首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire blight is the most damaging bacterial disease in apple production worldwide. Cankers and symptomless infected shoots are known as sites for the overwintering of Erwinia amylovora, subsequently providing primary inoculum for infection in the spring. In the present work, further potential sources of inoculum were investigated. Real‐time PCR assays covering a 3‐year‐period classified 19·9% of samples taken from fruit mummies as positive. Bacterial abundance in fruit mummies during autumn, winter and spring was up to 109 cells per gram of tissue and correlated well with later infection rates of blossoms. Blossoms of non‐host plants growing close to infected trees were also shown to be colonized by E. amylovora and to enable epiphytic survival and propagation of bacteria. The results indicate a potential role of fruit mummies and buds in overwintering and as a source of primary inoculum for dissemination of the pathogen early in the growing season. Non‐host blossoms may also serve as an inoculum source in the build‐up of the pathogen population. Both aspects may contribute significantly to the epidemiology of E. amylovora. The significance of infected rootstocks as an inoculum source is also discussed. Fruit mummies might be used to determine pathogen pressure in an orchard before the beginning of the blooming period.  相似文献   

2.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

3.
Fire blight outbreaks in Korea were first reported in 2015. Regular outbreaks have occurred since, indicating a continuous cycle of the fire blight pathogen in Korea. We determined the role of Apis mellifera (honeybee) as a vector of Erwinia amylovora by verifying the following: (a) E. amylovora longevity in/on honeybees; (b) the most common body parts that carry the bacteria; (c) the rate of bacterial spread to healthy host organs; and (d) the relationship between dispersal of viable but nonculturable (VBNC) and virulent bacterial cells. E. amylovora survived for 15 days on the exterior of honeybee bodies and was most abundant on the abdomen in comparison to other areas such as the labellum, wings, and hind legs. In the digestive system of honeybees, E. amylovora survived for 7 days, and bacteria were found in faeces for 3 days after exposure. The bacteria are likely to be VBNC on honeybees. Honeybees that were contaminated with bacteria transferred E. amylovora to healthy immature apple fruit, shoots, and flowers for 10 days after exposure. E. amylovora was also transferred from inoculated plant parts to uncontaminated honeybees. In addition, bacteria moved from inoculated plant tissues to unexposed honeybees and then from these honeybees to healthy plant tissues. Therefore, E. amylovora can survive in/on honeybees for extended amounts of time, which contradicts previous reports. The bacteria moved to host tissues via honeybees, suggesting that honeybees are the vectors of E. amylovora and play a role in the development of new outbreaks of fire blight disease in the central regions of Korea.  相似文献   

4.
Citrus Huanglongbing (HLB) is a devastating disease of citrus known to be associated with a fastidious, phloem-limited Gram-negative, yet to be cultured bacterium in the genus Candidatus Liberibacter. In the present study we have developed a method to quantify viable Candidatus Liberibacter asiaticus (Las) with the aid of ethidium monoazide (EMA) which can differentiate live from dead cells. First, calibration curves were developed with the aid of quantitative real-time PCR (QPCR) by using a plasmid template consisting of a 703 bp DNA fragment of rplKAJL-rpoBC (β-operon) region. Standard equations were then developed to quantify Las genome equivalents in citrus, periwinkle, and Asian citrus psyllid, Diaphorina citri. To overcome the limitation of quantitative PCR in discriminating between live and dead bacterial cells, EMA was used to inhibit the amplification of DNA from the dead cells of Las in plant samples. By using the standard equations and EMA-QPCR methods developed in this study, we found that the proportion of viable cells in citrus and periwinkle ranged from 17–31% and 16–28%, respectively. It was determined that a minimum bacterial concentration is required for HLB symptom development by quantifying the population of Las in symptomatic and asymptomatic leaves. The EMA-QPCR methodology developed in the present study should provide an accurate assessment of viable HLB pathogen, providing a tool to investigate disease epidemiology and thus act as a crucial component for disease assessment and management. The authors P. Trivedi and U. S. Sagaram contributed equally to this work.  相似文献   

5.
Fire blight (Erwinia amylovora), a potentially devastating disease in apple, can cause floral, fruit and structural damage and even tree death. Most commercial apple cultivars are susceptible and the resistance/susceptibility of many modern cultivars has not been evaluated. Fire blight resistance/susceptibility is difficult to phenotype due to quantitative resistance, impacts of tree vigour and environment on susceptibility, and the erratic nature of the disease. Resistance/susceptibility levels were determined for 94 apple cultivars and important breeding parents. In 2016 and 2017, multiple actively growing shoots per tree (about three trees per cultivar) were challenged with E. amylovora Ea153n via a cut-leaf inoculation method. Proportion of current season's shoot length blighted (SLB) was calculated for each shoot. To classify cultivar responses, estimated marginal SLB means were compared to four controls, representing highly susceptible (HS) to highly resistant (HR), via Dunnett's tests. Cultivar responses ranged from HS to HR with estimated marginal SLB means of 0.001–0.995 in 2016 and 0.000–0.885 in 2017. Most cultivars demonstrated similar resistance/susceptibility levels in both years (ρ = 0.657, P < 0.0001). K-means clustering was used to classify cultivars into three resistance/susceptibility groups based on incidence, average severity (SLB), and maximum severity values (maximum SLB and age of wood infected). Sixteen cultivars were consistently moderately resistant (MR) to HR while the remainder ranged from HS to MR. An updated comparison of susceptibility of important cultivars is provided. Resistance/susceptibility information gained could be used to identify genetic loci associated with resistance/susceptibility and/or inform parental selection in apple scion breeding programmes.  相似文献   

6.
The morphology of apple and pear stigma was investigated with confocal laser scanning microscopy and scanning electron microscopy. The floral colonization process by Erwinia amylovora was studied with gfp-labelled bacteria and confocal laser scanning microscopy to allow the in vivo observation of the pathogen colonization on intact, viable plant tissues without any kind of staining of the specimens. The interaction on the stigma between Erwinia amylovora and Pantoea agglomerans, both labelled with genes encoding for fluorescent proteins (DsRed-GFP), was also investigated. A stylar groove, covered by papillae and dwelling from the stigma along the style, was visualized. In laboratory conditions, this groove was shown to be an important way for E. amylovora migration towards the nectarthodes. Due to its anatomical structure the groove can sustain bacterial multiplication and thus may play an important role on the interactions between the pathogen and the bacterial antagonist P. agglomerans.  相似文献   

7.
The potential of acibenzolar-S-methyl (Benzo [1,2,3]thiadiazole-7-carbothioic acid-S-methyl ester, ASM; Bion 50 WG) and of an extract of Hedera helix, to protect M26 apple rootstocks against fire blight was determined under controlled conditions. Marked differences were observed in the rate and extent of multiplication as well as in pathogen cell viability between control and ASM and H. helix-treated rootstocks. Although the pathogen multiplied abundantly in the plant tissue of water-treated rootstocks and showed severe damage, ASM and the plant extract of H. helix applied prior to inoculation with the causal agent of fire blight, E. amylovora (strain 7/74), suppressed disease development and bacterial multiplication. Physiological observations of ASM and plant extract-treated rootstocks indicated that restriction of pathogen colonization in plant tissue was correlated with a pronounced increase of peroxidase (POX) and chitinase activity. Furthermore, physiological changes caused by these treatments in host cells were characterized by POX labeling methods with SDS-Page electrophoresis. Differences in expression of the POX and protein bands were observed in tissues of plants treated with different inducers. POX activity was determined by the presence of three strong bands in plant extract-treated leaves, two strong bands and one very weak band of about 20.1 and 43 kDa were visible in ASM-treated leaves. Evidence is provided that ASM, as well as extract of H. helix are equally capable of inducing of resistance responses in M26 apple rootstock, which result in an increased resistance to E. amylovora—the fire blight pathogen. These findings demonstrate that both treatments have the ability to induce the activation of defense genes leading to the accumulation of structural and biochemical activities at strategic sites, and these can be associated with induction of resistance against fire-blight.  相似文献   

8.
Erwinia piriflorinigrans is a newly described pathogen causing necrosis of pear blossoms. Complete sequencing of the 37‐kb plasmid pEPIR37 common to 27 E. piriflorinigrans strains revealed homology to sequences of the ubiquitous plasmids pEA29 of the fire blight pathogen E. amylovora, plasmid pEP36 of E. pyrifoliae, plasmid pEJ30 of Erwinia sp. from Japan, and genomic regions of the related Rosaceae epiphytic Erwinia species E. tasmaniensis and E. billingiae. A second 5·5‐kb cryptic plasmid pEPIR5, found in 12 E. piriflorinigrans strains, was also sequenced revealing mobilization and replication proteins with similarities to many small ColE1‐type plasmids in Erwinia spp. and other enterobacteria. Functional analyses of pEPIR37 introduced into a strain of E. amylovora cured of pEA29 plasmid, which has a reduced virulence, showed a role in increasing symptom development similar to that observed in E. amylovora carrying plasmid pEA29.  相似文献   

9.
Erwinia amylovora, the causal agent of fire blight that affects economically important rosaceous plants, is reported among the most important plant pathogenic bacteria. The low genetic diversity within E. amylovora and the lack of simple and high‐resolution genotyping techniques make epidemiology and evolutionary studies challenging for this pathogen. A multiple‐locus variable number tandem repeat analysis (MLVA) based on a set of nine variable number tandem repeat loci was successfully used to type 46 E. amylovora isolates collected from different host plants in 16 countries, mainly Mediterranean. The nine polymorphic loci proved to have high discriminatory power and to increase the resolution of the MLVA. Thirty‐eight haplotypes clustered in seven clonal complexes. The results identified potentially useful genetic markers among the Mediterranean strains, particularly from the Balkan Peninsula and the Eastern Mediterranean countries. Different MLVA types were observed amongst Italian strains only, indicating the possibility of multiple introductions of the disease. MLVA can be used effectively as a fast, cheap, and simple tool to track E. amylovora infection sources, to gain insight into geographic diversity, and to understand the dynamic evolution of the pathogen.  相似文献   

10.
Brown rot is the most economically important fungal disease of stone fruits and is primarily caused by Monilinia laxa and M. fructicola. Conventional methods used to identify M. fructicola are mainly based on phenotypic characteristics and pathogen quantification is not always accurate. In contrast, methodologies based on molecular tools improve pathogen characterization and identification but are not able to differentiate between live and dead conidia. In this study the PMA‐qPCR methodology was optimized, validated and applied to quantify viable cells of M. fructicola in artificially and naturally infected samples. qPCR methodology showed good primer efficiency and sensitivity with quantification limits lower than obtained using a plate count method. The conditions of propidium monoazide (PMA) pretreatment were 60 μm PMA for 20 min incubation and 30 min of light‐emitting diode (LED) exposure that, combined with qPCR, measured live cells accurately without overestimation of dead cells. Using this methodology in naturally infected samples, M. fructicola live cells were quantified specifically, in contrast to other traditional methodologies that cannot distinguish among Monilinia spp. The developed methodology based on combined PMA‐qPCR will be a new tool to quantify viable M. fructicola in further epidemiological and ecological studies of this fungus.  相似文献   

11.
X. Li  Y. Liu  L. Cai  H. Zhang  J. Shi  Y. Yuan 《Plant pathology》2017,66(8):1345-1356
Tobacco bacterial wilt caused by Ralstonia solanacearum is a serious disease affecting tobacco cultivation in southwest China. The response surface methodology was employed to evaluate the optimal conditions of tobacco bacterial wilt, and green fluorescent protein gene (gfp) labelling was applied to monitor the location and survival dynamics of R. solanacearum (Rs::gfp) on tobacco roots and in soil under these optimal conditions. The results showed that the highest wilt incidence was 91.13%, which occurred when the population reached 6.6 × 106 CFU/g soil, the temperature was 30.55 °C, and the humidity was >81.42%. The Rs::gfp densely colonized the root tips and root hairs, and cells of Rs::gfp were observed intermittently in the elongation zone or at the point of the emerging lateral roots. The Rs::gfp number in the rhizosphere soil was 10.75‐, 73.13‐ and 74.86‐times higher than that in the bulk soil at 10, 15 and 20 days after transplantation, respectively. Increased colonization by Rs::gfp was related to the population of the pathogen, the environmental temperature and the humidity in the soil. These three conditions determined whether R. solanacearum would induce tobacco wilt. This is the first study to investigate factors affecting the virulence of a tobacco wilt bacterial pathogen, which is important for conducting field diagnosis and biocontrol of tobacco bacterial wilt.  相似文献   

12.
Based on partial sequence analysis of the β‐tubulin gene, 19 isolates of fungi causing bull's eye rot on apple in Poland were classified into species: Neofabraea alba, N. perennans and N. kienholzii. To the authors’ knowledge, the detection of N. kienholzii is the second in Europe and the first in Poland. Species affiliation of these fungi was confirmed by a new species‐specific multiplex PCR assay developed on the basis of previously published methods. The new protocol allowed for the specific identification of bull's eye rot‐causing species, both from pure cultures and directly from the skin of diseased or apparently healthy apples. In 550 samples of diseased fruits collected from nine cold storage rooms located in three regions of Poland, in 2011 and 2012, N. alba was detected as the predominant species causing bull's eye rot, occurring on average in 94% of the tested samples. Neofabraea perennans was found in a minority of apple samples, N. kienholzii was found only in two apple samples, while N. malicorticis was not detected in any sample tested. In tests on 120 apparently healthy fruits, only N. perennans was detected in a single sample. The results of genetic diversity analyses of bull's eye rot‐causing fungi based on the β‐tubulin gene sequence and an ISSR (inter‐simple sequence repeat) PCR assay with two primers were consistent, showing the expected segregation of tested isolates with respect to their species boundaries. However, the genetic distance between N. perennans and N. malicorticis was very low, as reported previously.  相似文献   

13.
The non‐protein amino acid 3,4‐dehydro‐l ‐proline (DHP) significantly reduced the incidence of fire blight infection on immature pear fruits infected with wildtype Erwinia amylovora. DHP also inhibited biofilm formation in both streptomycin‐sensitive and ‐resistant strains of E. amylovora and induced dispersal of preformed biofilms in the streptomycin‐sensitive strain. The investigations shed light on the hitherto undiscovered ability of DHP to inhibit bacterial biofilms and its potential as a chemical control option for fire blight.  相似文献   

14.
Fire blight is the most devastating bacterial disease of rosaceous plants. Forecasting fire blight infections is important to allow for countermeasures that reduce economic damage in pome fruit production. Current computerized forecasting models are solely based on physical factors such as temperature and moisture, but not on the actual presence of the pathogen Erwinia amylovora. Although the inoculum concentration is considered to be crucial for infection and disease outbreak, most current approaches used for identification of fire blight inoculum including morphological, biochemical, serological, and DNA‐based methods are nonquantitative. Based on a real‐time PCR approach previously published, an improved protocol to be used directly on whole bacteria in the field is described. The method allows for early detection and quantification of the pathogen prior to the occurrence of first symptoms. There is a clear correlation between bacterial abundance and subsequent disease development. However, in some cases, no disease symptoms could be observed despite a pathogen load of up to 3·4 × 106 cells per blossom. Integration of the amount of pathogen detected into refined prediction algorithms may allow for the improvement of applied forecasting models, finally permitting a better abatement of fire blight.  相似文献   

15.
Verticillium wilt caused by Verticillium dahliae is one of the most threatening diseases of olive worldwide. For pre‐planting and post‐planting control of verticillium wilt in olive trees, availability of a rapid, reliable and non‐destructive method for detection of V. dahliae is essential. For such a method, suitable and easily performed sampling and efficient processing of samples for extraction of DNA are necessary. In this study, the suitability of young twig and leaf samples of olive trees, which are easy to collect and extract DNA from, were assessed for the detection of V. dahliae in routine procedures. The lower (about 50 cm from the tip) and top parts (about 5 cm from the tip) of twigs, as well as leaves from infected olive trees were screened for V. dahliae infection and distribution using real‐time PCR. The biomass of V. dahliae detected in individual twigs was highly variable, but there was no significant difference between mean quantities of V. dahliae DNA detected in top and lower parts of twigs. Furthermore, it was demonstrated that analysis of combined samples containing DNA extracted from five twigs of an infected tree accurately detected the presence of the pathogen. Similarly, testing combined samples of 5–10 leaves enabled reliable detection of the pathogen in an infected tree. The development of this assay enables reliable detection of V. dahliae in infected olive trees that can aid in management decisions for the implementation of integrated disease management.  相似文献   

16.
Erwinia amylovora, the causal agent of fire blight, carries the common plasmid pEA29 of 29 kb. To screen for occurrence of natural strains without plasmid pEA29, we applied PCR analysis with primers from the plasmid and the chromosomal ams region. In addition, a described TaqMan probe from pEA29 and newly designed primers from the ams-region were used for identification by real-time PCR. One strain isolated in Iran, one strain from Spain and two strains from Egypt lacked plasmid pEA29. From a recent screening series in southern Germany, in 123 E. amylovora strains from necrotic fire blight host plants, one strain was found without the common plasmid. The strains without pEA29 were virulent in assays with immature pears and on apple seedlings, but showed a reduced growth level in minimal medium without amino acids and thiamine. Transposon-labelled pEA29 was transformed into the plasmid-free strains resulting in restoration of this growth deficiency. The plasmid was stably maintained in these E. amylovora cells. The newly designed chromosomal primers for conventional and for real-time PCR identified E. amylovora strains in field samples lacking pEA29. These variants are apparently rare, but were detected in isolates from different regions in the world with fire blight.  相似文献   

17.
The infection frequency of mature apple fruit by Erwinia amylovora and the survival of E. amylovora in the fruit stored at low temperature were investigated. The fruit stems (pedicels) of 460 mature apple fruit were inoculated with 105 or 104 cfu of bioluminescent E. amylovora, tagged with lux genes. Nine days after inoculation, 43% and 27% of the fruit inoculated with 105 and 104 cfu, respectively, were infected. All infected fruit looked healthy. After 6 months of storage at 5°C, almost all of the 142 infected fruit had viable E. amylovora. Of the fruit containing E. amylovora internally, 19.5% had latent infections and the rest had blight symptoms. E. amylovora was not uniformly distributed in the fruit flesh, and internal brown lesions were observed where E. amylovora was densely distributed. These findings showed that mature apple fruit may be infected with E. amylovora, especially as latent infections, and act as a source for long-range dissemination.  相似文献   

18.
Post‐harvest diseases of apple and pear cause significant losses. Neofabraea spp. and Cadophora spp. infect fruits during the growing season and remain quiescent until disease symptoms occur after several months in storage. Epidemiological knowledge of these diseases is limited. TaqMan PCR assays were developed for quantification of N. alba, N. perennans, C. malorum and C. luteo‐olivacea in environmental samples. Various host tissues, dead weeds and grasses, soil and applied composts were collected in 10 apple and 10 pear orchards in May 2012. Neofabraea alba was detected in 73% of samples from apple orchards and 48% from pear orchards. Neofabraea perennans was present in a few samples. Cadophora luteo‐olivacea was detected in 99% of samples from apple orchards and 93% from pear orchards, whilst C. malorum was not detected in any sample. In apple orchards, highest concentrations of N. alba were found in apple leaf litter, cankers and mummies, and of C. luteo‐olivacea in apple leaf litter, mummies and dead weeds. In pear orchards, N. alba and C. luteo‐olivacea were found in highest concentrations in pear leaf litter and in dead weeds. Substrate colonization varied considerably between orchards. The temporal dynamics of pathogens was followed in four apple orchards and four pear orchards. In apple orchards the colonization by pathogens decreased from April until August and increased from September until December. This pattern was less pronounced in pear. Knowledge on population dynamics is essential for the development of preventative measures to reduce risks of fruit infections during the growing season.  相似文献   

19.
The downy mildew pathogen, Pseudoperonospora humuli, forms oospores abundantly in diseased hop tissue. Diverse monosporangial isolates of P. humuli derived from samples collected in Japan, Germany and the USA readily formed oospores within hop leaves when inoculated singly, suggesting homothallism. Single zoospore isolates also readily formed oospores within hop leaves, further supporting the homothallic nature of this oomycete. The majority of oospores were deemed viable based on cytoplasm characteristics and plasmolysis assays. However, disease symptoms failed to develop when hop leaves were inoculated with newly formed oospores, even when oospore conditioning was attempted with treatment with potassium permanganate or β‐glucuronidase/arylsulphatase, brief exposure to freezing temperature, or passage through an earthworm. Oospores derived from a monosporangial isolate of P. humuli that overwintered outdoors in infested leaves buried in soil also failed to cause downy mildew. Pseudoperonospora humuli is homothallic and oospores of the organism appear to require as yet unknown conditions to stimulate their germination and/or infection.  相似文献   

20.
Potato cyst nematodes (PCN), Globodera pallida and Globodera rostochiensis, are obligate parasites of solanaceous plants, causing severe losses in several potato growing areas throughout the world. To date, management of PCN is related to nematode population densities estimated as eggs per gram of soil, without considering the actual number of viable juveniles within the cysts. In classical nematology, the standard method to determine PCN viability is based on a staining assay, using Meldola's blue dye (MB) followed by microscopic visualization of MB‐treated nematodes. Although MB is considered to be reliable in staining embryonated juveniles within eggs and cysts, it is a time‐ and labour‐consuming assay. In the present work, a real‐time PCR (qPCR)‐based method combined with propidium monoazide (PMA), a photoreactive DNA‐intercalating dye, was developed for the quantification of viable PCN. This dye renders exposed DNA of dead cells unable to be amplified by PCR, and thus only DNA from viable/intact PCN juveniles is amplified and detected. The novelty of the present method lies in the simultaneous quantitative and qualitative estimation of viable PCN inocula using species‐specific primers and TaqMan probes. The PMA–qPCR viability method (v‐PCR) developed for the two Globodera species successfully discriminated dead from living specimens in heat‐treated samples and eggs in old and newly formed cysts. Interestingly, the detection of DNA from 34‐year‐old nematode cysts stored at room temperature was observed. In conclusion, the proposed v‐PCR method should prove to be very useful for the routine determination of PCN viability from field samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号