soil which receives agriculture run-off from adjacent sugarcane fields were determined. Using an isotopic dilution technique, the rates of NO3 production (nitrification) and reduction in the 15NO3 treated soil-water-columns were approximately 240 and 2,320 g N ha-1 d-1, whereas NH4 production (mineralization) and removal rates in the 15NH4 treated soil-water-columns were 270 and 2160 g N ha-1 d-1, respectively. It was shown that if nitrification and NH4 assimilation were the primary processes responsible for NH4 removal, average NH4 assimilation would be 145 g N ha-1 d-1. Based on labelled N2-emission, denitrification was 3 fold greater in the NO3 treatment compared to the NH4 treated soil water-columns with rates of 818 and 266 g N ha-1 d-1 respectively. Even though the rate was lower in the NH4 treatment, results show that nitrification-denitrification of NH4 is a significant process. Nitrogen losses determined by15 N2 emissions were 20.4 and 6.4% and N2O emissions were 0.10 and 0.03% of the applied NO3-N and NH4-N, respectively, over 32 days of incubation. Fertilizer loss through N2O emission was only of minor significance compared to the fertilizer loss through N2 evolution. Nitrous oxide fluxes from the control soil-water-columns averaged 9.4 g N ha-1 d-1. Addition of NO3-N to the columns increased N2O production 56% as compared to a 15% increase from the NH4-N addition. Results show that this wetland soil has a large capacity to process inorganic nitrogen entering the system as a result of agriculture run-off.  相似文献   

18.
为揭示亚热带森林土壤N2O排放对林分类型和氮添加的响应特征,选取位于福建省三明市的中亚热带米槠次生林、杉木人工林和马尾松人工林土壤为研究对象,分别设置无氮添加(N0 mg/kg)、低氮添加(N10 mg/kg)、中氮添加(N25 mg/kg)和高氮添加(N50 mg/kg)4个氮添加水平,进行微宇宙培养试验,测定土壤N2O排放。结果表明:与无氮添加处理相比,氮添加整体上降低3种林分土壤pH,增加土壤NH4+-N和NO3--N含量。无氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量分别为9.67和9.62 mg/kg,显著高于米槠次生林土壤N2O累积排放量6.81 mg/kg。低氮添加处理中杉木人工林和马尾松人工林土壤N2O累积排放量显著高于米槠次生林。但在中氮和高氮添加处理中,3种林分土壤N2O累积排放量均无显著性差异。不同氮添加处理均促进3种林分土壤N  相似文献   

19.
Denitrification represents one of the main microbial processes producing the primary and secondary greenhouse gases nitrous oxide (N2O) and nitric oxide (NO) in soils. It is well established that abiotic factors like the soil water content and the availability of nitrogen (N) are key parameters determining the activity of denitrifiers in soils. However, soils differing regarding their characteristics such as the content of Corg, the soil texture or the pH value may respond in specific manners to equivalent changes in soil moisture and N input. Thus, short-term incubation experiments were performed to test and compare the capacity of two contrasting Austrian forest soils to respond to mineral N application at increased soil water contents. Soils from the pristine Rothwald forest (rich in Corg) and the more acidic Schottenwald forest (poor in Corg) were amended with either NH 4 + -N or NO 3 ? -N and were incubated at 40% and 70% water-filled pore space for 4 days. Changes in mineral N pools, nitrite reductase activity and NO and N2O emission rates were measured, and the abundance and structural community composition of the functional group involved in nitrite reduction were analysed via quantitative real-time polymerase chain reaction and terminal restriction fragment length polymorphism analysis of the nirK gene. Rapid and distinct activity responses to increased soil moisture and altered mineral nitrogen availability were observed in two contrasting forest soils. In both soils, nitrogen oxide emission rates were stimulated by N inputs and, depending on the soil moisture status, either NO or N2O emission was prevailing. However, different N cycling processes appeared to predominate in either soil under equivalent treatment. Nitrogen oxide emissions peaked following NO 3 ? application in Schottenwald soils but were the highest after NH 4 + application in Rothwald soils. Denitrifying (nirK) communities differed significantly in Rothwald and Schottenwald soils; however, changes in the community structure were marginal during the short-term incubation. Abundances of nirK genes remained unaffected by N application in either soil. The soil water content affected nirK gene abundances only in Rothwald soil, indicating a distinct reaction of nitrite reducing communities in the two soils.  相似文献   

20.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号