首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BACKGROUND: The objectives of this work were to determine if the control of potato virus Y (PVY, genus Potyvirus, family Potyviridae) in seed potato could be improved by combining border crops and mineral oil sprays, and if the border crop acts as a barrier or a virus sink. RESULTS: Field tests over 3 years confirmed that mineral oils alone are an effective barrier to PVY, and showed that borders alone act as a PVY sink. Combining the familiar mineral oil and the more recent crop border methods was almost twice as effective in reducing PVY incidence as either one used alone. The combination provided consistently high PVY control compared with the variable and often lower level of control by either method alone. The contribution of the oil to PVY reduction was similar whether it was applied to the border, the center seed plot, or both. Oil application to the border alone should not affect efficacy and would help keep control costs down. CONCLUSION: Combining border and oil provided the best reduction in PVY incidence 3 years out of 3, providing producers with a tool to reduce year‐to‐year variation in the effectiveness of crop borders or oil sprays used separately. © Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri‐Food Canada. Published by John Wiley and Sons, Ltd.  相似文献   

4.
Potato virus Y (PVY) is responsible for major viral diseases in most potato seed areas. It is transmitted by aphids in a non-persistent manner, and it is spread in potato fields by the winged aphids flying from an infected source plant to a healthy one. Six different PVY strains groups affect potato crops: PVYC, PVYN, PVYO, PVYN:O, PVYNTN, and PVYN-Wi. Nowadays, PVYNTN and PVYN-Wi are the predominant strains in Europe and the USA. After the infection of the leaf and accumulation of the virus, the virus is translocated to the progeny tubers. It is known that PVYN is better translocated than PVYO, but little is known about the translocation of the other PVY strains. The translocation of PVY occurs faster in young plants than in old plants; this mature plant resistance is generally explained by a restriction of the cell-to-cell movement of the virus in the leaves. The mother tuber may play an important role in explaining mature plant resistance. PVY is able to pass from one stem to the other stems of the same plant through the vascular system of the mother tuber, but it is unknown whether this vascular link between stems is permanent during the whole life of the plant. Two greenhouse trials were set up to study the spread of PVY in the vascular system of the potato plant. The PVY-susceptible cultivar Charlotte was used for both trials. It was demonstrated that all stems growing from a PVY-infected tuber will become infected sooner or later, and that PVYN-Wi translocates more efficiently to progeny tubers than PVYNTN. It was also demonstrated that the progressive decay of the mother tuber in the soil reduces the possibility for virus particles to infect healthy stems through the vascular system of the mother tuber. This new element contributes to a better understanding of the mechanism of mature plant resistance.  相似文献   

5.
To investigate the role of environmental conditions on the selection of virulent Potato virus Y (PVY) isolates subject to pressure from the recessive resistance gene va in tobacco, a field survey was performed in Brazil where va‐derived genotypes have been recently introduced and now represent less than one‐third of cultivated tobacco genotypes. A serological analysis of 397 leaves collected from different Brazilian tobacco‐growing areas and mainly from plants with symptoms indicated that 52·4% of samples were infected by at least one of the viral species tested. PVY was present in 72·1% of infected samples. The probability of a plant being infected with PVY was reduced in va hosts. However, the biological characterization of PVY isolates on indicator hosts showed that 20 of the 29 tested isolates were able to overcome the alleles of the va gene. Moreover, the observed biological diversity of isolates was higher in susceptible tobacco genotypes than in va‐resistant ones. Comparison of these data with the PVY diversity in French tobacco fields shows that the use of va‐derived genotypes in two environments with contrasting climatic conditions, local hosts and cultural contexts, leads to a similar outcome: the prevalence of virulent isolates. These results strongly suggest an important role of the va gene in the modification of PVY populations.  相似文献   

6.
马铃薯是我国重要粮食和经济作物。马铃薯Y病毒(potato virus Y,PVY)是危害马铃薯生产的重要病害。种植脱毒种薯是防治PVY最有效的途径。马铃薯种薯携带PVY问题严重,但种薯中PVY株系还不清楚。本研究利用PVY特异性抗体检测了7个马铃薯品种362个种薯,发现不同品种种薯带毒率差异较大,最高达12%。通过RT-PCR方法扩增获得了7个PVY分离物编码区全序列。重组分析发现7个分离物基因组均为重组型,根据重组位点的差异可以分为PVYNTN-NW(SYR-II型)、Rec-1、Rec-2和Rec-3等4种重组类型,后3种为新重组类型。系统进化分析发现,分离物HQH18G3-10与PVYNTN-NW(SYR-II型)处于同一个大的分支,但与中国PVY大田分离物聚集在一起形成一个相对独立的组,命名为PVYNTN-NW(CN型);其余6个分离物与数据库中的中国分离物聚集在PVYN-Wi组。这暗示PVY中国分离物具有相对独立的进化过程,PVY马铃薯大田分离物和种薯分离物进化上相近。所有分离物均能在珊...  相似文献   

7.
 马铃薯是我国重要粮食和经济作物。马铃薯Y病毒(potato virus Y,PVY)是危害马铃薯生产的重要病害。种植脱毒种薯是防治PVY最有效的途径。马铃薯种薯携带PVY问题严重,但种薯中PVY株系还不清楚。本研究利用PVY特异性抗体检测了7个马铃薯品种362个种薯,发现不同品种种薯带毒率差异较大,最高达12%。通过RT-PCR方法扩增获得了7个PVY分离物编码区全序列。重组分析发现7个分离物基因组均为重组型,根据重组位点的差异可以分为PVYNTN-NW(SYR-II型)、Rec-1、Rec-2和Rec-3等4种重组类型,后3种为新重组类型。系统进化分析发现,分离物HQH18G3-10与PVYNTN-NW(SYR-II型)处于同一个大的分支,但与中国PVY大田分离物聚集在一起形成一个相对独立的组,命名为PVYNTN-NW(CN型);其余6个分离物与数据库中的中国分离物聚集在PVYN-Wi组。这暗示PVY中国分离物具有相对独立的进化过程,PVY马铃薯大田分离物和种薯分离物进化上相近。所有分离物均能在珊西烟上引起典型叶脉坏死症状,HQH18G3-10引起的坏死症状最为严重。本研究首次报道了我国种薯内PVY发生情况,对分析病毒发生发展规律和防控具有借鉴作用。  相似文献   

8.
A collection of 38 PVY isolates from seed potato batches, originating from several Western European countries, was characterized by using current biological, serological and molecular tools differentiating PVY strains and groups. The correlation between the three kinds of tests was good but not absolute. No single serological or PCR method was able to discriminate among the five isolate groups found. Twenty-nine isolates belonged to the PVYN strain and six to the PVYO strain. No PVYC was found. Two other isolates reacted serologically like PVYO, but were unable to elicit a hypersensitive response from the Nytbr gene and probably represent the PVYZ group. At the molecular level, these two isolates showed a combination of both PVYO and PVYN and could be recombinants of these strains. Another isolate reacted serologically like PVYO, but induced vein necrosis in tobacco, like PVYN-Wilga. Some PVYN isolates caused tuber ring necrosis in glasshouse conditions. These might belong to the PVYNTN group. The PVYNTN, PVYN-Wilga and PVYZ groups probably represent pathotypes within strains PVYN and PVYO, respectively. The present study also confirms previous reports showing a high genetic variation at the 5 end within the PVYN strain.  相似文献   

9.
The genetic structure of Potato virus Y (PVY) populations was investigated in naturally-infected pepper ( Capsicum annuum ) fields, collected at eight different localities in northern Tunisia, where 23% of the sampled plants were homozygous for the pvr21 recessive resistance allele, while the other plants carried the dominant susceptibility allele pvr2+ . Restriction fragment length polymorphism analysis at three PVY genome segments revealed a high level of viral diversity, with a majority of cases showing co-infection of individual plants by several PVY haplotypes and a strong genetic differentiation of viral populations collected in the different localities. Geographic distances affected the differentiation of PVY populations and isolation by distance among these populations was significant. However, the occurrence of the pvr21 resistance allele did not contribute to the structure of viral populations, suggesting that the virulence properties of the virus did not significantly affect its fitness. Consequently, greater deployment of the pvr21 gene would probably not be a suitable strategy to control PVY, and other resistance genes should be preferred.  相似文献   

10.
Antibodies were prepared against two synthetic peptides, P19 and P11, derived from the coat protein N-terminal region of two pepper isolates of Potato virus Y from Tunisia (PVY-P21 and PVY-P2, respectively). The peptides were selected by comparing the predicted amino acid sequences of three pepper and four potato PVY isolates on the basis of their polymorphism and hydrophilicity. Sera with high titres were only obtained against P19. Three MAbs, raised in response to P19, reacted with the homologous virus (PVY-P21) in TAS-ELISA. When tested against a broad range of PVY isolates and related viruses, MAb 3C5 proved to be PVY species specific, whereas MAbs 8A4 and 1D6 reacted specifically with standard isolates of PVYO, PVYC and PVYN-W strains, but not with other PVY isolates. Consequently, epitope(s) recognized by 8A4 and 1D6 MAbs may be specific to a PVY group comprising all serologically PVYnon–N isolates. Surprisingly, and unlike isolate PVY-P21, many Tunisian field pepper isolates did not carry this epitope(s), thus revealing serological heterogeneity within the PVY pepper group. As PVY is one of the most economically important plant pathogens in a range of crops, including pepper, these MAbs will provide a useful tool for practical diagnosis and strain identification of PVY.  相似文献   

11.
In 2008 and 2009 seasons, a sudden increase in Potato virus Y (PVY) incidence was recorded in foundation seed potatoes in Hokkaido, northern Japan. This increase was obvious during the field inspection and the postharvest indexing. Molecular typing revealed that besides the previously reported strains of PVYO and PVYNA‐N, the most common strain identified was the recombinant PVYNTN, with three characteristic recombinant junctions at the HC‐Pro, VPg and CP regions. No potato tuber necrotic ringspot disease (PTNRD) was observed in foundation seed potatoes in correlation with the presence of PVYNTN. Moreover, an isolate with a typical PVYNTN recombinant genome, namely Eu‐12Jp, did not induce PTNRD in 62 Japanese potato cultivars tested in both primarily and secondarily infected plants. Two cultivars carrying the extreme resistance gene Rychc were resistant to the infection with Eu‐12Jp, which presents potential sources of resistance to PVYNTN. Eu‐12Jp induced systemic mottle in potato cultivars Desiree and King Edward carrying resistance genes Ny and Nc, respectively, but induced a hypersensitive reaction in potato cultivar Maris Bard, with the Nz hypothetical resistance gene typical of the PVYZ strain group. Therefore, based on the genome structure and the reaction of the potato N resistance genes, Eu‐12Jp should be classified as PVYZ‐NTN, as described for isolates from Idaho, USA recently. This is the first report of PVYZ‐NTN in Japan and the sudden and increased occurrence of PVYNTN/PVYZ‐NTN represents a potential risk of PTNRD developing and increases the significance of PVY in Japan.  相似文献   

12.
The ordinary strain of Potato virus Y (PVY), PVY(O), causes mild mosaic in tobacco and induces necrosis and severe stunting in potato cultivars carrying the Ny gene. A novel substrain of PVY(O) was recently reported, PVY(O)-O5, which is spreading in the United States and is distinguished from other PVY(O) isolates serologically (i.e., reacting to the otherwise PVY(N)-specific monoclonal antibody 1F5). To characterize this new PVY(O)-O5 subgroup and address possible reasons for its continued spread, we conducted a molecular study of PVY(O) and PVY(O)-O5 isolates from a North American collection of PVY through whole-genome sequencing and phylogenetic analysis. In all, 44 PVY(O) isolates were sequenced, including 31 from the previously defined PVY(O)-O5 group, and subjected to whole-genome analysis. PVY(O)-O5 isolates formed a separate lineage within the PVY(O) genome cluster in the whole-genome phylogenetic tree and represented a novel evolutionary lineage of PVY from potato. On the other hand, the PVY(O) sequences separated into at least two distinct lineages on the whole-genome phylogenetic tree. To shed light on the origin of the three most common PVY recombinants, a more detailed phylogenetic analysis of a sequence fragment, nucleotides 2,406 to 5,821, that is present in all recombinant and nonrecombinant PVY(O) genomes was conducted. The analysis revealed that PVY(N:O) and PVY(N-Wi) recombinants acquired their PVY(O) segments from two separate PVY(O) lineages, whereas the PVY(NTN) recombinant acquired its PVY(O) segment from the same lineage as PVY(N:O). These data suggest that PVY(N:O) and PVY(N-Wi) recombinants originated from two separate recombination events involving two different PVY(O) parental genomes, whereas the PVY(NTN) recombinants likely originated from the PVY(N:O) genome via additional recombination events.  相似文献   

13.
Improved tobacco cultivars introgressed with alleles of the recessive resistance va gene have been widely deployed in France to limit agronomical consequences associated with Potato virus Y (PVY) infections. Unfortunately, necrotic symptoms associated with PVY have been reported on these cultivars suggesting that PVY is able to overcome the resistance. A field survey was performed in France in 2007 to (i) estimate the prevalence of PVY in tobacco plants showing symptoms and (ii) characterize PVY isolates present in susceptible and va‐derived tobacco cultivars. A serological typing procedure, applied to 556 leaves collected from different French tobacco growing areas, was performed using polyclonal antisera raised against different viral species including PVY. Viral species were detected in 80·8% of leaves and PVY was present in 83·5% of infected samples. However, statistical analysis confirmed that the probability of a tobacco plant being infected with PVY is reduced in va hosts. Eighty‐six PVY isolates were mechanically inoculated on one susceptible and three va‐derived tobacco cultivars used as indicator hosts to define virulence of these isolates against alleles 0, 1 and 2 of the va gene. Both qualitative and quantitative analyses showed that 55 PVY isolates were able to overcome the three va alleles. Moreover, the monitored biological diversity of PVY isolates was higher in the susceptible tobacco hosts than in the va‐derived ones. This study helps to understand consequences of the deployment of the va gene in tobacco on diversity and virulence of PVY isolates.  相似文献   

14.
一株PVYNTN-NW黑龙江马铃薯分离物的检测鉴定   总被引:1,自引:0,他引:1  
 马铃薯Y病毒(Potato virus Y,PVY)是马铃薯、烟草等茄科作物上的重要病毒,在与寄主共同进化过程中产生了许多株系。本文从黑龙江马铃薯样品中得到PVY分离物A12。ELISA结果表明A12被PVYO的单克隆抗体特异性识别。A12开放阅读框为9 186个核苷酸,编码3 061个氨基酸,与SYR-II-Be1分离物的核苷酸和氨基酸序列一致率均最高,分别为98.3%和99.2%。系统发育分析发现A12与PVYNTN-NW株系SYR-II型的分离物聚类到一起;重组分析表明,A12是N-605和Oz的重组体,重组类型与SYR-II-Be1相同。综合以上结果表明,A12属于PVYNTN-NW株系SYR-II型。但与常见PVYNTN-NW株系分离物在珊西烟引起叶脉坏死不同,A12产生花叶症状。A12辅助成分-蛋白酶在182位和245位的氨基酸均为精氨酸,而其它PVYNTN-NW株系分离物为赖氨酸。本研究结果可为黑龙江马铃薯PVY的早期检测和有效防控提供理论指导。  相似文献   

15.
The influence of co‐infection on concentration and accumulation of genetically different isolates of Potato virus Y (PVY) in potato and tobacco plants and the efficiency of transmission by Myzus persicae of PVY isolates from doubly versus singly infected plants were evaluated. The vector ability to simultaneously transmit two virus isolates was examined. Eight PVY isolates represented three strain groups: PVYO (pathotype and serotype O), PVYNW (pathotype N and serotype O), and PVYNTN (pathotype and serotype N). Different diagnostic methods, including DAS‐ELISA, multiplex RT‐PCR, aphid transmission tests and bioassays, were applied to detect the presence of PVY isolates in source and assay plants. Significant reductions in concentrations of certain PVY isolates during co‐infection with other isolates were found both in potato and tobacco plants. The observed effects were both isolate‐ and host‐dependent in form. The highest rates of virus transmission by single aphids were recorded with PVYNTN isolates, and the lowest ones with PVYO isolates. Individual aphids of M. persicae were able to simultaneously transmit two PVY isolates. The frequency of transmission was generally low, but it reached as high as 20% for one of the isolate combinations. The findings presented in the work provide proof for antagonistic within‐plant interactions between isolates of PVY, with some implications of these interactions for virus transmission by aphid vectors. Consequently, this research contributes to a better understanding of the epidemiology of the disease caused by PVY.  相似文献   

16.
 马铃薯Y病毒(Potato virus Y,PVY)是马铃薯、烟草等茄科作物上的重要病毒,在与寄主共同进化过程中产生了许多株系。本文从黑龙江马铃薯样品中得到PVY分离物A12。ELISA结果表明A12被PVYO的单克隆抗体特异性识别。A12开放阅读框为9 186个核苷酸,编码3 061个氨基酸,与SYR-II-Be1分离物的核苷酸和氨基酸序列一致率均最高,分别为98.3%和99.2%。系统发育分析发现A12与PVYNTN-NW株系SYR-II型的分离物聚类到一起;重组分析表明,A12是N-605和Oz的重组体,重组类型与SYR-II-Be1相同。综合以上结果表明,A12属于PVYNTN-NW株系SYR-II型。但与常见PVYNTN-NW株系分离物在珊西烟引起叶脉坏死不同,A12产生花叶症状。A12辅助成分-蛋白酶在182位和245位的氨基酸均为精氨酸,而其它PVYNTN-NW株系分离物为赖氨酸。本研究结果可为黑龙江马铃薯PVY的早期检测和有效防控提供理论指导。  相似文献   

17.
为明确分离自黑龙江省克山县马铃薯上的2个病毒分离物KS4和KS7的分类地位,通过RTPCR扩增、克隆获得其基因组序列,利用重组分析程序包和最大似然法分别进行重组分析和系统发育分析。结果显示,分离物KS4和KS7的开放阅读框均有9 186个核苷酸,编码3 061个氨基酸,分离物KS4的核苷酸和氨基酸序列均与马铃薯Y病毒(potato virus Y,PVY)分离物Mb112一致率最高,分别为96.9%和98.4%;分离物KS7的核苷酸序列与PVY分离物12-94一致率最高,为97.4%,其氨基酸序列与PVY分离物SYR-Ⅱ-Be1一致率最高,为97.8%。重组分析表明,分离物KS4和KS7均为分离物N-605和Oz的重组体,其中KS4基因组5′-端的2 392个核苷酸来自分离物N-605,其余核苷酸来自分离物Oz;KS7基因组的第800~2 227个核苷酸和第5 637~8 950个核苷酸来自分离物N-605,其余核苷酸来自分离物Oz。系统发育分析发现,分离物KS4被聚类到N:O株系(PVY~(N:O)),分离物KS7被聚类到NTN株系(PVY~(NTN))b型。  相似文献   

18.
 RNAi with natural defence mechanism of homologous RNA degradation is widely used in research of antiviral plant. It is important to construct a highly efficent RNAi vector for transgenic plants of virus resis-tance. In this study, part fragments of coat protein gene of Potato virus Y (PVY) (451-750 bp) were inserted into the two expression vectors. Vector pROKY300 without intron and pHelY300 with PDK and CAT introns on the hpRNA stem were constructed. The silence efficiency of virus resistance of the two vectors was investigated as 88% (22/25)for pROKY300 and 92% (23/25) for pHelY300 through transient expression mediated by agroinfiltration. The results showed that both vectors were highly antiviral and elucidated the validity of RNAi-medicates resistance to virus.  相似文献   

19.
Abstract

Leek (Allium porrum L.) is an Important field vegetable in most of western and central Europe. Infestations of onion thrips (Thrips tabaci Lindeman) cannot be controlled with the range of insecticides now available in The Netherlands. Leek rust (Puccinia allii Rudolph) is now also difficult to control. Experiments in which no insecticides or fungicides were applied, were carried out to assess the effects on thrips populations and infection by leek rust when leek crops were undersown with subterranean clover (Trifolium subterraneum L.). To evaluate the economic aspects of this approach, both the quality and quantity of the leeks produced in the two systems were compared. Undersowing leeks with clover drastically reduced thrips infestations which was reflected in improved quality of leeks at harvest. Leek rust incidence was also reduced slightly by undersowing with clover and the quality of the leeks at harvest was also better. Although the quality of the leeks was improved when the crop was undersown with clover, the quantity of crop produced was reduced considerably as a result of plant competition.  相似文献   

20.
The serological relationships of Potato Virus Y (PVY) isolates belonging to the pepper pathotypes 0, 1 and 1-2 were established by enzyme-linked immunosorbent assay (ELISA). PVY pepper pathotypes did not react with monoclonal antibodies which typically recognize non-pepper strains within the PVY group, leading to discrimination between these two groups of strains. No serological differences were found between the three PVY pepper pathotypes. The coat protein (CP) nucleotide and predicted amino acid sequences of the three different PVY pepper pathotypes were determined. The highest sequence similarity was found between pathotypes 0 and 1 (99.2%), while the lowest occurred between these two and pathotype 1–2 (98.1%). PVY strains from potato and tobacco appeared more distantly related. Phenetic analysis of the CP amino acid sequences showed that the PVY pepper pathotypes formed a tightly clustered group separate from other PVY strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号