首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Periodic variations in the concentration, deposition and canopy impact of different forms of N on annual N deposition through rainfall, throughfall and stemflow in 5 and 8 year old stands of Casuarina equisetifolia were studied. Throughfall and stemflow ranged from 70 to 76% and 5–6% of annual precipitation respectively. The total N deposition by rainfall was 11.1 kg ha−1 year−1, and by throughfall was 13.6 kg ha−1 year−1 and 16.5 kg ha−1 year−1 in 5-year-old and 8-year old plantations, respectively. The quantities of N deposited through stemflow in the two plantations were nearly identical, accounting for 1.6 kg ha−1 year−1. Observations of the monthly deposition of NH4,N, NO3-N, Kjeldahl-N and organic-N revealed that maximum deposition occurred in July and the minimum in September. Organic-N deposition was 17% less (5-year) than the rainwater content. Net deposition of N, as an effect of canopy, was 7–8.7 kg ha−1 year−1, which was added directly to the available nutrient pool of soil.  相似文献   

2.
Above-ground biomass distribution, leaf area, above-ground net primary productivity and foliage characteristics were determined for 90- and 350-year-oldPinus edulis-Juniperus monosperma ecosystems on the Colorado Plateau of northern Arizona. These ecosystems have low biomass, leaf area and primary productivity compared with forests in wetter environments. Biomass of the 350-year-old pinyon-juniper stand examined in this study was 54.1 mg ha−1; that of the 90-year-old stand was 23.7 mg ha−1. Above-ground net primary production averaged 2.12 mg ha−1 year−1 for the young and 2.88 mg ha−1 year−1 for the mature stand; tree production was about 80% of these values for both stands. Projected ecosystem leaf area (LAI) of the stands was 1.72 m2 m−2 and 1.85 m2 m−2, respectively. Production efficiency (dry matter production per unit leaf area) was 0.129 kg m−2 year−1 for the young, and 0.160 kg m−2 year−1 for the mature stand. Production efficiency of the study sites was below the 0.188 kg m−2 year−1 reported for xeric, pure juniper stands in the northern Great Basin. Biomass of pinyon-juniper ecosystems of northern Arizona is generally below the 60–121 mg ha−1 reported for pinyon-juniper stands of the western Great Basin in Nevada. A climatic gradient with summer precipitation decreasing between southeast Arizona and northwest Nevada occurs in the pinyon-juniper region. Great Basin pinyon-juniper ecosystems lie at the dry-summer end of this gradient while pinyon-juniper ecosystems of the Colorado Plateau lie at about the middle of this gradient. In spite of wetter summers, pinyon-juniper ecosystems of northern Arizona are less productive than those of the Great Basin.  相似文献   

3.
Annual litter fall of Acacia mangium in the period of September 1995 to August 1996 was estimated at 5939 kg ha−1 year−1 and from September 1995 to August 1996 at 6048 kg ha−1 year−1, with the highest seasonal production in the dry season. The litter fall was dominated mainly by leaves, 4446 kg (75%) and 4137 kg (68%), respectively. Seed production in the litter fall was estimated at 42.4 kg ha−1 year−1 (4.1 million seeds ha−1) and 39 kg ha−1 year−1 (3.8 million seeds ha−1), with the highest in the dry season from June to October. The accumulated litter fall in the forest floor together with shrubs and grass provide a high fuel load, increasing fire risk.  相似文献   

4.
A model to project forest growth in the Terra Firme forests of the eastern Amazon is described. It is based on 12–17 years measurements from experimental plots at Jarí and Tapajós. Forest stands are represented by cohorts of species group, diameter, and defect. There are 54 species groups, with a robust diameter increment function fitted to each, tables of mortality by crown and defect status, and recruit lists by disturbance level and locality. Stand level functions partition trees by crown status, and modify growth for stand density. Recruitment is a function of basal-area losses. Evaluation compares model performance with two experiments involving heavy felling in Tapajos State Forest. At one site, total bole volume growth of all species over 45 cm DBH was 2.56 m3 ha−1 year−1 over 17 years, whereas the model projected 3.13 m3 ha−1 year−1. At the other site, actual growth over 12 years was 0.39 m3 ha−1 year−1, with the model giving an identical result. Both felled and control plots are compared in the study and accurately simulated. Some weaknesses in the model are discussed.  相似文献   

5.
A process-based model is described and applied to a range of Pinus radiata D. Don stands, aged 9–12 years, growing on stabilised sand dunes in a stocking × fertiliser experiment in Woodhill State Forest, New Zealand. The model requires inputs of daily weather data (maximum and minimum air temperatures and rainfall), physical characteristics of the site (longitude, latitude, rootzone depth and relationship between root-zone soil matric potential and volumetric water-content) and crop (stocking, crown dimensions and leaf-area index) and crop physiological parameters (e.g., maximum stomatal conductance). The model was used to simulate components of the forest water-balance and annual net photosynthesis for a defined crop canopy architecture. Simulated daily root-zone water storage in both open and closed canopy stands generally agreed with monthly measurements made over a complete year. Simulated net annual photosynthesis ranged from 23 to 33 t C ha−1 year−1 and comparison with measured stem-volume increments of 12–38 m3 ha−1 year−1 over the same time periods resulted in a strong positive correlation. Ratios of stem-volume increment to net photosynthesis suggested that fertilised and unfertilised stands had a 26 and 14%, respetively, allocation of C to stem growth. Simulations using weather data for a dry year with 941 mm year−1 rainfall indicated that annual net photosynthesis and transpiration of fully stocked stands were reduced by 41 and 45%, respectively, compared to those in a wet year with 153 mm year−1 rainfall. Operational applications of the model to forest management in quantifying environmental requirements for stand growth and examining silvicultural alternatives are discussed.  相似文献   

6.
Effects of whole-tree clearcutting are being studied in three major forest types in the northeastern United States: a spruce-fir forest in central Maine, a northern hardwood forest in New Hampshire, and a central hardwood forest in Connecticut. At each site we sampled total and extractable nutrient capitals, inputs and outputs of nutrient ions in precipitation and streamflow, nutrient removals in harvested products, and nutrient accumulation in regrowth. Depending upon location, combined losses of nutrients in harvested products and increased leaching to streams were in the ranges of 374–558 kg ha−1 for Ca, 135–253 kg ha−1 for K, 50–65 kg ha−1 for Mg, 248–379 kg ha−1 for N, and 19–54 kg ha−1 for P. Opportunities for replacing these losses over the next rotation are best for N. Data on inputs in precipitation versus outputs in streamflow indicate that, once effects of harvest subside, most N in precipitation will stay within the forest. By contrast, Ca shows a net output of 8–15 kg ha−1 year−1 from uncut watersheds, and the added leaching losses due to harvest may have a serious impact on Ca capital. This is especially the case for the Connecticut site, where total site capital for Ca is only about 4000 kg ha−1.  相似文献   

7.
Clonal plantations of Eucalyptus have been introduced since 1978 on savanna soils of the coastal plains of Congo. Atmospheric deposition, canopy exchange and transfer through the soil were estimated on the whole rooting depth (6 m) over 3 years, in an experimental design installed in a native savanna and an adjacent 6-year-old Eucalyptus plantation. Complementary measurements after planting the experimental savanna made it possible to establish input–output budgets of nutrients for the whole Eucalyptus rotation and to compare them with the native savanna ecosystem.

In this highly-weathered soil, atmospheric deposits and symbiotic N fixation by a legume species balanced the nutrient budgets in savanna, despite large losses during annual burnings. After afforestation, weeding in the Eucalyptus stands eliminated the leguminous species responsible for a N input by symbiotic fixation of about 20 kg ha−1 year−1. Whereas the budgets of P, K, Ca and Mg were roughly balanced, the current silviculture led to a deficit of about 140 kg N ha−1 in the soil, throughout a 7-year rotation. This deficit was large relative to the pool of total N in the upper soil layer (0–50 cm), which was about 2 t ha−1. Therefore, the sustainability of Congolese plantations will require an increase in N fertilizer inputs over successive rotations to balance the N budget. These results were consistent with field trials of fertilization. Practical consequences of these budgets were identified, in order to: (i) direct field trials of fertilization, (ii) select appropriate methods of soil preparation, weed control and harvest, (iii) highlight the importance of fire prevention in this area, and (iv) support the implementation of field trials aiming at introducing a biological nitrogen fixing understorey in Eucalyptus stands.  相似文献   


8.
The present study was carried out to elucidate the drought growth responses of Quercus ilex L., Phillyrea latifolia L., Arbutus unedo L., and other accompanying woody species of the Mediterranean holm oak forest. We submitted holm oak forest stands in Prades mountains (NE Spain) to a 2-year experimental drought. We reduced soil water availability about 15% by plastic strips and funnels that partially excluded rain throughfall and by ditch interception of water runoff. Mean stem diameter increment showed a great variation depending on the species. A. unedo had larger growth rates than Q. ilex and P. latifolia, but it was also the species that experimented the highest growth reduction in the drought plots (77%), suggesting a higher drought sensitivity than Q. ilex (55%) and P. latifolia (no drought effect). The growth reduction was specially marked in the larger trees. Aboveground stand biomass increment, estimated from stem diameter by allometric relationships, was 1.9 Mg ha−1 per year in the control plots. The 15% reduction in the upper soil moisture produced 42% reduction in this biomass increment. In the drier conditions predicted in this Mediterranean area in the frame of climate change, an important reduction of growth rates can be hence expected, accompanied by a gain of dominance of drought-tolerant species such as P. latifolia in detriment of more mesic species such as Q. ilex.  相似文献   

9.
Annual net primary production (NPP) and N uptake were estimated for lysimeter-grown basket willows (Salix viminalis L.) during 3 years after planting. The willows were grown in a stand structure and continuously supplied with water and liquid fertilizer through drip tubes. The lysimeters contained either clay from the site or washed quartz sand. Shoot growth and leaf litter were measured and fine-root dynamics observed in minirhizotrons. Destructive samples were taken annually in late autumn and entire root systems were washed out. Dry mass and N content of all plant parts were determined. Fine-root production was estimated by two methods, based on destructive samplings and observations in minirhizotrons.

The proportion of biomass allocated below ground increased considerably when estimates based on accumulated NPP were compared with those based on standing dry mass. In the first year, 49 and 58% of annual NPP in willows grown in clay and sand, respectively, was belowground. In subsequent years the proportions were 36–38% and 33–40%. Most belowground production was fine roots. Relatively more N was used belowground in the first year than subsequently, but no substrate-induced differences were observed in the allocation pattern. Both annual NPP and N uptake was always higher in plants in clay than in those in sand: in the final 2 years, 21–22 tonnes DM ha−1 year−1 and 190 kg N ha−1 year−1 in clay, and 9–10 tonnes DM ha−1 year−1 and 100 kg N ha−1 year−1 in sand.  相似文献   


10.
The population dynamics of the ground vegetation and its energetics such as biomass accumulation and net primary productivity, and the nutrient cycling patterns in the humid tropical forest of the Western Ghats in India are largely determined by gap age and by whether gaps are formed naturally or through selection felling. Responses of plant categories such as herbs, shrubs, tree seedlings and saplings also vary depending upon gap type and age. An exotic species such as Chromolaena odorata occurred only in selection-felled gaps ((9 ± 3)−(49 ± 4) individuals (100 m)−2). Nilgirianthus ciliatus, a dominant shrub, plays a key role in the gaps in determining population dynamics of others. The net primary productivity of the ground vegetation, which is about 31.17 ± 4.26 kg (100 m)−2 year−1 in an undisturbed site, increased a year after gap formation to 102.82 ± 6.46 kg (100 m)−2 year−1 in natural gaps and to 71.82 ± 2.36 kg (100 m)−2 year−1 in selection-felled gaps. Five years after gap formation, net primary productivity of the ground vegetation declined considerably, this being related to decline in fast-growing shrub and secondary tree species in the vegetation and gap closure. A similar trend was also recorded for the rates of nutrient uptake and nutrient accumulation in the vegetation.

In natural gaps the soil nutrient level increased gradually with gap age. This could be attributed to slow release of nutrients from the fallen trunks and nutrient storage in the rapidly recovering vegetation. In contrast, in selection-felled gaps, the quantities of soil nutrients such as nitrogen, phosphorus and magnesium were higher in 1-year-old gaps than in undisturbed sites, owing to the release of these nutrients from leaf litter and wood debris which were deposited in larger quantities within the gap itself, and owing to sparse ground vegetation resulting from the greater disturbance of the soil, in the first 1 or 2 years. The fractional annual turnover rates of elements of the ground vegetation and the soil were higher in 1-year-old gaps and declined with gap age. The significance of these results for forest management is discussed.  相似文献   


11.
Data from the Swedish Forest Inventory was used to calculate mass balances for base cations Ca, Mg and K for Swedish forests. Using lysimeter and forest survey soil analyses to estimate present base cation leaching from the root zone reveals that weathering plus base cation deposition is not sufficient to support both, the present base cation leaching rate and the present rate of uptake caused by stem growth. Calculations suggest that 96% of the productive forested area may have higher rates of removal than supply for one or more base cation. Under a best-case scenario, assuming less pollution, the present growth rate and 100% efficiency in uptake of available nutrients, the area with more removal than supply would still be at least 30% of the total area. Forest soils are being depleted at a rate where the exchangeable reservoirs have high risk of being severely depleted in the next few decades in central and southern Sweden. During 1983–1985 the depletion rate is calculated to be, on the average, 0.33 keq ha−1 year−1. The weathering rate and present base cation deposition can sustain growth at a level where (80–85)×106m3 stemwood year−1 can be harvested. Any harvested growth beyond this volume must be sustained by artificial means.

For whole-tree harvesting without base cation return, the calculations indicate that it would significantly increase the base saturation depletion rate to an average of 0.62 keq ha−1 year−1, and risk depletion of the soil in less than one-to-two rotation periods almost anywhere in Sweden.

The calculations stress the importance that sustainable forest management must include the management of nutrient fluxes and reservoirs.  相似文献   


12.
Management scenarios with rotation lengths of 20 and 30 years were developed for different site qualities (high, medium and low) under two different management options (high individual tree growth versus high stand growth) for teak (Tectona grandis L.f.) in Costa Rica. The scenarios are based on data collected in different regions in Costa Rica, representing different site conditions, offering a variety of possible management options for high-quality teak yield.

Three competition indices were used for modeling the competition and for the definition of intensities and the plantation age at thinning. The maximum site occupation (MSO) and the Reineke density index (RDI) provide conservative stand density management limits, resulting in the need to execute several thinning frequently. The competition factor (CF) matches the field observations and seems to be more appropriate for the growth characteristics of the species.

Final stand densities varied between 120 and 447 trees ha−1, with mean diameter at breast height (dbh) of 24.9–47.8 cm, and mean total heights between 23.0 and 32.4 m, depending on rotation length and site quality. The mean annual increment of total volume (MAIVol) at the end of the rotation varied from 11.3 to 24.9 m3 ha−1 year−1, accumulating a total volume over rotation of 268–524 m3 ha−1.

The most suitable scenario for teak plantations for high-quality sites is the 30-year-rotation scenario with five thinnings of intensities between 20 and 50% (of the standing trees) at the ages of 4, 8, 12, 18 and 24 years. After the sectioning of the merchantable stem in 4-m length logs, the merchantable volume varied between 145 and 386 m3 ha−1, with an estimated heartwood volume of 45–195 m3 ha−1, both depending on rotation length and site quality.  相似文献   


13.
Reforestation of degraded tropical sites is often hampered by soils of high acidity, high aluminum saturation, and low fertility. To evaluate the possibility of cultivating Acacia species on such soils, a study was conducted at Waiawa, HI, to test growth under conditions of (1) high acidity (primarily aluminum) and nutrient stress, and (2) no acidity stress and high nutrient availability. Twelve Acacia species, including the important native Hawaiian species Acacia koa, were established on a Ustic Kanhaplohumult soil. The experimental design was a split plot with two fertility treatments as the main plots and the 12 Acacia species as subplots. The treatments were: low fertility (F0; 143 kg ha−1 14-14-14 plus micronutrients) and high fertility (F1; 8 Mg ha−1 lime, 143 kg ha−1 14-14-14 plus micronutrients, 200 kg P ha−1, and 77 kg K ha−1). Acacia angustissima, Acacia aulacocarpa, Acacia auriculiformis, Acacia cincinnata, Acacia crassicarpa, Acacia implexa, Acacia koa, and Acacia mangium grew significantly faster under the high fertility treatment. Three species, A. cincinnata, A. crassicarpa, and A. mangium, are recommended for planting on infertile acid soils. The volume of A. koa was increased ten-fold by the high fertility treatment. Additional study on koa's nutritional requirements is suggested in order to identify the nutrients contributing to this increased growth.  相似文献   

14.
In a sacred grove climax forest (protected by the local Khasi tribe for religious reasons) at Cherrapunji in north-eastern India (mean annual rainfall, 10 372 mm), litter dynamics and related fine root dynamics were studied. Litterfall and its decomposition were very pronounced during the monsoon season, unlike in other rain forests in the region. High levels of nitrogen (2.13–3.58%) phosphorus (0.62–0.91%) and potassium (1.45–1.98%) in the leaf litter of four dominant tree species—Englehardtia spicata Bl., Echinocarpus dasycarpus Benth, Sysygium cuminii (L.) Skeels and Drimycarpus racemosus Hk.f.—suggest that these species help in conserving nutrient elements, thus ensuring their rapid recycling. Different species have different nutrient release patterns which are related to litter quality and seasonal environmental factors.

The highly developed fine root system (14 000 kg ha−1) of which about 48% is located in the 0–10 cm soil depth, is important for nutrient storage and rapid recycling of nutrients. With a productivity of 3200 kg ha−1 per year, the fine root component of the climax sacred grove ecosystem has a key role to play in tight nutrient cycling. It is concluded that these results are important in understanding the fragility of rainforest ecosystems and their management.  相似文献   


15.
Two thinning and fertilization studies, the first in 1969 and the second in 1971, were established to evaluate the question of nutrient limitation to tree growth and the consequences of stand manipulation of soil moisture supply. Fertilizer was applied yearly for the first 5 years in both studies; growth response has been measured through 1987. Results indicate that thinning is necessary to obtain a growth response to fertilizer applied at the rate of 111 kg nitrogen ha−1. The response to fertilization after fertilization ended lasted for 4 years in plots thinned to 800 stems ha−1, while a significant response continued for only 2 years in plots thinned to 1600 stems ha−1.

A soil water-balance model was calibrated for the control and treatment plots of these two studies. Soil water-deficits were estimated and correlated with yearly average basal-area growth per tree. Results indicated that there is a correlation between seasonal soil-moisture deficit and growth during the years when soil moisture was measured for the unthinned control plots (r2 = −0.787, P = 0.002) but not for the thinned and fertilized plots (r2 = −0.652, P = 0.057).  相似文献   


16.
In the Murray-Darling basin, irrigation of tree crops is being evaluated as an alternative method for the disposal of municipal effluent. A study was carried out at Wodonga in which seven tree species were irrigated with effluent for a period of 4 years. Irrigation was calculated weekly on the basis of pan evaporation and rainfall during the preceding week. Annual irrigation varied between 1190 mm and 1750 mm with a total input over the 4-year-period of 4940 mm.

Height and diameter growth varied significantly between species. At age 4, mean dominant height of Eucalyptus grandis, E. saligna and Populus deltoides × P. nigra ranged from 14.3 to 15.0 m compared with 6.6 to 9.8 m for Casuarina cunninghamiana, E. camaldulensis, P. deltoides and Pinus radiata. Wood production of the faster-growing species (E. grandis and E. saligna) was approximately 130 m3 ha−1, or around 32 m3 ha−1 year−1 over a 4-year period. This was nearly three-fold the production of the other native species and twice that of Pi. radiata. Volume growth of P. deltoides × P. nigra (85 m3 ha−1) was significantly greater than that of P. deltoides (42 m3 ha−1).

Accumulation of nutrients in the above-ground biomass varied significantly between species and ranged from 24 to 41 g m−2 for N, 2.6 to 5.9 g m−2 for P, 0.5 to 9.2 g m−2 for Na, 12 to 27 g m−2 for K, 7 to 52 g m−2 for Ca and 3.1 to 7.9 g m−2 for Mg. Nutrient accumulation was generally greater in species with a comparatively large crown biomass relative to stem size such as C. cunninghamiana and E. camadulensis. Average nutrient accumulation by trees as a percentage of input from effluent was estimated at 19% for N, 9% for P, 1% for Na, 14% for K, 52% for Ca and 32% for Mg.

Results of this study indicate the importance of selecting species on the basis of not only growth but also nutrient accumulation to optimise renovation of wastewater by tree plantations.  相似文献   


17.
The accumulation of above-ground biomass and the seasonal patterns of leaf-area development, foliar nutrient concentrations and tree and soil water-status have been measured for fertilised, irrigated, and control stands of Pinus radiata D. Don growing on a low-productivity site, average annual precipitation of 790 mm, near Canberra in southeastern Australia. In the second growing-season after treatments commenced, projected leaf-area index reached peak values of 7 on the irrigated/fertilised stands compared with approximately 5 on the other stands. Average canopy nitrogen concentration (dry-weight basis) varied across the treatments from 9 to 17 mg g−1. Measurements of soil and tree water-status over a 2-year period indicated that stands which were not irrigated experienced summer droughts of up to 4 months duration.

Annual volume production measured over the 2-year period ranged from 17 to 45 m3 ha−1. The extent to which this variation could be attributed to differences in leaf area, rats of photosynthesis, duration of the period of positive net photosynthesis, and hence growth, was analysed in terms of a process-based model of stand growth dependent on climate and soil water-balance.

Annual canopy net photosynthesis simulated by the model ranged from 18 t carbon ha−1 for the control stand to 38 t ha−1 for the irrigated/fertilised stands. Simulations indicated that 67% of this difference could be attributed to the role of irrigation in extending the period of active growth. The additional leaf area carried by the irrigated/fertilised stands contributed a further 23%, while differences in rates of photosynthesis, related to nitrogen nutrition, explained the remaining 10%.  相似文献   


18.
Three stand types on drained wetlands, all 31 years old, were studied. The stands were: (1) Scots pine, unfertilized; (2) Scots pine, fertilized; and (3) Norway spruce, fertilized. Amounts of nutrients (N, K, Ca, Mg, P, S, B, Fe, Mn, Zn, Cu) in above-ground biomass for all three stand types could be simulated precisely by a curvilinear regression model, with stand volume on bark as regressor. Net H+ production of the fertilized pine was estimated to be 661 mol H+ ha−1 year−1 from establishment to 31 years of age. The corresponding value for spruce was 1232 mol H+ ha−1 year−1. Atmospheric inputs to the pine and spruce sites were 695 and 516 mol H+ ha−1 year−1, respectively. Atmospheric input of N was 2.3 and 1.3 times the accumulation in the biomass of unfertilized and fertilized pine, whereas the value for spruce was 0.7. The corresponding ratios for S were 43, 19, and 11.  相似文献   

19.
Deposition of N and S has increased since the 1950s in most European countries and N accumulates in ecosystems that are not N saturated. This study shows long-term effects of a (modelled) N deposition of 7–17 kg N ha−1 per year on biological and chemical processes in soil, vegetation composition, and functional types of field-layer plant species in deciduous forests. Soil pH largely determined the response of the soil processes, emphasising the importance to compare soils of similar acidity regarding the effects of N deposition. The most pronounced effects were demonstrated for the most acid study plots. When we compared regions with a deposition of 7 and 17 kg N ha−1 per year we found a 40–80% higher soil N mineralisation rate, 2–90% higher nitrification rate and 10–25% lower C:N ratio in the region with the highest deposition. Similar but smaller differences were indicated when regions with a deposition of 7 and 10 kg N ha−1 per year were compared. Number of species was lower in the regions with the highest deposition. Literature data for plants on N concentration, nitrate reductase activity (NRA), growth rates, morphology and height were calculated on a site basis. They varied to different extent between the regions. The N concentration was 7–24% higher in the regions with the highest N deposition. We argue that the effect-related critical load based on our results should be set to a N deposition of 7–10 kg N ha−1 per year. Critical loads for a subdivision of deciduous forests would give lower critical loads for the most acid soils compared to less acid soil.  相似文献   

20.
Impact of decreasing throughfall depositions on soil solution chemistry at three depths was examined in a Corsican pine (Pinus nigra Arn. ssp. laricio Poiret) stand in Ravels and a Scots pine (Pinus sylvestris L.) stand in Brasschaat within a time-span of 6 years (1992–1997). At Ravels depositions of sulphate, ammonium, nitrate, calcium, magnesium and sodium decreased by 463, 468, 169, 121, 63 and 169 molc ha−1 per annum. At Brasschaat deposition reduction rates of sulphate, nitrate, calcium and magnesium were 198, 127, 134 and 46 molc ha−1 per annum. In both stands the substantial reductions in inorganic nitrogen deposition were followed by a decline of nitrate fluxes leaving the forest floor and with the seepage water. The decrease of sulphate deposition since 1992 was only manifested by a decline in sulphate concentrations and fluxes during the first half of the measuring period. The increase at the end of the period could be ascribed to the fact that sulphate adsorption which was important between 1993 and 1995 finally ceased. A significant drop of calcium concentrations was discernible at both plots. Magnesium and potassium levels did only fall significantly at Brasschaat. The concentrations of base cations were largely driven by the concentrations of their counter anions, but were influenced by the base cation throughfall fluxes as well. Although a substantial reduction of throughfall acidity occurred, no improvement of the soil water acidity (acid neutralising capacity (ANC)) was noticed. ANC and molar Ca/Al followed decreasing trends at all depths in both plots. For ANC the decline was significant for the topsoil in Ravels. The decrease of molar cation Ca/Al ratio was significant for two out of three depths at both sites. The decrease was due to the drop in calcium concentrations and the raise of Altot in some horizons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号