首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms by which Phytophthora cinnamomi zoospores infect inundated, above‐ground woody stem tissue are described. Using 4–6‐ and 18‐month‐old jarrah seedlings, the infection courts were identified and the invasion of the stems at sites of zoospore cyst binding were described. Stems were inoculated with a suspension of motile zoospores on the green stem/young periderm region. Light microscopy was used to examine penetration at sites of taxis, and fluorescent microscopy was used to examine penetration sites of seedlings with intact periderm. Two main infection courts were identified on stems: the emerging axillary shoot and the region of stem immediately surrounding an axillary shoot, where the periderm was thin or discontinuous. Invasion also occurred at sites where the developing shoot had not yet emerged but was at the stem surface. At these sites the pathogen also directly invaded through the thin‐walled phellem of the periderm surrounding the shoot. Zoospores of P. cinnamomi were not attracted to stomata on mature leaves or green stems. Penetration of the epidermal cell layer of the axillary bud leaf primordia was inter‐ and intra‐cellular; growth of hyphae in the periderm surrounding the shoot was intercellular; while in collenchyma it was inter‐ and intra‐cellular, being intercellular between polyphenolic‐rich cells. Exposed stem collenchyma was also directly invaded immediately adjacent to the young axillary shoot. Zoospores demonstrated taxis to sites of discontinuous periderm, similar to wounded areas where the outer protective layers of the plant are breached. This study presents the first evidence that P. cinnamomi is capable of intercellular penetration of suberized periderm.  相似文献   

2.
Quercus ilex is one of the European forest species most susceptible to root rot caused by the oomycete Phytophthora cinnamomi. This disease contributes to holm oak decline, a particularly serious problem in the ‘dehesas’ ecosystem of the southwestern Iberian Peninsula. This work describes the host–pathogen interaction of Q. ilex and P. cinnamomi, using new infection indices at the tissue level. Fine roots of 6‐month‐old saplings inoculated with P. cinnamomi were examined by light microscopy and a random pool of images was analysed in order to calculate different indices based on the measured area of pathogen structures. In the early stages of invasion, P. cinnamomi colonizes the apoplast and penetrates cortical cells with somatic structures. On reaching the parenchymatous tissues of the central cylinder, the pathogen develops different reproductive and survival structures inside the cells and then expands through the vascular system of the root. Some host responses were identified, such as cell wall thickening, accumulation of phenolic compounds in the middle lamella of sclerenchyma tissues, and mucilage secretion blocking vascular cells. New insights into the behaviour of P. cinnamomi inside fine roots are described. Host responses fail due to rapid expansion of the pathogen and a change in its behaviour from biotrophic to necrotrophic.  相似文献   

3.
In recent years, Pinus plantation forestry has been significantly hampered by outbreaks of pitch canker caused by the fungus Fusarium circinatum. This study investigated the role of Pinus host, geographic origin and reproductive mode in structuring the F. circinatum populations in plantations. For this purpose, 159 isolates originating from diseased plantation trees in the Western and Eastern Cape Provinces of South Africa were genotyped using 10 microsatellite markers. Analyses of these data revealed 30 multilocus haplotypes and that the populations were distinct based on geographic origin as well as host. However, shared haplotypes were observed between populations, showing that these populations are connected, possibly through the movement of haplotypes. A second aim was to determine whether the genetic variation found in these populations of the fungus could be attributed to outbreaks of the seedling disease caused by this pathogen in Pinus nurseries. To achieve this goal, an additional set of 43 isolates originating from pine seedling nurseries was genotyped and analysed. The results showed that the populations of F. circinatum in plantations most probably originated from the nursery outbreaks that occurred prior to the plantation outbreak. Inferences regarding reproductive mode further showed that sexual reproduction has little impact on the genetic makeup of the F. circinatum populations and that they primarily reproduce asexually. Overall, the results of this study showed that the F. circinatum diversity in South Africa has arisen due to multiple introductions of the pathogen and is not due to sexual reproduction.  相似文献   

4.
Signs and symptoms of a disease similar to those of armillaria root rot have recently been observed on various native woody plants on the foothills of Table Mountain in South Africa, one of the most botanically diverse natural environments globally. This is of concern because the root rot fungus Armillaria mellea has previously been shown to be an alien pathogen of European origin in planted gardens in the City of Cape Town. An aim of this study was to identify the cause of the root rot disease on infected plants. Based on DNA‐sequence phylogeny, it was shown that isolates collected from at least 16 native tree and woody shrub species represented the non‐native A. mellea. Microsatellite markers were then used to determine the genetic diversity and population structure of the A. mellea isolates from Table Mountain and two planted gardens where the pathogen has previously been found. Population genetic analyses revealed low levels of gene diversity and no population differentiation amongst the three populations. The results provide the first firm evidence that A. mellea has escaped the planted environment and invaded a sensitive and ecologically important natural woody environment in South Africa. This is only the second definitive case of a non‐native tree pathogen invading a natural ecosystem in the country.  相似文献   

5.
Brassica crops are of global importance, with oilseed rape (Brassica napus) accounting for 13% of edible oil production. All Brassica species are susceptible to sclerotinia stem rot caused by Sclerotinia sclerotiorum, a generalist fungal pathogen causing disease in over 400 plant species. Generally, sources of plant resistance result in partial control of the pathogen although some studies have identified wild Brassica species that are highly resistant. The related pathogen Ssubarctica has also been reported on Brassica but its aggressiveness in relation to S. sclerotiorum is unknown. In this study, detached leaf and petiole assays were used to identify new sources of resistance to S. sclerotiorum within a wild Brassica ‘C genome’ diversity set. High‐level resistance was observed in B. incana and B. cretica in petiole assays, whilst wild B. oleracea and B. incana lines were the most resistant in leaf assays. A B. bourgeai line showed both partial petiole and leaf resistance. Although there was no correlation between the two assays, resistance in the detached petiole assay was correlated with stem resistance in mature plants. When tested on commercial cultivars of B. napus, B. oleracea and B. rapa, selected isolates of S. subarctica exhibited aggressiveness comparable to S. sclerotiorum indicating it can be a significant pathogen of Brassica. This is the first study to identify B. cretica as a source of resistance to S. sclerotiorum and to report resistance in other wild Brassica species to a UK isolate, hence providing resources for breeding of resistant cultivars suitable for Europe.  相似文献   

6.
Avocado root rot is the most important disease of this fruit crop worldwide. This pathology may be caused by several biotic and abiotic agents, with the oomycete Phytophthora cinnamomi being the pathogen more frequently associated with poor phytosanitary conditions. There are disease control methods available that can reduce disease severity and allow plants to recover; however, they are not consistently and promptly applied. In addition, only chemical products are used by farmers as the preferred management method. This research aimed to evaluate different root rot management strategies in a commercial orchard. Data suggest that individual control methods are not as effective as when they are applied in combination, as in the T8 treatment (metalaxyl + mancozeb applied in drench; injection of potassium phosphite to each plant stem; potassium silicate applied in drench; addition of a layer of organic mulch and incorporation of 10 kg of composted substrate, both applied to the ground around the base of each tree). Using this strategy, the area under the disease progress curve for the avocado root rot was reduced by up to 68.6%, and the extra‐quality avocado fruit class increased by as much as 44% compared to the diseased control plants (T0) (P < 0.01). With the combined treatment T8, farm income showed a 9.5‐fold increase, probably due to an increase in the percentage of viable roots by up to 9.4‐fold, which would have improved nutrient and water uptake.  相似文献   

7.
Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainable disease management strategies. A simple PCR‐based species identification method was developed using the species‐specific sequences in the ITS regions of the rRNA gene. A phylogenetic tree generated for 119 Phytophthora isolates, based on the 60S ribosomal protein L10 gene and rDNA sequence, verified the PCR‐based identification assay and showed high interspecific variation among the species causing black pod. Phytophthora megakarya isolates were uniformly virulent in an assay using susceptible cacao pod husks inoculated with zoospores, while the P. palmivora isolates showed greater divergence in virulence. The virulence of P. megakarya was associated with earlier production of sporangia and an accelerated induction of necrosis. While zoospore germ tubes of both species penetrated pods through stomata, only P. megakarya produced significant numbers of appressoria. A hypersensitive‐like response was observed when attached SCA‐6 pods were inoculated with P. palmivora. SCA‐6 pods became vulnerable to P. palmivora when wounded prior to zoospore inoculation. Phytophthora megakarya was more aggressive than P. palmivora on attached SCA‐6 pods, causing expanding necrotic lesions with or without wounding. Phytophthora megakarya is predominant in the Volta region of Ghana and it remains to be seen whether it can displace P. palmivora from cacao plantations of Ghana as it has in Nigeria and Cameroon.  相似文献   

8.
Dieback of European ash was first observed in Europe in the early 1990s. The disease is caused by the invasive ascomycete Hymenoscyphus fraxineus, proposed to originate from Far East Asia, where it has been considered a harmless saprotroph. This study investigates the occurrence of H. fraxineus in tissues of local ash species in the Russian Far East, and assesses its population‐specific genetic variation by ITS sequencing. Shoot dieback symptoms, characteristic of H. fraxineus infection on European ash, were common, but not abundant, on Fraxinus mandshurica and Fraxinus rhynchophylla trees in Far East Russia. High levels of pathogen DNA were associated with necrotic leaf tissues of these ash species, indicating that the local H. fraxineus population is pathogenic to their leaves. However, the low levels of H. fraxineus DNA detected in shoots with symptoms, the failure to isolate this fungus from such tissues, and the presence of other fungi with pathogenic potential in shoots with symptoms indicate that local H. fraxineus strains may not be responsible (or their role is negligible) for the observed ash shoot dieback symptoms in the region. Conspicuous differences in ITS rDNA sequences detected between H. fraxineus isolates from Russian Far East and European populations suggest that the current ash dieback epidemic in Europe might not directly originate from the Russian Far East. Revision of the herbarium material shows that the earliest specimen of H. fraxineus was collected in 1962 from the Russian Far East and the oldest H. fraxineus specimen of China was collected in 2004.  相似文献   

9.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

10.
Fusarium circinatum causes pitch canker of Pinus species in many parts of the world. The fungus was first recorded in South Africa in 1990 as a pathogen of P. patula seedlings and emerged later as a pathogen of established plantation trees, especially P. radiata in the Western Cape Province (WCP). In this study the population biology of F. circinatum in the WCP was explored. The aim was to determine the possible origin and reproductive mode of the pathogen, with the ultimate intention of informing disease management strategies in the region. Vegetative compatibility assays, sexual mating studies and amplified fragment length polymorphism analyses were used. For comparative purposes, an isolate collection obtained from diseased P. radiata seedlings in a commercial nursery in the region, as well as a set of isolates from commercial seedling nurseries in the central and northern parts of South Africa, were included. The results showed that the WCP population of F. circinatum employs a predominantly asexual mode of reproduction and that it is highly differentiated from populations of the fungus elsewhere in South Africa. However, limited genetic structure was found within the respective WCP isolate collections. Overall these findings suggest that pitch canker in the WCP originates from one or more separate introductions of the pathogen and that its movement in the region is not restricted. More effective strategies are thus required to limit and manage the effects of F. circinatum in plantations in this region of South Africa.  相似文献   

11.
Phytophthora cinnamomi isolates from South Africa and Australia were compared to assess genetic differentiation between the two populations. These two populations were analysed for levels of phenotypic diversity using random amplified polymorphic DNAs (RAPDs) and gene and genotypic diversity using restriction fragment length polymorphisms (RFLPs). Sixteen RAPD markers from four decanucleotide Operon primers and 34 RFLP alleles from 15 putative loci were used. A few isolates from Papua New Guinea known to posses alleles different from Australian isolates were also included for comparative purposes. South African and Australian P. cinnamomi populations were almost identical with an extremely low level of genetic distance between them (Dm=0.003). Common features for the two populations include shared alleles, low levels of phenotypic/genotypic diversity, high clonality, and low observed and expected levels of heterozygosity. Furthermore, relatively high levels of genetic differentiation between mating type populations (Dm South Africa=0.020 and Dm Australia=0.025 respectively), negative fixation indices, and significant deviations from Hardy–Weinberg equilibrium, all provided evidence for the lack of frequent sexual reproduction in both populations. The data strongly suggest that both the South African and Australian P. cinnamomi populations are introduced.  相似文献   

12.
Moniliophthora perniciosa is the causal agent of witches’ broom in Theobroma cacao (cacao). Three biotypes of M. perniciosa are recognized, differing in host specificity, with two causing symptoms on cacao or Solanaceae species (C‐ and S‐biotypes), and the third found growing endophytically on lianas (L‐biotype). The objectives of this study were to clarify the genetic relationship between the three biotypes, and to identify those regions in the Brazilian Amazon with the greatest genetic diversity for the C‐biotype. Phylogenetic reconstruction based on the rRNA ITS regions showed that the C‐ and S‐biotypes formed a well‐supported clade separated from the L‐biotype. Analysis of 131 isolates genotyped at 11 microsatellite loci found that S‐ and especially L‐biotypes showed a higher genetic diversity. A significant spatial genetic structure was detected for the C‐biotype populations in Amazonia for up to 137 km, suggesting ‘isolation by distance’ mode of dispersal. However, in regions containing extensive cacao plantings, C‐biotype populations were essentially ‘clonal’, as evidenced by high frequency of repeated multilocus genotypes. Among the Amazonian C‐biotype populations, Acre and West Amazon displayed the largest genotypic diversity and might be part of the centre of diversity of the fungus. The pathogen dispersal may have followed the direction of river flow downstream from Acre, Rondônia and West Amazon eastward to the rest of the Amazon valley, where cacao is not endemic. The Bahia population exhibited the lowest genotypic diversity, but high allele richness, suggesting multiple invasions, with origin assigned to Rondônia and West Amazon, possibly through isolates from the Lower Amazon population.  相似文献   

13.
This paper presents the first finding of Siphonatrophia cupressi (Swain, 1918) (Hemiptera, Aphididae) for Algeria and also for the whole African continent. This aphid pest is reported for the first time from Khenchela Province, North‐Eastern Algeria, on Cupressus sempervirens L. var. horizontalis (Mill.). The first observations were made in a public garden, and other colonies were detected in a nursery producing forest seedlings. Monitoring of these colonies revealed that this aphid is parasitized by Ephedrus persicae Frog and Lysiphlebus testaceipes (Cress.) (Hymenoptera, Braconidae, Aphidiinae).  相似文献   

14.
Resistant annual and herbaceous perennial plant species were identified as key hosts which allow Phytophthora cinnamomi to persist on severely impacted black gravel sites within the Eucalyptus marginata (jarrah) forest of southwest Western Australia. Of the annual and herbaceous perennial plant species present on black gravel sites, 15 out of 19 species were found to be hosts of P. cinnamomi, and 10 of these were symptomless hosts. In particular, the native annual Trachymene pilosa and the two native herbaceous perennials Stylidium diuroides and Chamaescilla corymbosa were commonly found to be hosts of the pathogen. Species from 12 new genera including three from new families (Crassulaceae, Droseraceae and Primulaceae) are reported for the first time to be hosts of P. cinnamomi. The species from which P. cinnamomi was recovered were the native species: Chamaescilla corymbosa, Crassula closiana, Drosera erythrorhiza, Hydrocotyle callicarpa, Levenhookia pusilla, Paracaleana nigrita, Podotheca angustifolia, Pterochaeta paniculata, Rytidosperma caespitosum, Siloxerus multiflorus, Stylidium diuroides and Trachymene pilosa, and the introduced annual weeds Hypochaeris glabra, Lysimachia arvensis and Pentameris airoides.  相似文献   

15.
Isolates of an unknown Phytophthora species from the ‘Phytophthora citricola complex’ have been found associated with mortality of Aucuba japonica in the UK. Based on morphological characteristics, growth–temperature relationships, sequences of five DNA regions and pathogenicity assays, the proposed novel species is described as Phytophthora pachypleura. Being homothallic with paragynous antheridia and semipapillate sporangia, P. pachypleura resembles other species in the ‘P. citricola complex’ but can be discriminated by its distinctively thick‐walled oospores with an oospore wall index of 0·71. In the phylogenetic analysis based on three nuclear (ITS, β‐tubulin, EF‐1α) and two mitochondrial (cox1, nadh1) DNA regions, P. pachypleura formed a distinct clade within the ‘P. citricola complex’ with P. citricola s. str., P. citricola E and P. acerina as its closest relatives. Phytophthora pachypleura is more aggressive to A. japonica than P. plurivora and P. multivora and has the potential to affect other ornamental species.  相似文献   

16.
Integrated pest management systems were developed originally in response to the appearance of insect populations with resistance to common insecticides. Cotton with its heavy dependence on insecticidal sprays was one of the first crops in which the effectiveness of control declined due to resistance in the target pests. Although insecticide resistance is more of a problem in large scale production systems, the IPM approach can also benefit the smallholder by reducing the number of sprays required with consequent cost savings. Where crop growth is adversely affected by diseases, competition from weeds or poor management, the full benefit of insecticide spray programmes cannot be realised. To be fully effective, insect control should therefore be integrated with other crop protection activities. This paper reviews the insect pests, diseases and weed problems of cotton in Africa and discusses the possibilities for extending the principles of IPM to cover all the crop protection activities with practical examples drawn from both small scale and larger scale production systems.  相似文献   

17.
Members of the Phytophthora citricola complex (Phytophthora clade 2c), such as P. plurivora, are destructive pathogens of trees and shrubs in nursery, landscape and forest settings worldwide. During surveys of Phytophthora species from streams and rivers in Massachusetts and North Carolina, a novel species in the P. citricola complex was recovered. Based on sequences from three nuclear (ITS, β‐tub and tef1) and two mitochondrial (cox1 and nadh1) loci, morphological characters, temperature–growth relationships and host plant inoculations, this novel species is described as Phytophthora caryae sp. nov. Phytophthora caryae resembles several other species in the P. citricola complex, demonstrating homothallism and producing paragynous antheridia and semipapillate and noncaducous sporangia. However, P. caryae exhibits smaller sexual structures, higher rates of oogonia with a tapered base and sporangia with an offset attachment of the sporangiophores. Phylogenetic analyses using maximum likelihood and Bayesian inference placed isolates of P. caryae into a unique clade with significant statistical support. Based on the mitochondrial dataset, P. caryae is most closely related to P. pini and P. citricola III, which are believed to be native in eastern North America. Inoculations of P. caryae on 1‐year‐old twigs of 12 tree species representing nine genera resulted in under‐bark lesions on species of Carya and Juglans. Sapling inoculations under greenhouse conditions suggest that P. caryae may be pathogenic to shagbark hickory (Carya ovata) but not to black walnut (Juglans nigra).  相似文献   

18.
The purpose of this study was to test the hypothesis that Chrysoporthe cubensis on native trees in South America could be the source of the pathogen that causes severe stem cankers and often mortality in commercially propagated Eucalyptus trees. This was done by investigating populations originating from two adjacent Eucalyptus (Myrtaceae) plantations in Colombia, and wild Miconia rubiginosa trees (Melastomataceae) growing alongside these stands. Polymorphic microsatellite markers were used to quantify allele sizes in 20 and 39 isolates from the two Eucalyptus stands and 32 isolates from adjacent M. rubiginosa trees. Gene and genotypic diversities were calculated from these data, and population differentiation and assignment tests were performed to ascertain whether the populations were genetically different. Results showed that there were no differences between any of the populations using these techniques, and that they can be treated as a single population. Therefore, the results support the hypothesis that host switching has occurred in C. cubensis in Colombia.  相似文献   

19.
20.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号